Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene-1,5-disulfonate (1,5-nds) anions in between. One independent CuII cation and the 1,5-nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu...Cu distance of 2.990 (3) Å. The chains are further linked into a three-dimensional supra­molecular framework via hydrogen-bonding inter­actions involving the sulfonate groups of the 1,5-­nds dianions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106046944/sq3048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106046944/sq3048Isup2.hkl
Contains datablock I

CCDC reference: 632934

Comment top

The study of the supramolecular chemistry of organosulfonates has received growing attention over the past few years (Côté & Shimizu, 2003). Organosulfonate ions have proved able to generate not only highly robust and fascinating architectures but also `softer' networks with sponge-like properties by connecting main group and some transition metal ions, such as barium(II) (Cai, Chen, Liao, Feng & Chen, 2001) or silver(I) (Gao et al., 2005). The sulfonate groups are generally incorporated into inorganic–organic networks and are engaged in hydrogen-bond interactions. Naphthalene-1,5-disulfonic acid, with its rigid structure and two functionally active SO3 groups in two well separated positions, is known as a good candidate for the construction of supramolecular complexes, particularly as the sulfonate unit has a high propensity to form strong hydrogen bonds (Cai, 2004). To date, many complexes have been reported in which the sulfonate dianions serve as hydrogen-bond acceptors, but most of the cations in these complexes are mononuclear or dinuclear (An et al., 2004; Cai, Chen, Liao, Yao et al., 2001; Chen et al., 2002). Recently, we have obtained a novel hybrid complex, [Cu3(C2H3O2)2(H2O)4(OH)2](1,5-nds) (1,5-nds is naphthalene-1,5-disulfonate, C10H6O6S2), (I), by the reaction of naphthalene-1,5-disulfonate and copper diacetate monohydrate in an aqueous solution. In (I), an inorganic chain acts as the cation.

As illustrated in Fig. 1, the crystal structure of (I) contains one cation [Cu3(C2H3O2)2(H2O)4(OH)2]2+ and one 1,5-nds2− anion. The two parts are held together via hydrogen bonds between water molecules and the O atoms of the 1,5-nds2− ligand, with an O···O distance and an O—H···O angle of 2.000 (11) Å and 167 (2)°, respectively. In the cation, each CuII cation is six-coordinated. Atom Cu1 atom occupies a special position on a crystallographic inversion centre and has a classic Jahn–Teller-distorted octahedral coordination environment formed by two carboxyl O atoms, two hydroxy O atoms and two water molecules, the latter lying ca 0.35 Å further away from the Cu atom. Atom Cu2 has a somewhat less regular octahedral coordination environment, with two carboxyl O atoms, one hydroxyl O atom and one water molecule in the equatorial plane [the deviation from the mean plane being 0.2410 (3) Å and the displacement of the Cu atom from this plane being 0.1051 (3) Å]; two of these O atoms are bridging [O6 and O2iii; symmetry code: (iii) x − 1, y, z]. Another water molecule and a hydroxy O atom lie in the Jahn–Teller elongated axial positions, with an O—Cu—O angle of 170.43 (6)°. Similar bond distances and angles are observed in these complexes, except that the Cu1—O1W distance is somewhat shorter than the Cu2—O1Wi distance (Table 1). Both the carboxylate groups and the hydroxyl groups perform a bridging function, linking together adjacent Cu atoms in tridentate mode into a one-dimensional inorganic chain, with Cu1···Cu2, Cu1···Cu2ii and Cu2···Cu2ii separations [symmetry code: (ii) −x + 1, −y + 1, −z] of 3.325 (3), 3.019 (3) and 2.990 (3) Å (Fig. 2).

The 1,5-nds2− anion, which lies on an inversion centre, is not engaged in coordination owing to the weak donor ability of the sulfonate group towards transition metal ions. The dihedral angle between the plane of the naphthalene ring system and the plane defined by the three O atoms of the SO3 group is 115.1 (5)°. The inorganic chain interacts with 1,5-nds2− anions via O—H···O hydrogen bonds between water molecules, hydroxy O atoms and sulfonate O atoms (Table 2). The structure can be envisaged as one in which layers of anions alternate with layers of cations, the layers being linked via extensive intermolecular hydrogen bonds, giving rise to a three-dimensional network, with alternating `organic' and `inorganic' sheets (Fig. 3).

Experimental top

Copper diacetate monohydrate (0.1 g, 0.5 mmol) was added to an aqueous solution of naphthalene-1,5-disulfonic acid (0.14 g, 0.5 mmol) that had previously been treated with 0.1M sodium hydroxide to attain a pH of 5. The solution was allowed to evaporate slowly at room temperature, and blue prismatic crystals of (I) were separated from the filtered solution after several days. Analysis calculated for C14H22Cu3O16S2: C 23.98, H 3.16%; found: C 24.00, H 3.17%.

Refinement top

H atoms on C atoms were placed in calculated positions [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms] and were included in the refinement in the riding-model approximation. The H atoms of the water molecules and hydroxy groups were located in difference maps and refined with O—H and H···H distance restraints of 0.85 (1) Å and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. The dashed line denotes a hydrogen bond. [Symmetry codes: (i) −x, −y + 1, −z; (ii) −x + 1, −y + 1, −z; (iii) x − 1, y, z]. CHANGE IN TABLE 1
[Figure 2] Fig. 2. The inorganic chain structure of the title complex. H atoms of carboxylate groups have been omitted for clarity. [Symmetry code: (ii) −x + 1, −y + 1, −z. Please check.]
[Figure 3] Fig. 3. The packing of the title complex along the b axis, with the O—H···O hydrogen bonds denoted by dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Poly[[di-µ3-acetato-di-µ2-aqua-diaqua-di-µ3-hydroxo-tricopper(II)] 1,5-naphthalenedisulfonate] top
Crystal data top
[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)Z = 1
Mr = 701.06F(000) = 353
Triclinic, P1Dx = 2.003 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6035 (11) ÅCell parameters from 5461 reflections
b = 8.9812 (18) Åθ = 3.5–27.5°
c = 12.119 (2) ŵ = 2.98 mm1
α = 86.31 (3)°T = 295 K
β = 77.38 (3)°Prism, blue
γ = 77.56 (3)°0.35 × 0.24 × 0.18 mm
V = 581.1 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 67
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.425, Tmax = 0.584l = 1515
5778 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.3053P]
where P = (Fo2 + 2Fc2)/3
2638 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.42 e Å3
7 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)γ = 77.56 (3)°
Mr = 701.06V = 581.1 (2) Å3
Triclinic, P1Z = 1
a = 5.6035 (11) ÅMo Kα radiation
b = 8.9812 (18) ŵ = 2.98 mm1
c = 12.119 (2) ÅT = 295 K
α = 86.31 (3)°0.35 × 0.24 × 0.18 mm
β = 77.38 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2638 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2481 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.584Rint = 0.012
5778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0197 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.42 e Å3
2638 reflectionsΔρmin = 0.32 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.01891 (8)
Cu20.44942 (3)0.59723 (2)0.101508 (16)0.02025 (7)
S30.62943 (7)0.05016 (5)0.21041 (3)0.02106 (9)
O1W0.2605 (2)0.26015 (13)0.00790 (10)0.0246 (2)
O10.5808 (2)0.57428 (15)0.23745 (10)0.0293 (3)
O2W0.2391 (3)0.79545 (16)0.15307 (15)0.0381 (3)
O20.9907 (2)0.52533 (15)0.16065 (10)0.0274 (3)
O30.7430 (3)0.10937 (15)0.18383 (11)0.0302 (3)
O40.7775 (3)0.15290 (15)0.14736 (11)0.0312 (3)
O50.3702 (2)0.08289 (17)0.19848 (11)0.0354 (3)
O60.3095 (2)0.58101 (12)0.03048 (10)0.0190 (2)
C10.8651 (4)0.5628 (3)0.35708 (16)0.0411 (5)
C20.8069 (3)0.55212 (19)0.24294 (14)0.0248 (3)
C30.5074 (3)0.01090 (19)0.55689 (13)0.0219 (3)
C40.6563 (4)0.1107 (2)0.57787 (15)0.0319 (4)
C50.7880 (4)0.1828 (3)0.49064 (17)0.0403 (5)
C60.7776 (4)0.1622 (2)0.37827 (16)0.0330 (4)
C70.6317 (3)0.06955 (19)0.35512 (13)0.0226 (3)
H1W10.240 (4)0.199 (2)0.0368 (13)0.037*
H1W20.275 (4)0.217 (2)0.0704 (10)0.037*
H2W10.307 (4)0.872 (2)0.151 (2)0.057*
H2W20.0850 (19)0.826 (3)0.155 (2)0.057*
H40.66430.12710.65180.038*
H50.88640.24680.50600.048*
H60.86980.21150.31970.040*
H90.290 (4)0.6599 (16)0.0691 (16)0.029*
H1A0.86860.66650.37010.062*
H1B1.02510.49900.35960.062*
H1C0.73890.52960.41450.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01758 (13)0.02138 (14)0.02085 (14)0.00628 (10)0.00804 (10)0.00158 (10)
Cu20.01932 (11)0.02191 (11)0.02070 (11)0.00322 (7)0.00675 (8)0.00384 (7)
S30.02368 (19)0.02237 (19)0.01814 (18)0.00541 (15)0.00642 (15)0.00147 (14)
O1W0.0293 (6)0.0217 (6)0.0251 (6)0.0065 (5)0.0100 (5)0.0013 (5)
O10.0317 (7)0.0367 (7)0.0210 (6)0.0074 (5)0.0079 (5)0.0028 (5)
O2W0.0249 (6)0.0292 (7)0.0626 (10)0.0035 (5)0.0109 (7)0.0196 (7)
O20.0289 (6)0.0337 (7)0.0236 (6)0.0091 (5)0.0107 (5)0.0025 (5)
O30.0379 (7)0.0246 (6)0.0281 (6)0.0053 (5)0.0070 (5)0.0049 (5)
O40.0390 (7)0.0313 (7)0.0255 (6)0.0141 (6)0.0073 (5)0.0084 (5)
O50.0257 (6)0.0499 (9)0.0311 (7)0.0053 (6)0.0119 (6)0.0064 (6)
O60.0186 (5)0.0169 (5)0.0238 (5)0.0044 (4)0.0086 (4)0.0002 (4)
C10.0508 (12)0.0525 (13)0.0248 (9)0.0107 (10)0.0175 (9)0.0022 (8)
C20.0353 (9)0.0210 (8)0.0218 (8)0.0077 (7)0.0122 (7)0.0004 (6)
C30.0255 (8)0.0210 (8)0.0206 (8)0.0063 (6)0.0059 (6)0.0014 (6)
C40.0440 (11)0.0371 (10)0.0221 (8)0.0214 (9)0.0096 (8)0.0009 (7)
C50.0554 (13)0.0489 (12)0.0299 (10)0.0364 (11)0.0125 (9)0.0002 (8)
C60.0428 (11)0.0367 (10)0.0250 (9)0.0226 (9)0.0055 (8)0.0019 (7)
C70.0274 (8)0.0227 (8)0.0186 (7)0.0063 (6)0.0054 (6)0.0009 (6)
Geometric parameters (Å, º) top
Cu1—O1W2.3369 (14)O1W—H1W10.838 (9)
Cu1—O2i1.9629 (12)O1W—H1W20.839 (9)
Cu1—O61.9753 (12)O2W—H2W10.85 (2)
Cu2—O1Wi2.4034 (15)O2W—H2W20.842 (10)
Cu2—O11.9288 (13)O1—C21.255 (2)
Cu2—O2ii2.7180 (12)O2—C21.260 (2)
Cu2—O2W1.9664 (15)O6—H90.824 (10)
Cu2—O61.9551 (12)C1—C21.502 (2)
Cu2—O6i1.9663 (14)C1—H1A0.9600
Cu1—O1Wiii2.3369 (14)C1—H1B0.9600
Cu1—O2ii1.9629 (12)C1—H1C0.9600
Cu1—O6iii1.9753 (12)C3—C41.417 (2)
Cu1—Cu2i3.0188 (10)C3—C7iv1.431 (2)
Cu1—Cu2ii3.0188 (10)C4—C51.363 (3)
Cu2—Cu2i2.9903 (10)C4—H40.9300
S3—O41.4443 (14)C5—C61.401 (3)
S3—O51.4558 (14)C5—H50.9300
S3—O31.4624 (14)C6—C71.365 (2)
S3—C71.7766 (17)C6—H60.9300
Cu2—O6—Cu1115.56 (6)O1—Cu2—Cu2i132.85 (4)
O1—Cu2—O1Wi97.38 (5)O2W—Cu2—Cu1v132.28 (5)
O1—Cu2—O2W90.21 (7)O2W—Cu2—Cu2i136.92 (5)
O1—Cu2—O6169.28 (5)O2—C2—C1116.65 (17)
O1—Cu2—O6i93.29 (6)O2ii—Cu1—Cu2i103.61 (5)
O2W—Cu2—O1Wi86.40 (6)O2i—Cu1—Cu2ii103.61 (5)
O2ii—Cu1—O1W89.16 (6)O2ii—Cu1—Cu2ii76.39 (5)
O2i—Cu1—O1W90.84 (6)O2i—Cu1—Cu2i76.39 (5)
O2ii—Cu1—O686.15 (6)O3—S3—C7105.83 (8)
O2i—Cu1—O693.85 (6)O4—S3—C7106.38 (8)
O6—Cu1—O1W85.93 (5)O4—S3—O3111.99 (8)
O6—Cu1—O1Wiii94.07 (5)O4—S3—O5114.34 (9)
O6i—Cu2—O1Wi84.32 (5)O5—S3—C7108.03 (9)
O6—Cu2—O1Wi90.83 (5)O5—S3—O3109.80 (9)
O6i—Cu2—O2W170.43 (6)O6—Cu1—Cu2ii140.10 (3)
O6—Cu2—O2W97.21 (6)O6iii—Cu1—Cu2i140.10 (3)
O6—Cu2—O6i80.62 (6)O6—Cu1—Cu2i39.90 (3)
O1W—Cu1—O1Wiii180.00 (6)O6iii—Cu1—Cu2ii39.90 (3)
O2i—Cu1—O1Wiii89.16 (6)O6—Cu2—Cu1v100.15 (4)
O2ii—Cu1—O1Wiii90.84 (6)O6i—Cu2—Cu1v40.12 (4)
O2i—Cu1—O2ii180.000 (8)O6i—Cu2—Cu2i40.17 (4)
O2i—Cu1—O6iii86.15 (6)O6—Cu2—Cu2i40.45 (4)
O2ii—Cu1—O6iii93.85 (6)C2—C1—H1A109.5
O6iii—Cu1—O1Wiii85.93 (5)C2—C1—H1B109.5
O6iii—Cu1—O1W94.07 (5)C2—C1—H1C109.5
O6iii—Cu1—O6180.00 (5)C2—O1—Cu2126.51 (12)
Cu1—O1W—Cu2i79.10 (4)C2—O2—Cu1v130.06 (11)
Cu1—O1W—H1W1112.1 (15)C3iv—C3—C7iv117.80 (18)
Cu1—O1W—H1W2120.4 (15)C3—C4—H4119.7
Cu1—O6—H9109.2 (15)C3iv—C7—S3121.75 (13)
Cu2i—Cu1—Cu2ii180.000 (8)C4—C3—C3iv119.13 (19)
Cu2i—Cu2—Cu1v67.19 (3)C4—C3—C7iv123.07 (15)
Cu2i—O1W—H1W1106.1 (15)C4—C5—C6121.18 (17)
Cu2i—O1W—H1W2124.4 (15)C4—C5—H5119.4
Cu2—O2W—H2W1119.2 (17)C5—C4—C3120.62 (16)
Cu2—O2W—H2W2127.6 (16)C5—C4—H4119.7
Cu2i—O6—Cu199.97 (5)C5—C6—H6120.1
Cu2—O6—Cu2i99.38 (6)C6—C5—H5119.4
Cu2—O6—H9114.5 (15)C6—C7—C3iv121.47 (15)
Cu2i—O6—H9117.4 (15)C6—C7—S3116.76 (13)
O1Wiii—Cu1—Cu2i128.58 (4)C7—C6—C5119.77 (17)
O1W—Cu1—Cu2i51.42 (4)C7—C6—H6120.1
O1Wi—Cu2—Cu1v49.48 (4)H1A—C1—H1B109.5
O1Wi—Cu2—Cu2i86.81 (4)H1A—C1—H1C109.5
O1—C2—C1117.44 (17)H1B—C1—H1C109.5
O1—C2—O2125.88 (16)H1W1—O1W—H1W2110.9 (15)
O1—Cu2—Cu1v80.25 (5)H2W1—O2W—H2W2109.5 (15)
O2i—Cu1—O1W—Cu2i71.77 (5)O1Wiii—Cu1—O6—Cu2101.68 (7)
O2ii—Cu1—O1W—Cu2i108.23 (5)Cu2i—Cu1—O6—Cu2105.52 (8)
O6iii—Cu1—O1W—Cu2i157.97 (4)Cu2ii—Cu1—O6—Cu274.48 (8)
O6—Cu1—O1W—Cu2i22.03 (4)O2i—Cu1—O6—Cu2i63.37 (6)
Cu2ii—Cu1—O1W—Cu2i180.0O2ii—Cu1—O6—Cu2i116.63 (6)
O6—Cu2—O1—C2102.1 (3)O1W—Cu1—O6—Cu2i27.20 (5)
O6i—Cu2—O1—C247.10 (15)O1Wiii—Cu1—O6—Cu2i152.80 (5)
O2W—Cu2—O1—C2123.99 (15)Cu2ii—Cu1—O6—Cu2i180.0
O1Wi—Cu2—O1—C237.59 (15)Cu2—O1—C2—O27.7 (3)
Cu2i—Cu2—O1—C254.91 (17)Cu2—O1—C2—C1170.36 (13)
Cu1v—Cu2—O1—C29.01 (14)Cu1v—O2—C2—O12.8 (3)
O1—Cu2—O6—Cu2i56.0 (3)Cu1v—O2—C2—C1179.12 (13)
O6i—Cu2—O6—Cu2i0.0C3iv—C3—C4—C51.3 (3)
O2W—Cu2—O6—Cu2i170.58 (6)C7iv—C3—C4—C5179.05 (19)
O1Wi—Cu2—O6—Cu2i84.11 (5)C3—C4—C5—C60.8 (4)
Cu1v—Cu2—O6—Cu2i35.22 (5)C4—C5—C6—C70.6 (4)
O1—Cu2—O6—Cu149.9 (3)C5—C6—C7—C3iv1.6 (3)
O6i—Cu2—O6—Cu1105.88 (8)C5—C6—C7—S3179.93 (17)
O2W—Cu2—O6—Cu183.54 (7)O4—S3—C7—C64.54 (17)
O1Wi—Cu2—O6—Cu1170.01 (6)O5—S3—C7—C6127.72 (16)
Cu2i—Cu2—O6—Cu1105.88 (8)O3—S3—C7—C6114.73 (16)
Cu1v—Cu2—O6—Cu1141.10 (5)O4—S3—C7—C3iv176.99 (14)
O2i—Cu1—O6—Cu2168.89 (6)O5—S3—C7—C3iv53.81 (16)
O2ii—Cu1—O6—Cu211.11 (6)O3—S3—C7—C3iv63.74 (16)
O1W—Cu1—O6—Cu278.32 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3vi0.84 (1)1.98 (1)2.7695 (19)157 (2)
O1W—H1W2···O50.84 (1)2.00 (1)2.824 (2)167 (2)
O2W—H2W1···O5vii0.85 (2)2.14 (1)2.947 (2)159 (2)
O2W—H2W1···O3vii0.85 (2)2.60 (2)3.222 (2)131 (2)
O2W—H2W1···S3vii0.85 (2)2.88 (1)3.6776 (17)157 (2)
O2W—H2W2···O3viii0.84 (1)1.84 (1)2.676 (2)171 (3)
O2W—H2W2···S3viii0.84 (1)2.87 (2)3.6314 (19)151 (2)
O6—H9···O4i0.82 (1)1.88 (1)2.7055 (19)175 (2)
Symmetry codes: (i) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)
Mr701.06
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.6035 (11), 8.9812 (18), 12.119 (2)
α, β, γ (°)86.31 (3), 77.38 (3), 77.56 (3)
V3)581.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.98
Crystal size (mm)0.35 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.425, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
5778, 2638, 2481
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.053, 1.08
No. of reflections2638
No. of parameters176
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O1W2.3369 (14)Cu2—O2ii2.7180 (12)
Cu1—O2i1.9629 (12)Cu2—O2W1.9664 (15)
Cu1—O61.9753 (12)Cu2—O61.9551 (12)
Cu2—O1Wi2.4034 (15)Cu2—O6i1.9663 (14)
Cu2—O11.9288 (13)
Cu2—O6—Cu1115.56 (6)O2i—Cu1—O693.85 (6)
O1—Cu2—O1Wi97.38 (5)O6—Cu1—O1W85.93 (5)
O1—Cu2—O2W90.21 (7)O6—Cu1—O1Wiii94.07 (5)
O1—Cu2—O6169.28 (5)O6i—Cu2—O1Wi84.32 (5)
O1—Cu2—O6i93.29 (6)O6—Cu2—O1Wi90.83 (5)
O2W—Cu2—O1Wi86.40 (6)O6i—Cu2—O2W170.43 (6)
O2ii—Cu1—O1W89.16 (6)O6—Cu2—O2W97.21 (6)
O2i—Cu1—O1W90.84 (6)O6—Cu2—O6i80.62 (6)
O2ii—Cu1—O686.15 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3iv0.838 (9)1.977 (11)2.7695 (19)157 (2)
O1W—H1W2···O50.839 (9)2.000 (11)2.824 (2)167 (2)
O2W—H2W1···O5v0.85 (2)2.137 (14)2.947 (2)159 (2)
O2W—H2W1···O3v0.85 (2)2.600 (18)3.222 (2)131 (2)
O2W—H2W1···S3v0.85 (2)2.882 (13)3.6776 (17)157 (2)
O2W—H2W2···O3vi0.842 (10)1.840 (10)2.676 (2)171 (3)
O2W—H2W2···S3vi0.842 (10)2.869 (15)3.6314 (19)151 (2)
O6—H9···O4i0.824 (10)1.883 (10)2.7055 (19)175 (2)
Symmetry codes: (i) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds