Download citation
Download citation
link to html
The title complex, [Co(C15H12N3O2S)2], consists of an octa­hedrally coordinated CoII ion, with two crystallographically independent 1,4-dibenzoyl­thio­semicarbazidate ligands in a tridentate mer coordination [Co-O = 2.064 (3)-2.132 (3) Å and Co-N = 2.037 (3)-2.043 (3) Å]. There are inter­molecular N-H...S hydrogen bonds involving one ligand and strong [pi][pi] stacking inter­actions involving the other ligand, resulting in a three-dimensional supra­molecular framework. The hydrogen bonds and [pi]-[pi] inter­actions, as well as different intra­molecular aryl-benzamide H-C...H(-N) distances, give rise to a difference in conformation between the two ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107027631/sq3082sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107027631/sq3082Isup2.hkl
Contains datablock I

CCDC reference: 659104

Comment top

Thiosemicarbazones and their metal-complexes are of great pharmacological interest owing to their various biological activities, including antibacterial, antimalarial, antiviral and antitumor (Quiroga & Ranninger, 2004; Kasuga et al., 2003; Easmon et al., 2001). These activities are greatly affected by the electronics, redox properties, number and position of substituent groups attached to the ligands, and the backbone conformation of the ligands or their metal complexes (Dearling et al., 2002; Maurer et al., 2002). Supramolecular interactions might also play an important role in their biological activities. Intermolecular interactions, especially pairs of N—H···N and N—H···S hydrogen bonds, often give rise to distortions of the conformation of the ligand backbone. Furthermore, these intermolecular interactions might allow the complexes to interact with various biological molecules containing complementary hydrogen-bonding motifs (e.g. purines, pyrimidines and peptide bonds) (Blower et al., 2003). Therefore, it is of interest to obtain a deeper insight into the structure-function relationship, particularly those containing supramolecular interactions, such as hydrogen bonding, ππ stacking, C—H···π and electrostatic interactions.

Hitherto, a large number of thiosemicarbazone ligands have been synthesized and structurally characterized; however, only a few 1,4-bisacylthiosemicarbazone ligands have been reported (Yamin & Yusof, 2003; Yusof et al., 2003; Ali et al., 2004 or 2003???). In the present study, the structure of the title cobalt complex, (I), with 1,4-dibenzoylthiosemicarbazidate (bhctb) has been determined; this represents the first example of a transition metal complex of such ligands.

Complex (I) contains a CoII ion and two crystallographically independent bhctb ligands. The CoII ion is in a slightly distorted octahedral coordination of two bhctb ligands (Fig. 1 and Table 1). Both of the tridentate bhctb ligands adopt a mer-coordinated mode with the CoII center through one N atom and two carbonyl O atoms, Co(ONO)(ONO), forming one five-membered and one six-membered chelate ring. Owing to the spatial restrictions of the bhctb ligands, the bond angles in the Co coordination environment deviate from 90 and 180° by as much as 15.96 (11) and 20.34 (11)°, respectively.

Interestingly, there is a distinct difference between the conformations of the two crystallographically independent bhctb ligands. One bhctb ligand (containing N1–N3, denoted L1) exhibits greater coplanar characteristics, with a dihedral angle of 10.38 (25)° between the two phenyl groups, whereas the other bhctb ligand (containing N4–N6, denoted L2) is contorted, with a larger dihedral angle [28.03 (11)°]. This significant difference is ascribed to the intramolecular H···H repulsion, intermolecular hydrogen bonds and ππ interactions. The H(—Caryl)···H(—Nbenzamide) distances in L2 [H6A···H26 = 2.18 (3) Å and H4A···H20 = 2.294 (15) Å] are notably longer than those in L1 [H1A···H1 = 2.01 (2) Å and H3A···H11 = 1.998 (17) Å], implying a lower repulsion in L2. There are two N—H···S hydrogen bonds [N···S = 3.505 (3) Å], related by a twofold axis, binding the two L2 ligands into a dimer (Fig. 2). The presence of N—H···S hydrogen bonds and the lower H···H repulsion contibute to the conformational stabilization of L2. Furthermore, there are strong ππ stacking interactions between the L1 ligands, which are consistent with the greater coplanarity of the rings in L1. Each L1 ligand interacts with three adjacent L1 ligands at distances between 3.158 (5) and 3.379 (7) Å, resulting in a three-dimensional supramolecular framework (Fig. 3).

Related literature top

For related literature, see: Ali et al. (2004); Blower et al. (2003); Dearling et al. (2002); Easmon et al. (2001); Kasuga et al. (2003); Maurer et al. (2002); Quiroga & Ranninger (2004); Yamin & Yusof (2003); Yusof et al. (2003).

Experimental top

1,4-Dibenzoylthiosemicarbazide (0.0293 g, 0.1 mmol) and cobalt(II) chloride hexahydrate (0.0476 g, 0.2 mmol) were dissolved in a mixed solvent of 8 ml of methanol and 4 ml of chloroform. Et3N (0.014 ml) was then added and stirred for 2 h at room temperature. The resulting red mixture was filtered, and the filtered solution was allowed to evaporate in air at room temperature. Red rod-shaped crystals were separated from the filtered solution after seven days.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N)].

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids set at the 30% probability level. H atoms have been omitted for clarity. Co, O, N and S atoms are labeled.
[Figure 2] Fig. 2. A pair of N—H···S hydrogen bonds binding two L2 b h ct b molecules into a dimer. Hydrogen bonds are denoted by dashed lines. Most of the H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, y, -z + 3/2.]
[Figure 3] Fig. 3. A view of the three-dimensional supramolecular framework formed from ππ stacking interactions involving L1 ligands. The Co atoms and L2 ligands have been omitted for clarity.
mer-Bis(1,4-dibenzoylthiosemicarbazidato-κ3O,N,O')cobalt(II) top
Crystal data top
[Co(C15H12N3O2S)2]F(000) = 2696
Mr = 655.62Dx = 1.508 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.493 (5) ÅCell parameters from 15074 reflections
b = 12.355 (3) Åθ = 3.0–27.5°
c = 19.539 (4) ŵ = 0.79 mm1
β = 102.43 (3)°T = 298 K
V = 5774 (2) Å3Rod, red
Z = 80.32 × 0.28 × 0.24 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3364 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.095
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Oscillation scansh = 3131
25840 measured reflectionsk = 1613
6613 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
6613 reflections(Δ/σ)max = 0.002
388 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C15H12N3O2S)2]V = 5774 (2) Å3
Mr = 655.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.493 (5) ŵ = 0.79 mm1
b = 12.355 (3) ÅT = 298 K
c = 19.539 (4) Å0.32 × 0.28 × 0.24 mm
β = 102.43 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3364 reflections with I > 2σ(I)
25840 measured reflectionsRint = 0.095
6613 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.51 e Å3
6613 reflectionsΔρmin = 0.31 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.547854 (18)0.25500 (4)0.55496 (3)0.04003 (15)
S10.63367 (4)0.58786 (9)0.53533 (8)0.0705 (4)
S20.46598 (4)0.03193 (8)0.65355 (6)0.0493 (3)
N10.62810 (11)0.3658 (3)0.49216 (17)0.0494 (8)
H1A0.64900.41490.48010.059*
N20.58602 (12)0.3913 (3)0.52894 (17)0.0496 (8)
N30.54503 (11)0.5235 (3)0.58233 (17)0.0502 (8)
H3A0.54160.59230.58670.060*
N40.55264 (11)0.1025 (2)0.69515 (17)0.0473 (8)
H4A0.55080.07350.73460.057*
N50.50671 (12)0.1251 (2)0.58365 (19)0.0526 (8)
N60.46000 (12)0.0923 (3)0.52805 (17)0.0533 (8)
H6A0.44000.03630.53180.064*
O10.60298 (9)0.1924 (2)0.49615 (14)0.0518 (7)
O20.50648 (10)0.3637 (2)0.60598 (16)0.0606 (8)
O30.60641 (9)0.2198 (2)0.64782 (14)0.0549 (7)
O40.48091 (9)0.2328 (2)0.46619 (14)0.0518 (7)
C10.71585 (14)0.3058 (3)0.4242 (2)0.0476 (9)
H10.71340.37850.43560.057*
C20.75824 (15)0.2711 (3)0.3932 (2)0.0530 (10)
H20.78480.32020.38480.064*
C30.76151 (15)0.1654 (4)0.3750 (2)0.0565 (11)
H30.79030.14270.35410.068*
C40.72274 (17)0.0922 (3)0.3870 (2)0.0607 (11)
H40.72480.02010.37410.073*
C50.68031 (15)0.1267 (3)0.4188 (2)0.0528 (10)
H50.65370.07730.42680.063*
C60.67696 (13)0.2331 (3)0.43855 (18)0.0405 (8)
C70.63356 (13)0.2623 (3)0.47731 (18)0.0421 (9)
C80.58896 (16)0.4914 (3)0.5470 (2)0.0528 (10)
C90.50832 (15)0.4633 (3)0.6097 (2)0.0488 (10)
C100.47019 (14)0.5214 (3)0.6471 (2)0.0475 (9)
C110.46801 (15)0.6305 (3)0.6555 (2)0.0477 (9)
H110.49170.67470.63650.057*
C120.43122 (15)0.6770 (3)0.6917 (2)0.0528 (10)
H120.43040.75170.69690.063*
C130.39624 (17)0.6134 (4)0.7195 (2)0.0655 (12)
H130.37160.64430.74420.079*
C140.3975 (2)0.5035 (4)0.7110 (3)0.099 (2)
H140.37370.45920.72980.119*
C150.43422 (19)0.4587 (4)0.6747 (3)0.094 (2)
H150.43460.38400.66870.113*
C160.69224 (14)0.1849 (3)0.7724 (2)0.0526 (10)
H160.70600.17760.73180.063*
C170.72860 (18)0.1995 (3)0.8351 (3)0.0671 (12)
H170.76690.19910.83750.081*
C180.7086 (2)0.2147 (4)0.8946 (3)0.0772 (14)
H180.73330.22630.93730.093*
C190.6524 (2)0.2130 (4)0.8914 (3)0.0739 (13)
H190.63900.22450.93190.089*
C200.61512 (16)0.1943 (3)0.8285 (2)0.0511 (10)
H200.57690.19080.82690.061*
C210.63513 (13)0.1810 (3)0.76822 (19)0.0387 (8)
C220.59693 (14)0.1695 (3)0.6987 (2)0.0431 (9)
C230.50784 (16)0.0702 (3)0.6378 (2)0.0523 (10)
C240.45024 (14)0.1539 (3)0.4716 (2)0.0435 (9)
C250.40037 (14)0.1249 (3)0.4165 (2)0.0415 (8)
C260.35352 (15)0.0767 (3)0.4325 (2)0.0553 (11)
H260.35300.05920.47860.066*
C270.30786 (16)0.0550 (3)0.3798 (3)0.0631 (12)
H270.27600.02500.39080.076*
C280.30866 (17)0.0768 (3)0.3114 (2)0.0609 (12)
H280.27790.06020.27590.073*
C290.35532 (17)0.1235 (4)0.2958 (2)0.0627 (11)
H290.35640.13770.24930.075*
C300.40017 (15)0.1493 (3)0.3478 (2)0.0516 (10)
H300.43090.18370.33670.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0426 (2)0.0419 (3)0.0374 (3)0.0051 (2)0.01273 (19)0.0005 (2)
S10.0608 (7)0.0494 (7)0.1097 (11)0.0110 (5)0.0367 (7)0.0012 (7)
S20.0562 (6)0.0479 (6)0.0437 (7)0.0145 (4)0.0107 (4)0.0008 (5)
N10.0401 (16)0.065 (2)0.047 (2)0.0054 (15)0.0177 (14)0.0037 (17)
N20.0504 (18)0.053 (2)0.046 (2)0.0011 (15)0.0123 (15)0.0032 (16)
N30.0490 (17)0.0494 (18)0.056 (2)0.0061 (15)0.0202 (16)0.0064 (16)
N40.0500 (17)0.0523 (19)0.037 (2)0.0061 (15)0.0036 (14)0.0076 (15)
N50.063 (2)0.0465 (19)0.054 (2)0.0017 (15)0.0256 (17)0.0018 (17)
N60.0468 (17)0.069 (2)0.039 (2)0.0057 (16)0.0017 (15)0.0082 (18)
O10.0491 (14)0.0639 (17)0.0464 (18)0.0072 (13)0.0188 (12)0.0007 (13)
O20.0726 (17)0.0463 (17)0.070 (2)0.0015 (13)0.0306 (15)0.0118 (15)
O30.0518 (14)0.0753 (19)0.0373 (17)0.0020 (13)0.0090 (12)0.0106 (14)
O40.0434 (13)0.0614 (18)0.0506 (18)0.0075 (13)0.0103 (12)0.0113 (14)
C10.050 (2)0.050 (2)0.047 (3)0.0047 (18)0.0183 (18)0.0036 (19)
C20.051 (2)0.066 (3)0.046 (3)0.0042 (19)0.0199 (18)0.002 (2)
C30.054 (2)0.074 (3)0.045 (3)0.009 (2)0.0197 (19)0.008 (2)
C40.071 (3)0.056 (3)0.058 (3)0.004 (2)0.020 (2)0.010 (2)
C50.053 (2)0.057 (3)0.050 (3)0.0067 (19)0.0156 (19)0.002 (2)
C60.0369 (17)0.052 (2)0.031 (2)0.0017 (16)0.0054 (14)0.0008 (17)
C70.0391 (18)0.057 (2)0.030 (2)0.0017 (18)0.0070 (15)0.0010 (18)
C80.059 (2)0.052 (3)0.045 (3)0.0036 (19)0.0051 (19)0.0047 (19)
C90.053 (2)0.047 (2)0.046 (3)0.0041 (19)0.0099 (18)0.009 (2)
C100.046 (2)0.048 (2)0.048 (3)0.0052 (17)0.0102 (18)0.0085 (19)
C110.055 (2)0.048 (2)0.043 (2)0.0061 (18)0.0157 (18)0.0037 (19)
C120.067 (2)0.044 (2)0.051 (3)0.0027 (19)0.020 (2)0.0027 (19)
C130.067 (3)0.071 (3)0.066 (3)0.005 (2)0.029 (2)0.007 (2)
C140.097 (4)0.070 (3)0.155 (6)0.025 (3)0.084 (4)0.012 (3)
C150.097 (4)0.053 (3)0.158 (6)0.013 (3)0.086 (4)0.019 (3)
C160.053 (2)0.059 (3)0.044 (3)0.0062 (19)0.0076 (19)0.005 (2)
C170.060 (2)0.072 (3)0.061 (4)0.016 (2)0.005 (2)0.003 (2)
C180.098 (4)0.070 (3)0.049 (3)0.026 (3)0.015 (3)0.001 (2)
C190.107 (4)0.070 (3)0.047 (3)0.019 (3)0.022 (3)0.009 (2)
C200.064 (2)0.046 (2)0.046 (3)0.0113 (19)0.017 (2)0.0053 (19)
C210.0480 (19)0.0322 (19)0.034 (2)0.0051 (15)0.0053 (16)0.0004 (15)
C220.0447 (19)0.047 (2)0.039 (2)0.0047 (18)0.0104 (17)0.0016 (18)
C230.067 (3)0.049 (2)0.048 (3)0.0141 (19)0.026 (2)0.004 (2)
C240.046 (2)0.053 (2)0.032 (2)0.0091 (18)0.0108 (17)0.0075 (18)
C250.0442 (19)0.039 (2)0.041 (2)0.0007 (16)0.0082 (16)0.0006 (17)
C260.058 (2)0.057 (3)0.048 (3)0.007 (2)0.006 (2)0.013 (2)
C270.053 (2)0.059 (3)0.073 (4)0.016 (2)0.005 (2)0.009 (2)
C280.061 (3)0.055 (3)0.056 (3)0.004 (2)0.012 (2)0.002 (2)
C290.068 (3)0.078 (3)0.038 (3)0.003 (2)0.000 (2)0.002 (2)
C300.058 (2)0.055 (2)0.042 (3)0.0052 (19)0.0104 (19)0.0001 (19)
Geometric parameters (Å, º) top
Co1—N52.037 (3)C6—C71.476 (4)
Co1—N22.043 (3)C9—C101.489 (5)
Co1—O22.064 (3)C10—C111.360 (5)
Co1—O12.100 (2)C10—C151.369 (5)
Co1—O32.102 (3)C11—C121.384 (5)
Co1—O42.132 (3)C11—H110.9300
S1—C81.667 (4)C12—C131.360 (5)
S2—C231.695 (4)C12—H120.9300
N1—C71.325 (4)C13—C141.370 (6)
N1—N21.413 (4)C13—H130.9300
N1—H1A0.8600C14—C151.376 (6)
N2—C81.284 (5)C14—H140.9300
N3—C91.361 (4)C15—H150.9300
N3—C81.454 (5)C16—C171.363 (6)
N3—H3A0.8600C16—C211.385 (4)
N4—C221.354 (4)C16—H160.9300
N4—C231.445 (5)C17—C181.368 (6)
N4—H4A0.8600C17—H170.9300
N5—C231.252 (5)C18—C191.365 (6)
N5—N61.455 (4)C18—H180.9300
N6—C241.319 (5)C19—C201.383 (6)
N6—H6A0.8600C19—H190.9300
O1—C71.250 (4)C20—C211.380 (5)
O2—C91.233 (4)C20—H200.9300
O3—C221.236 (4)C21—C221.481 (5)
O4—C241.249 (4)C24—C251.487 (5)
C1—C21.378 (5)C25—C301.375 (5)
C1—C61.380 (5)C25—C261.386 (5)
C1—H10.9300C26—C271.373 (5)
C2—C31.361 (5)C26—H260.9300
C2—H20.9300C27—C281.368 (6)
C3—C41.368 (5)C27—H270.9300
C3—H30.9300C28—C291.372 (5)
C4—C51.387 (5)C28—H280.9300
C4—H40.9300C29—C301.364 (5)
C5—C61.378 (5)C29—H290.9300
C5—H50.9300C30—H300.9300
N5—Co1—N2176.46 (12)C11—C10—C15118.0 (4)
N5—Co1—O293.23 (11)C11—C10—C9125.6 (3)
N2—Co1—O283.24 (12)C15—C10—C9116.4 (4)
N5—Co1—O1105.96 (11)C10—C11—C12121.3 (4)
N2—Co1—O177.57 (11)C10—C11—H11119.4
O2—Co1—O1160.80 (10)C12—C11—H11119.4
N5—Co1—O383.42 (12)C13—C12—C11120.1 (4)
N2—Co1—O396.99 (11)C13—C12—H12120.0
O2—Co1—O391.87 (11)C11—C12—H12120.0
O1—Co1—O389.80 (10)C12—C13—C14119.4 (4)
N5—Co1—O477.47 (13)C12—C13—H13120.3
N2—Co1—O4102.52 (12)C14—C13—H13120.3
O2—Co1—O496.04 (10)C13—C14—C15119.8 (4)
O1—Co1—O488.84 (10)C13—C14—H14120.1
O3—Co1—O4159.66 (11)C15—C14—H14120.1
C7—N1—N2116.5 (3)C10—C15—C14121.5 (4)
C7—N1—H1A121.8C10—C15—H15119.2
N2—N1—H1A121.8C14—C15—H15119.2
C8—N2—N1110.5 (3)C17—C16—C21120.9 (4)
C8—N2—Co1136.7 (3)C17—C16—H16119.5
N1—N2—Co1111.5 (2)C21—C16—H16119.5
C9—N3—C8131.0 (3)C16—C17—C18119.8 (4)
C9—N3—H3A114.5C16—C17—H17120.1
C8—N3—H3A114.5C18—C17—H17120.1
C22—N4—C23132.4 (3)C19—C18—C17120.1 (5)
C22—N4—H4A113.8C19—C18—H18119.9
C23—N4—H4A113.8C17—C18—H18119.9
C23—N5—N6110.5 (3)C18—C19—C20120.6 (4)
C23—N5—Co1137.5 (3)C18—C19—H19119.7
N6—N5—Co1111.7 (2)C20—C19—H19119.7
C24—N6—N5115.8 (3)C21—C20—C19119.4 (4)
C24—N6—H6A122.1C21—C20—H20120.3
N5—N6—H6A122.1C19—C20—H20120.3
C7—O1—Co1113.8 (2)C20—C21—C16119.0 (4)
C9—O2—Co1131.5 (3)C20—C21—C22121.6 (3)
C22—O3—Co1125.9 (2)C16—C21—C22119.2 (3)
C24—O4—Co1113.8 (2)O3—C22—N4123.6 (4)
C2—C1—C6120.3 (4)O3—C22—C21119.9 (3)
C2—C1—H1119.8N4—C22—C21116.5 (3)
C6—C1—H1119.8N5—C23—N4112.4 (4)
C3—C2—C1120.4 (3)N5—C23—S2130.7 (4)
C3—C2—H2119.8N4—C23—S2116.9 (3)
C1—C2—H2119.8O4—C24—N6121.1 (3)
C2—C3—C4120.4 (3)O4—C24—C25122.8 (3)
C2—C3—H3119.8N6—C24—C25116.1 (3)
C4—C3—H3119.8C30—C25—C26119.0 (4)
C3—C4—C5119.3 (4)C30—C25—C24118.9 (3)
C3—C4—H4120.4C26—C25—C24122.1 (4)
C5—C4—H4120.4C27—C26—C25119.7 (4)
C6—C5—C4120.9 (4)C27—C26—H26120.1
C6—C5—H5119.5C25—C26—H26120.1
C4—C5—H5119.5C28—C27—C26120.8 (4)
C5—C6—C1118.6 (3)C28—C27—H27119.6
C5—C6—C7118.0 (3)C26—C27—H27119.6
C1—C6—C7123.3 (3)C27—C28—C29119.2 (4)
O1—C7—N1120.5 (3)C27—C28—H28120.4
O1—C7—C6121.7 (3)C29—C28—H28120.4
N1—C7—C6117.8 (3)C30—C29—C28120.5 (4)
N2—C8—N3112.9 (3)C30—C29—H29119.7
N2—C8—S1130.6 (3)C28—C29—H29119.7
N3—C8—S1116.4 (3)C29—C30—C25120.6 (4)
O2—C9—N3122.7 (3)C29—C30—H30119.7
O2—C9—C10119.4 (3)C25—C30—H30119.7
N3—C9—C10117.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S2i0.862.653.505 (3)172
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C15H12N3O2S)2]
Mr655.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.493 (5), 12.355 (3), 19.539 (4)
β (°) 102.43 (3)
V3)5774 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.32 × 0.28 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25840, 6613, 3364
Rint0.095
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.119, 1.01
No. of reflections6613
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.31

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1993), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—N52.037 (3)Co1—O12.100 (2)
Co1—N22.043 (3)Co1—O32.102 (3)
Co1—O22.064 (3)Co1—O42.132 (3)
N5—Co1—N2176.46 (12)N5—Co1—O477.47 (13)
N5—Co1—O1105.96 (11)N2—Co1—O4102.52 (12)
N2—Co1—O177.57 (11)O3—Co1—O4159.66 (11)
O2—Co1—O1160.80 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S2i0.862.653.505 (3)172.2
Symmetry code: (i) x+1, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds