Download citation
Download citation
link to html
A new sulfate acid polymorph of 1,3-dihydro­benzotriazole, viz. 1,3-dihydro­benzotriazolium hydrogensulfate, C6H6N3+·HSO4-, differs from an existing polymorph in that the polymeric inter­action between the HSO4- anions, together with different classical (D-H...A) and nonclassical (C-H...A) inter­actions, changes the space group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107031241/sq3078sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107031241/sq3078Isup2.hkl
Contains datablock I

CCDC reference: 661793

Comment top

Heterocyclic molecule (I) (Scheme 1) contains acidic H atoms and N atoms with lone electron pairs. The presence of both acidic and basic characteristics gives the molecule the ability to participate in a wide variety of interactions. Moreover, tautomerism in (I) can change the reactivity depending on the starting material (Scheme 1) (Jagerovic et al., 2002; Katritzky et al., 1998; Gallinek, 1897; Elderfiel, 1957). This diversity gives rise to the possibility of different structural arrangements or polymorphs. For aliphatic amines this outcome is expected, but in this case the molecule is planar and polymorphs are not common (Bladengen or Blagden & Davey, 2003; Davey, 2003; Mak & Zhou, 1992; Dunitz, 1979).

The title compound, C6H4N3H2+·HSO4-, (II), crystallized in the monoclinic space group P21/c from a mixture of tetrahydrofuran (THF) and hexane. The structure (Fig. 1) shows the presence of acidic H atoms on atom N3 (Scheme 1) and on the counter-ion HSO4-. The crystal packing (Fig. 2) is structured by classical and nonclassical hydrogen bonds, the most important of which are listed in Table 1. Three of these are classical hydrogen bonds (N—H···O), while the others are nonclassical (C—H···O). Two particularly strong interactions are H3···O4 and H1···O3. Some of the hydrogen bonds are complex. For example, the N1/H1 group is considered a bifurcated donor because it is interacting with atoms N2 and O3. Atom O2 is considered as a trifurcated acceptor because it is interacting with the C6—H6, C4—H4 and C7—H7 bonds. All such interactions are important because they contribute to the geometry of the lattice. The HSO4- ions are joined together by strong O—H···OS hydrogen bonds that are nearly ideal in geometry (Steiner, 1998, 2002; Jeffrey, 1997).

As a result of these interactions, the 1,3-dihydrobenzotriazole cations pack in a herringbone pattern in the ab plane with the hydrogen sulfate anions interspersed (Fig. 3). A polymorphic structure of (II) was reported by Giordano (1980), which crystallizes in the orthorhombic space group Pbcn. The phosphoric acid salt of 1,3-dihydrobenzotriazole, (IV) (Scheme 1), is also known (Emsley et al., 1988) and crystallizes in the triclinic space group P1 with similar packing to (II).

In Table 1, the bond distances for polymorphs (II) and (III) (Giordano, 1980) and molecule (IV) (Emsley et al., 1988) are compared. Polymorphs (II) and (III) show similar bond distances, while in compound (IV) they are slightly longer. It can also be observed that the distances decrease in the crystal system order triclinic monoclinic orthorhombic. This reflects better packing as the symmetry increases. Fig. 4 shows the rearrangement of the HSO4- anion corresponding to polymorphs (II) and (III). The hydrogen bond [S—O—H···OS = 1.84 (4) and 1.478 Å] is in fact the reason that the HSO4- ions stay together in the supramolecular polymeric structure. We can conclude that these interactions are stronger in (III) than in (II). Consequently, the chains in (III) have almost linear shape, while those in (II) have a zigzag shape; and the distances are shorter, stronger and more efficient in the orthorhombic lattice in (III) compared with the monoclinic lattice in (II).

Related literature top

For related literature, see: Blagden & Davey (2003); Davey (2003); Dunitz (1979); Elderfiel (1957); Emsley et al. (1988); Gallinek (1897); Giordano (1980); Jagerovic et al. (2002); Jeffrey (1997); Katritzky et al. (1998); Mak & Zhou (1992); Steiner (1998, 2002).

Experimental top

A mixture of (I) (400 mg, 3.36 mmol) and dry THF (10 ml) was cooled at 223 K; H2SO4 (0.18 ml, 329 mg, 3.36 mmol) was added, and the mixture was stirred for half an hour. The mixture was then filtered and the white powdered product (II) (98% yield, m.p. 437–439 K) was partially dissolved for crystallization in a THF/hexane mixture. m/z (intensity, %): 207 (1) 133.35 (100), 105 (100). IR (KBr), νmax: 2100–3600 (OH), 3300 (NH), 1723 (NN), 1612 (CC). Analysis calcualted: C 33.18, H 3.25, N 19.35, S 14.76%; observed: C 33.53, H 3.30, N 19.02, S 13.24%. The structure of (I) (Scheme 2) was analyzed by 1H and 13C NMR spectroscopy, which showed a symmetrical molecule, three signals for 1H and four for 13C. The N—H chemical shift in (II) was shifted to lower frequency (2.62 p.p.m) compared to N—H for (I). Double protonation was not observed for (I); in fact, atom N2 is not a basic position, because no different –NH signal was observed in the 1H NMR spectrum. No significant changes were observed in the 13C NMR spectrum because there were no changes in the aromatic ring.

Refinement top

All H atoms were refined freely [C—H = 0.09 (2)–0.97 (3) Å].

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (II), showing 50% probability displacements ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Polymeric arrangements in (II), formed by classical and nonclassical hydrogen bonds (dotted lines). The view is along the b axis. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) -x, y - 1/2, -z + 1/2; (iii) -x + 1, y + 1/2, -z + 1/2.]
[Figure 3] Fig. 3. The herringbone arrangement formed by classical and nonclassical hydrogen bonds (dotted lines) in the crystalline network of (II). The view is along the a axis.
[Figure 4] Fig. 4. Hydrogen bonds between HSO4- anions in (II) (upper figure; this work) and (III) (lower figure; Giordano, 1980).
1,3-dihydrobenzotriazolium hydrogensulfate top
Crystal data top
C6H6N3+·HO4SF(000) = 448
Mr = 217.21Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 12.715 (3) Åθ = 20–25°
b = 5.133 (1) ŵ = 0.37 mm1
c = 14.406 (4) ÅT = 273 K
β = 113.63 (1)°Block, colorless
V = 861.4 (4) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1969 independent reflections
Radiation source: Enraf Nonius FR5901637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD rotation images, thick slices scansh = 1616
Absorption correction: multi-scan
(Blessing, 1995)
k = 66
Tmin = 0.913, Tmax = 0.930l = 1818
9336 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3606P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1969 reflectionsΔρmax = 0.26 e Å3
156 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.135 (7)
Crystal data top
C6H6N3+·HO4SV = 861.4 (4) Å3
Mr = 217.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.715 (3) ŵ = 0.37 mm1
b = 5.133 (1) ÅT = 273 K
c = 14.406 (4) Å0.25 × 0.20 × 0.20 mm
β = 113.63 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1969 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1637 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.930Rint = 0.038
9336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.07Δρmax = 0.26 e Å3
1969 reflectionsΔρmin = 0.34 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14597 (13)0.8878 (3)0.00723 (11)0.0321 (5)
N20.08082 (13)0.7651 (3)0.04460 (11)0.0366 (5)
N30.14782 (13)0.5896 (3)0.10613 (11)0.0334 (5)
C40.35565 (17)0.4474 (4)0.16183 (15)0.0407 (6)
C50.44902 (17)0.5100 (4)0.14226 (17)0.0476 (7)
C60.44675 (17)0.7097 (5)0.07465 (17)0.0479 (7)
C70.35075 (17)0.8556 (4)0.02349 (16)0.0413 (6)
C80.25480 (14)0.7932 (3)0.04328 (12)0.0298 (5)
C90.25652 (14)0.5955 (3)0.10966 (12)0.0300 (5)
S10.15446 (3)0.11578 (8)0.30659 (3)0.0292 (2)
O10.13681 (12)0.1847 (3)0.29554 (10)0.0347 (4)
O20.27038 (12)0.1591 (3)0.32186 (13)0.0570 (5)
O30.12529 (14)0.1896 (3)0.39017 (10)0.0487 (5)
O40.07252 (11)0.2299 (3)0.21155 (9)0.0376 (4)
H10.1165 (19)1.005 (5)0.0350 (18)0.046 (6)*
H30.119 (2)0.483 (5)0.1368 (19)0.056 (7)*
H40.3575 (19)0.325 (5)0.2068 (18)0.050 (6)*
H50.517 (2)0.413 (5)0.1736 (18)0.055 (7)*
H60.517 (2)0.747 (5)0.0673 (18)0.062 (7)*
H70.347 (2)0.989 (5)0.0255 (18)0.054 (6)*
H1A0.070 (3)0.205 (6)0.289 (2)0.074 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0353 (8)0.0319 (8)0.0310 (8)0.0022 (6)0.0154 (6)0.0063 (6)
N20.0359 (8)0.0425 (9)0.0348 (8)0.0021 (7)0.0179 (7)0.0039 (7)
N30.0364 (8)0.0360 (8)0.0310 (8)0.0026 (6)0.0169 (6)0.0047 (6)
C40.0419 (10)0.0387 (11)0.0366 (10)0.0014 (8)0.0105 (8)0.0069 (8)
C50.0338 (10)0.0523 (13)0.0505 (12)0.0051 (9)0.0104 (9)0.0018 (10)
C60.0339 (10)0.0588 (13)0.0544 (13)0.0074 (9)0.0213 (9)0.0016 (10)
C70.0398 (10)0.0455 (11)0.0431 (10)0.0091 (8)0.0214 (8)0.0037 (9)
C80.0316 (8)0.0297 (8)0.0280 (8)0.0038 (7)0.0117 (7)0.0024 (7)
C90.0334 (8)0.0311 (9)0.0252 (8)0.0038 (7)0.0113 (7)0.0011 (7)
S10.0303 (3)0.0279 (3)0.0293 (3)0.0019 (2)0.0118 (2)0.0006 (2)
O10.0394 (7)0.0272 (7)0.0399 (7)0.0034 (5)0.0183 (6)0.0016 (5)
O20.0309 (7)0.0626 (10)0.0726 (11)0.0077 (7)0.0156 (7)0.0123 (8)
O30.0758 (10)0.0371 (8)0.0391 (8)0.0002 (7)0.0292 (7)0.0092 (6)
O40.0383 (7)0.0378 (7)0.0359 (7)0.0016 (5)0.0139 (6)0.0101 (5)
Geometric parameters (Å, º) top
S1—O31.4453 (17)C4—C91.404 (3)
S1—O11.5576 (17)C4—C51.364 (3)
S1—O21.4179 (18)C5—C61.406 (3)
S1—O41.4696 (14)C6—C71.369 (3)
O1—H1A0.82 (4)C7—C81.397 (3)
N1—N21.315 (2)C8—C91.389 (2)
N1—C81.358 (3)C4—H40.90 (2)
N2—N31.311 (2)C5—H50.94 (3)
N3—C91.363 (3)C6—H60.96 (3)
N1—H10.83 (2)C7—H70.97 (3)
N3—H30.87 (3)
S1···O4i3.4229 (18)N1···O3x2.695 (2)
S1···H1Aii2.78 (4)N2···N2viii3.094 (2)
S1···H32.98 (3)N2···O3ii3.143 (3)
S1···H1iii3.18 (3)N2···N1viii3.213 (3)
O1···N3iv3.019 (2)N3···O1vii3.019 (2)
O1···O4iv3.220 (2)N3···O42.792 (2)
O1···O4i2.659 (2)N2···H1viii2.73 (3)
O1···N1v3.181 (2)C4···O23.269 (3)
O1···C8v3.318 (2)C6···O2xi3.306 (3)
O2···C43.269 (3)C8···O3ix3.287 (2)
O2···C6vi3.306 (3)C8···O1ix3.318 (2)
O3···C9v3.270 (2)C9···O3ix3.270 (2)
O3···N2i3.143 (3)C5···H4xi3.02 (3)
O3···C8v3.287 (2)H1···N2viii2.73 (3)
O3···N1iii2.695 (2)H1···S1x3.18 (2)
O4···O1vii3.220 (2)H1···O3x1.93 (3)
O4···S1ii3.4229 (18)H1A···S1i2.78 (4)
O4···N32.792 (2)H1A···O3i2.83 (3)
O4···O1ii2.659 (2)H1A···O4i1.84 (4)
O1···H3iv2.79 (3)H3···O41.93 (3)
O2···H6vi2.57 (3)H3···S12.98 (3)
O2···H7iii2.71 (2)H3···O1vii2.79 (3)
O2···H42.48 (3)H4···O22.48 (3)
O3···H1iii1.93 (3)H4···C5vi3.02 (3)
O3···H1Aii2.83 (3)H6···H7xii2.45 (4)
O4···H31.93 (3)H6···O2xi2.57 (3)
O4···H1Aii1.84 (4)H7···O2x2.71 (2)
N1···N2viii3.213 (3)H7···H6xii2.45 (4)
N1···O1ix3.181 (2)
O3—S1—O4110.41 (9)C5—C6—C7122.6 (2)
O1—S1—O3105.68 (9)C6—C7—C8115.35 (19)
O1—S1—O4106.27 (8)N1—C8—C7132.80 (16)
O1—S1—O2105.63 (9)N1—C8—C9104.90 (16)
O2—S1—O4112.75 (9)C7—C8—C9122.29 (17)
O2—S1—O3115.31 (10)N3—C9—C4133.41 (17)
S1—O1—H1A104 (2)N3—C9—C8104.76 (15)
N2—N1—C8112.62 (15)C4—C9—C8121.82 (18)
N1—N2—N3105.11 (16)C5—C4—H4122.8 (17)
N2—N3—C9112.61 (15)C9—C4—H4121.6 (17)
N2—N1—H1118.3 (18)C4—C5—H5119.0 (16)
C8—N1—H1129.1 (18)C6—C5—H5118.5 (16)
C9—N3—H3128.4 (18)C5—C6—H6117.4 (15)
N2—N3—H3118.9 (18)C7—C6—H6120.0 (15)
C5—C4—C9115.51 (18)C6—C7—H7123.4 (16)
C4—C5—C6122.5 (2)C8—C7—H7121.2 (16)
C8—N1—N2—N30.36 (19)C4—C5—C6—C70.1 (4)
N2—N1—C8—C7177.92 (19)C5—C6—C7—C80.2 (3)
N2—N1—C8—C90.57 (19)C6—C7—C8—C90.5 (3)
N1—N2—N3—C90.0 (2)C6—C7—C8—N1178.76 (19)
N2—N3—C9—C4178.91 (19)N1—C8—C9—N30.53 (17)
N2—N3—C9—C80.34 (19)C7—C8—C9—C40.6 (3)
C5—C4—C9—C80.4 (3)N1—C8—C9—C4179.30 (16)
C5—C4—C9—N3177.95 (19)C7—C8—C9—N3178.17 (16)
C9—C4—C5—C60.2 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1, z; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+1, z; (viii) x, y+2, z; (ix) x, y+1/2, z1/2; (x) x, y+3/2, z1/2; (xi) x+1, y+1/2, z+1/2; (xii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3x0.83 (2)1.93 (3)2.695 (2)153 (2)
O1—H1A···O4i0.82 (4)1.84 (4)2.659 (2)173 (3)
N3—H3···O40.87 (3)1.93 (3)2.792 (2)173 (3)
C4—H4···O20.90 (2)2.48 (3)3.269 (3)146 (2)
C6—H6···O2xi0.96 (3)2.57 (3)3.306 (3)133.7 (19)
Symmetry codes: (i) x, y1/2, z+1/2; (x) x, y+3/2, z1/2; (xi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N3+·HO4S
Mr217.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)12.715 (3), 5.133 (1), 14.406 (4)
β (°) 113.63 (1)
V3)861.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.913, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
9336, 1969, 1637
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.07
No. of reflections1969
No. of parameters156
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.83 (2)1.93 (3)2.695 (2)153 (2)
O1—H1A···O4ii0.82 (4)1.84 (4)2.659 (2)173 (3)
N3—H3···O40.87 (3)1.93 (3)2.792 (2)173 (3)
C4—H4···O20.90 (2)2.48 (3)3.269 (3)146 (2)
C6—H6···O2iii0.96 (3)2.57 (3)3.306 (3)133.7 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
Table 1. Selected values of bond distances of (II) in comparison with (III) and (IV) top
atoms distances, (Å)molecule 2a (esd)molecule 3bmolecule 4c (esd)
N1-N21.315 (2)1.3101.317 (3)
N2-N31.311 (2)1.3121.314 (3)
C4-C51.364 (3)1.3651.368 (4)
C5-C61.406 (3)1.4161.414 (4)
C6-C71.369 (3)1.3561.370 (4)
C7-C81.397 (3)1.3911.402 (4)
C8-C91.389 (2)1.3911.390 (3)
C4-C91.404 (3)1.3921.400 (4)
C9-N31.363 (3)1.3671.364 (3)
C8-N11.358 (3)1.3621.365 (3)
O1-S11.5576 (17)1.539
O2-S11.4179 (18)1.431
O3-S11.4453 (17)1.435
O4-S11.4696 (14)1.449
(a) This work, monoclinic; (b) Giordano (1980), orthorhombic; (c) Emsley et al. (1988), triclinic.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds