Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The first trigonal prismatic mol­ecular compound characterized by single-crystal X-ray diffraction, [Re(C14H10S2)3], has been redetermined using modern laboratory equipment. The new experiment reaffirms the results of the original. Since then, numerous tris-dithiol­ene complexes have been structurally characterized, having geometries ranging from trigonal prismatic to nearly octa­hedral. An examination of the coordination geometries of these structures is included.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106033336/sq3033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106033336/sq3033Isup2.hkl
Contains datablock I

CCDC reference: 625671

Comment top

Forty years ago, the first example of trigonal prismatic coordination in discrete metal complexes was reported (Eisenberg & Ibers, 1966). The particular example was the rhenium–tris-dithiolene complex (I), first reported by Schrauzer et al. (1964). A number of other tris-dithiolene complexes were subsequently studied structurally and found to possess coordination geometries ranging from trigonal prismatic (TP) to nearly octahedral (O), depending on the metal ion, overall complex charge and dithiolene substituent (Brown & Stiefel, 1973; Colmanet & Mackay, 1988; Yang et al., 1991; Matsubayashi et al., 1992, 1993; Goddard & Holm, 1999; Wang et al., 1999; Lewis & Dance, 2000; Lim et al., 2000; Fomitchev et al., 2001).

The specific structure determination of (I), while widely cited as the first example of TP coordination, was based on intensity data collected by methods that would be viewed today as substandard (manually positioned crystal and detector, and fixed stationary counting times) and led to a number of problems in the refinement of the structure. Specifically, because of reflection overlap in the counter window, a significant fraction of the intensity data was eliminated from the refinement, leading to a low ratio of observations to variables, the use of isotropic displacement parameters for all atoms and group refinement procedures for the six phenyl rings. While the final refinement of the structure converged to R values of 0.069 and 0.079, a wide range of C—S distances was noted and standard deviations in all metrical parameters were substantial.

In this paper, we report a redetermination of the structure of (I) using a crystal from the originally prepared sample and performed using state-of-the-art CCD instrumentation. Additionally, we tabulate a simple distortion parameter that allows one to assess the six-coordination geometry from TP to O more accurately for tris-dithiolene-chelated complexes.

The structure redetermination confirms the TP coordination geometry of (I) as originally reported. As expected, in the present determination the equivalent metrical parameters for the complex exhibit much better agreement and much smaller standard deviations than in the original report. For example, Re—S distances cover a range of 2.3274 (9)–2.3348 (10) Å and average 2.3322 (22) Å, while dithiolene S—C distances exhibit a range of 1.715 (4)–1.730 (4) Å and average 1.725 Å (10) Å. The latter numbers compare with 1.62 (4)–1.75 (3) Å and 1.69 (8) Å, respectively, in the initial report.

The crystal structure consists of the packing of neutral molecules with no notably short intermolecular contacts. A feature of the packing is that the molecules stack so that the stacking direction deviates by only 10.2° from the trigonal axis of the complex.

Studies on related dithiolene complexes following the initial report revealed that the tris-chelated complexes with MS6 coordination environments exhibited a range of coordination geometries from purely TP to distorted O that have been analyzed by Stiefel & Brown (1972). If one calculates the position of the centroid (Cen) of the three S atoms in each trigonal face then it is possible to define a TP distortion as the dihedral angle formed by Supper—Cenupper—Cenlower—Slower, where upper and lower refer to the two trigonal faces and Supper and Slower on the respective trigonal faces belong to the same ligand (Fig. 2). Each structure will therefore yield three distortion angles that can be averaged. For a pure trigonal prism the distortion angle would be 0°, and for an intermediate geometry half-way to O it would be 30° (ligand distance constraints preclude achieving a pure D3 geometry with O angles). Table 1 contains a tabulation of the tris-dithiolene structures from the Cambridge Structural Database (Version 5.27; Allen, 2002), and their TP distortion angles as defined above. As can be seen, compound (I) has one of the smallest distortion angles for structures in which TP symmetry is not crystallographically imposed. Increasing negative charge on the tris-dithiolene complexes moves the coordination geometry towards O with an increasing distortion angle. A possible explanation for this effect is minimization of interligand repulsions as the donor atoms acquire greater negative charge [see Brown & Stiefel (1973) for a detailed discussion].

Brown & Stiefel (1973) propose a second distortion parameter in analyzing TP coordination. The parameter involves the ratio s/h, where s is the nearest interligand S···S contact and h is the distance between the two parallel trigonal faces. For TP, the s/h ratio is 1.0, meaning that the sides of the prism are squares, whereas for O, the ratio is 1.22 [= (3/2)1/2; Stiefel & Brown, 1972]. In the case of (I), with S···S contacts averaging 3.054 (31) and 3.055 (23) Å, respectively, for intra-triangular and intra-ligand values, the s/h ratio is 1.0, the sides of the prism are square and the coordination geometry is truly undistorted TP.

Finally, it is reassuring how good the overall agreement is between the original structure determination and the more accurate and precise current determination given the quality of the earlier intensity measurements.

Experimental top

The material used was the original sample kindly supplied by Professor Schrauzer in the mid-1960 s.

Refinement top

The current standard setting differs from the original cell setting, which was chosen arbitrarily based on preliminary precession photographs (Eisenberg & Ibers, 1966), by the transformation, [0 0 1 / 0 1 1 / 1 0 1]. H atoms were placed geometrically and refined with relative isotropic displacement parameters. The maximum residual peak and hole from the final difference map, located 0.86 and 0.82 Å from the Re atom, respectively, are probably a result of residual absorption or Fourier termination errors.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid (50% probability) drawing of (I), with H atoms omitted. Inset: The view down the trigonal axis.
[Figure 2] Fig. 2. The dihedral (trigonal distortion) angle.
tris(cis-1,2-diphenylethylene-1,2-dithiolato)rhenium top
Crystal data top
[Re(C14H10S2)3]Z = 2
Mr = 913.22F(000) = 906
Triclinic, P1Dx = 1.621 Mg m3
a = 9.7949 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8765 (10) ÅCell parameters from 3785 reflections
c = 19.4517 (17) Åθ = 2.5–29.8°
α = 80.190 (1)°µ = 3.61 mm1
β = 76.770 (1)°T = 100 K
γ = 68.758 (1)°Plate, red–black
V = 1871.5 (3) Å30.28 × 0.24 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
10391 independent reflections
Radiation source: fine-focus sealed tube8772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
area detector, ω scans per ϕθmax = 29.6°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1313
Tmin = 0.376, Tmax = 0.806k = 1515
27614 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.2114P]
where P = (Fo2 + 2Fc2)/3
10391 reflections(Δ/σ)max = 0.004
442 parametersΔρmax = 3.47 e Å3
0 restraintsΔρmin = 3.08 e Å3
Crystal data top
[Re(C14H10S2)3]γ = 68.758 (1)°
Mr = 913.22V = 1871.5 (3) Å3
Triclinic, P1Z = 2
a = 9.7949 (9) ÅMo Kα radiation
b = 10.8765 (10) ŵ = 3.61 mm1
c = 19.4517 (17) ÅT = 100 K
α = 80.190 (1)°0.28 × 0.24 × 0.06 mm
β = 76.770 (1)°
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
10391 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
8772 reflections with I > 2σ(I)
Tmin = 0.376, Tmax = 0.806Rint = 0.039
27614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 3.47 e Å3
10391 reflectionsΔρmin = 3.08 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.254904 (16)1.019838 (15)0.751297 (7)0.01623 (5)
S10.48220 (10)0.91538 (9)0.68108 (4)0.01862 (18)
S20.16413 (10)0.96149 (10)0.66519 (5)0.01968 (18)
S30.37656 (10)0.91753 (9)0.84653 (5)0.01926 (18)
S40.06729 (10)0.94867 (10)0.82400 (4)0.01960 (18)
S50.38625 (10)1.16101 (9)0.75080 (5)0.01905 (18)
S60.05952 (10)1.22040 (9)0.74214 (5)0.01943 (18)
C10.4533 (4)0.8560 (4)0.61070 (18)0.0192 (7)
C20.3113 (4)0.8744 (4)0.60486 (18)0.0194 (7)
C30.2599 (4)0.8589 (4)0.91369 (18)0.0198 (7)
C40.1243 (4)0.8671 (4)0.90224 (18)0.0197 (7)
C50.2699 (4)1.3225 (4)0.74354 (17)0.0178 (7)
C60.1236 (4)1.3496 (4)0.74140 (18)0.0190 (7)
C70.5896 (4)0.7932 (4)0.55913 (19)0.0190 (7)
C80.5873 (4)0.8152 (4)0.48644 (19)0.0215 (8)
H8A0.49810.86920.47000.026*
C90.7147 (4)0.7586 (4)0.43830 (19)0.0231 (8)
H9A0.71160.77310.38900.028*
C100.8465 (5)0.6809 (4)0.4610 (2)0.0255 (8)
H10A0.93360.64230.42780.031*
C110.8496 (5)0.6601 (4)0.5336 (2)0.0254 (8)
H11A0.93940.60780.54990.031*
C120.7216 (4)0.7159 (4)0.5819 (2)0.0226 (8)
H12A0.72440.70080.63120.027*
C130.2704 (4)0.8224 (5)0.5492 (2)0.0262 (9)
C140.3174 (5)0.6853 (5)0.5469 (2)0.0334 (10)
H14A0.37120.62700.58130.040*
C150.2849 (6)0.6346 (6)0.4937 (3)0.0486 (15)
H15A0.31580.54150.49200.058*
C160.2072 (6)0.7209 (8)0.4434 (3)0.0594 (19)
H16A0.18490.68670.40720.071*
C170.1623 (6)0.8561 (7)0.4457 (3)0.0579 (18)
H17A0.11090.91440.41060.070*
C180.1920 (5)0.9077 (6)0.4993 (2)0.0417 (13)
H18A0.15851.00080.50160.050*
C190.3189 (4)0.8034 (4)0.98079 (19)0.0225 (8)
C200.3495 (5)0.8863 (4)1.0178 (2)0.0285 (9)
H20A0.33910.97500.99870.034*
C210.3953 (6)0.8389 (5)1.0828 (2)0.0359 (10)
H21A0.41320.89601.10900.043*
C220.4149 (5)0.7080 (5)1.1094 (2)0.0348 (10)
H22A0.44690.67541.15360.042*
C230.3881 (5)0.6248 (5)1.0718 (2)0.0315 (10)
H23A0.40220.53521.09010.038*
C240.3402 (5)0.6723 (4)1.0071 (2)0.0261 (8)
H24A0.32220.61500.98110.031*
C250.0179 (4)0.8110 (4)0.95188 (19)0.0201 (7)
C260.0146 (4)0.8250 (4)1.02446 (19)0.0226 (8)
H26A0.03220.87151.04300.027*
C270.1149 (5)0.7713 (4)1.0697 (2)0.0270 (9)
H27A0.13550.78051.11900.032*
C280.1853 (5)0.7045 (5)1.0433 (2)0.0346 (10)
H28A0.25460.66881.07450.042*
C290.1546 (6)0.6897 (5)0.9716 (2)0.0390 (12)
H29A0.20150.64260.95350.047*
C300.0546 (5)0.7440 (5)0.9260 (2)0.0291 (9)
H30A0.03550.73550.87660.035*
C310.3431 (4)1.4198 (4)0.74443 (18)0.0185 (7)
C320.2824 (4)1.5175 (4)0.7913 (2)0.0225 (8)
H32A0.18871.52620.82130.027*
C330.3570 (5)1.6021 (4)0.7945 (2)0.0254 (8)
H33A0.31461.66840.82660.031*
C340.4944 (5)1.5900 (4)0.7506 (2)0.0280 (9)
H34A0.54641.64750.75290.034*
C350.5545 (5)1.4940 (4)0.7037 (2)0.0282 (9)
H35A0.64761.48640.67330.034*
C360.4809 (4)1.4087 (4)0.7003 (2)0.0233 (8)
H36A0.52391.34250.66810.028*
C370.0138 (4)1.4863 (4)0.73998 (19)0.0201 (7)
C380.0438 (5)1.5856 (4)0.6902 (2)0.0285 (9)
H38A0.12771.56370.65290.034*
C390.0481 (6)1.7168 (5)0.6947 (3)0.0371 (11)
H39A0.02611.78420.66090.045*
C400.1715 (5)1.7496 (5)0.7484 (3)0.0392 (12)
H40A0.23311.83950.75210.047*
C410.2047 (5)1.6504 (5)0.7966 (3)0.0352 (10)
H41A0.29051.67250.83280.042*
C420.1141 (5)1.5195 (4)0.7924 (2)0.0262 (8)
H42A0.13891.45210.82520.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02085 (8)0.02021 (8)0.00777 (7)0.00861 (5)0.00061 (5)0.00232 (5)
S10.0210 (4)0.0238 (5)0.0109 (4)0.0075 (4)0.0004 (3)0.0046 (3)
S20.0212 (4)0.0270 (5)0.0114 (4)0.0089 (4)0.0002 (3)0.0053 (3)
S30.0232 (4)0.0242 (5)0.0112 (4)0.0103 (4)0.0018 (3)0.0005 (3)
S40.0231 (5)0.0265 (5)0.0106 (4)0.0120 (4)0.0009 (3)0.0001 (3)
S50.0209 (4)0.0205 (4)0.0161 (4)0.0083 (3)0.0015 (3)0.0026 (3)
S60.0221 (4)0.0222 (4)0.0143 (4)0.0091 (4)0.0006 (3)0.0024 (3)
C10.0228 (18)0.0224 (18)0.0097 (15)0.0061 (14)0.0003 (13)0.0018 (13)
C20.0273 (19)0.0221 (18)0.0097 (15)0.0103 (15)0.0003 (13)0.0035 (13)
C30.0279 (19)0.0205 (18)0.0083 (15)0.0081 (15)0.0024 (13)0.0027 (13)
C40.030 (2)0.0194 (18)0.0102 (15)0.0111 (15)0.0014 (14)0.0033 (13)
C50.0235 (18)0.0204 (18)0.0076 (14)0.0065 (14)0.0003 (13)0.0019 (12)
C60.0269 (19)0.0213 (18)0.0084 (15)0.0104 (15)0.0015 (13)0.0017 (13)
C70.0236 (18)0.0211 (18)0.0131 (16)0.0101 (15)0.0001 (13)0.0030 (13)
C80.0243 (19)0.0256 (19)0.0121 (16)0.0073 (15)0.0007 (14)0.0014 (14)
C90.030 (2)0.032 (2)0.0071 (15)0.0141 (17)0.0034 (14)0.0028 (14)
C100.027 (2)0.032 (2)0.0140 (17)0.0090 (17)0.0075 (14)0.0079 (15)
C110.026 (2)0.033 (2)0.0146 (17)0.0073 (17)0.0016 (15)0.0033 (15)
C120.0258 (19)0.029 (2)0.0136 (16)0.0101 (16)0.0014 (14)0.0034 (14)
C130.0223 (19)0.043 (2)0.0152 (17)0.0139 (18)0.0028 (14)0.0105 (16)
C140.040 (3)0.043 (3)0.024 (2)0.026 (2)0.0075 (18)0.0140 (19)
C150.048 (3)0.075 (4)0.037 (3)0.042 (3)0.021 (2)0.038 (3)
C160.030 (3)0.118 (6)0.044 (3)0.029 (3)0.009 (2)0.056 (4)
C170.029 (3)0.111 (5)0.030 (3)0.006 (3)0.007 (2)0.033 (3)
C180.025 (2)0.068 (3)0.025 (2)0.002 (2)0.0054 (17)0.023 (2)
C190.0233 (19)0.028 (2)0.0130 (16)0.0074 (16)0.0011 (14)0.0005 (14)
C200.035 (2)0.033 (2)0.0170 (18)0.0109 (18)0.0065 (16)0.0011 (16)
C210.046 (3)0.047 (3)0.021 (2)0.018 (2)0.0117 (19)0.0039 (19)
C220.032 (2)0.048 (3)0.0190 (19)0.010 (2)0.0069 (17)0.0047 (18)
C230.029 (2)0.037 (2)0.0199 (19)0.0076 (18)0.0000 (16)0.0072 (17)
C240.030 (2)0.028 (2)0.0167 (18)0.0087 (17)0.0003 (15)0.0000 (15)
C250.0242 (19)0.0218 (18)0.0138 (16)0.0097 (15)0.0001 (14)0.0010 (13)
C260.027 (2)0.026 (2)0.0126 (16)0.0086 (16)0.0004 (14)0.0017 (14)
C270.030 (2)0.033 (2)0.0121 (16)0.0072 (17)0.0022 (15)0.0007 (15)
C280.034 (2)0.046 (3)0.023 (2)0.020 (2)0.0004 (18)0.0059 (19)
C290.052 (3)0.060 (3)0.018 (2)0.041 (3)0.0016 (19)0.002 (2)
C300.036 (2)0.042 (2)0.0154 (18)0.022 (2)0.0004 (16)0.0034 (16)
C310.0248 (19)0.0203 (18)0.0117 (15)0.0091 (15)0.0039 (13)0.0004 (13)
C320.0215 (19)0.0243 (19)0.0195 (18)0.0048 (15)0.0030 (14)0.0038 (15)
C330.033 (2)0.0220 (19)0.0206 (18)0.0063 (16)0.0071 (16)0.0053 (15)
C340.033 (2)0.025 (2)0.031 (2)0.0148 (18)0.0103 (18)0.0008 (17)
C350.030 (2)0.031 (2)0.025 (2)0.0166 (18)0.0000 (17)0.0004 (17)
C360.029 (2)0.025 (2)0.0156 (17)0.0123 (16)0.0017 (15)0.0032 (14)
C370.0224 (18)0.0227 (19)0.0158 (16)0.0069 (15)0.0045 (14)0.0038 (14)
C380.034 (2)0.030 (2)0.026 (2)0.0147 (18)0.0116 (17)0.0034 (17)
C390.043 (3)0.029 (2)0.047 (3)0.016 (2)0.024 (2)0.007 (2)
C400.039 (3)0.026 (2)0.058 (3)0.0012 (19)0.030 (2)0.016 (2)
C410.029 (2)0.040 (3)0.035 (2)0.0010 (19)0.0093 (19)0.019 (2)
C420.025 (2)0.031 (2)0.0237 (19)0.0082 (17)0.0045 (16)0.0074 (16)
Geometric parameters (Å, º) top
Re1—S12.3274 (9)C19—C201.392 (6)
Re1—S52.3310 (9)C20—C211.392 (6)
Re1—S32.3317 (9)C20—H20A0.9500
Re1—S42.3333 (9)C21—C221.389 (7)
Re1—S62.3348 (10)C21—H21A0.9500
Re1—S22.3348 (9)C22—C231.381 (7)
S1—C11.727 (4)C22—H22A0.9500
S2—C21.723 (4)C23—C241.395 (6)
S3—C31.726 (4)C23—H23A0.9500
S4—C41.728 (4)C24—H24A0.9500
S5—C51.715 (4)C25—C261.396 (5)
S6—C61.730 (4)C25—C301.397 (6)
C1—C21.361 (5)C26—C271.387 (5)
C1—C71.488 (5)C26—H26A0.9500
C2—C131.490 (5)C27—C281.384 (7)
C3—C41.365 (5)C27—H27A0.9500
C3—C191.492 (5)C28—C291.383 (6)
C4—C251.480 (5)C28—H28A0.9500
C5—C61.364 (5)C29—C301.392 (6)
C5—C311.482 (5)C29—H29A0.9500
C6—C371.486 (5)C30—H30A0.9500
C7—C121.386 (5)C31—C321.392 (5)
C7—C81.397 (5)C31—C361.400 (5)
C8—C91.385 (5)C32—C331.383 (6)
C8—H8A0.9500C32—H32A0.9500
C9—C101.386 (6)C33—C341.394 (6)
C9—H9A0.9500C33—H33A0.9500
C10—C111.395 (5)C34—C351.379 (6)
C10—H10A0.9500C34—H34A0.9500
C11—C121.389 (5)C35—C361.382 (6)
C11—H11A0.9500C35—H35A0.9500
C12—H12A0.9500C36—H36A0.9500
C13—C181.382 (6)C37—C381.391 (6)
C13—C141.398 (7)C37—C421.397 (5)
C14—C151.395 (6)C38—C391.389 (6)
C14—H14A0.9500C38—H38A0.9500
C15—C161.389 (9)C39—C401.383 (7)
C15—H15A0.9500C39—H39A0.9500
C16—C171.379 (10)C40—C411.385 (7)
C16—H16A0.9500C40—H40A0.9500
C17—C181.394 (7)C41—C421.382 (6)
C17—H17A0.9500C41—H41A0.9500
C18—H18A0.9500C42—H42A0.9500
C19—C241.386 (6)
S1—Re1—S578.53 (3)C17—C18—H18A120.2
S1—Re1—S385.02 (3)C24—C19—C20120.1 (4)
S5—Re1—S379.61 (3)C24—C19—C3121.0 (4)
S1—Re1—S4134.55 (4)C20—C19—C3118.8 (4)
S5—Re1—S4139.85 (3)C19—C20—C21119.8 (4)
S3—Re1—S481.63 (3)C19—C20—H20A120.1
S1—Re1—S6136.08 (3)C21—C20—H20A120.1
S5—Re1—S682.15 (3)C22—C21—C20119.8 (4)
S3—Re1—S6129.49 (3)C22—C21—H21A120.1
S4—Re1—S682.99 (3)C20—C21—H21A120.1
S1—Re1—S281.75 (3)C23—C22—C21120.4 (4)
S5—Re1—S2134.59 (3)C23—C22—H22A119.8
S3—Re1—S2138.67 (3)C21—C22—H22A119.8
S4—Re1—S280.36 (3)C22—C23—C24120.0 (4)
S6—Re1—S284.53 (3)C22—C23—H23A120.0
C1—S1—Re1110.02 (13)C24—C23—H23A120.0
C2—S2—Re1109.51 (13)C19—C24—C23119.8 (4)
C3—S3—Re1109.99 (14)C19—C24—H24A120.1
C4—S4—Re1109.92 (14)C23—C24—H24A120.1
C5—S5—Re1109.53 (13)C26—C25—C30118.5 (3)
C6—S6—Re1109.09 (14)C26—C25—C4121.7 (3)
C2—C1—C7125.5 (3)C30—C25—C4119.8 (3)
C2—C1—S1118.8 (3)C27—C26—C25120.4 (4)
C7—C1—S1115.6 (3)C27—C26—H26A119.8
C1—C2—C13124.6 (3)C25—C26—H26A119.8
C1—C2—S2119.8 (3)C28—C27—C26120.5 (4)
C13—C2—S2115.6 (3)C28—C27—H27A119.8
C4—C3—C19125.6 (3)C26—C27—H27A119.8
C4—C3—S3119.1 (3)C29—C28—C27120.0 (4)
C19—C3—S3115.3 (3)C29—C28—H28A120.0
C3—C4—C25125.5 (3)C27—C28—H28A120.0
C3—C4—S4119.1 (3)C28—C29—C30119.7 (4)
C25—C4—S4115.4 (3)C28—C29—H29A120.1
C6—C5—C31126.7 (3)C30—C29—H29A120.1
C6—C5—S5119.8 (3)C29—C30—C25120.9 (4)
C31—C5—S5113.4 (3)C29—C30—H30A119.5
C5—C6—C37122.9 (3)C25—C30—H30A119.5
C5—C6—S6119.4 (3)C32—C31—C36118.9 (4)
C37—C6—S6117.7 (3)C32—C31—C5121.5 (3)
C12—C7—C8118.9 (3)C36—C31—C5119.5 (3)
C12—C7—C1120.9 (3)C33—C32—C31120.6 (4)
C8—C7—C1120.1 (3)C33—C32—H32A119.7
C9—C8—C7120.2 (4)C31—C32—H32A119.7
C9—C8—H8A119.9C32—C33—C34120.0 (4)
C7—C8—H8A119.9C32—C33—H33A120.0
C8—C9—C10120.9 (3)C34—C33—H33A120.0
C8—C9—H9A119.6C35—C34—C33119.5 (4)
C10—C9—H9A119.6C35—C34—H34A120.2
C9—C10—C11119.0 (4)C33—C34—H34A120.2
C9—C10—H10A120.5C34—C35—C36120.8 (4)
C11—C10—H10A120.5C34—C35—H35A119.6
C12—C11—C10120.1 (4)C36—C35—H35A119.6
C12—C11—H11A119.9C35—C36—C31120.1 (4)
C10—C11—H11A119.9C35—C36—H36A120.0
C7—C12—C11120.8 (3)C31—C36—H36A120.0
C7—C12—H12A119.6C38—C37—C42119.0 (4)
C11—C12—H12A119.6C38—C37—C6120.2 (4)
C18—C13—C14120.4 (4)C42—C37—C6120.5 (3)
C18—C13—C2120.9 (4)C39—C38—C37120.4 (4)
C14—C13—C2118.7 (4)C39—C38—H38A119.8
C15—C14—C13119.7 (5)C37—C38—H38A119.8
C15—C14—H14A120.2C40—C39—C38120.2 (4)
C13—C14—H14A120.2C40—C39—H39A119.9
C16—C15—C14119.6 (6)C38—C39—H39A119.9
C16—C15—H15A120.2C39—C40—C41119.5 (4)
C14—C15—H15A120.2C39—C40—H40A120.2
C17—C16—C15120.4 (5)C41—C40—H40A120.2
C17—C16—H16A119.8C42—C41—C40120.7 (4)
C15—C16—H16A119.8C42—C41—H41A119.7
C16—C17—C18120.4 (6)C40—C41—H41A119.7
C16—C17—H17A119.8C41—C42—C37120.1 (4)
C18—C17—H17A119.8C41—C42—H42A120.0
C13—C18—C17119.5 (5)C37—C42—H42A120.0
C13—C18—H18A120.2
S5—Re1—S1—C1139.88 (14)C8—C7—C12—C110.4 (6)
S3—Re1—S1—C1139.74 (14)C1—C7—C12—C11178.4 (4)
S4—Re1—S1—C166.65 (14)C10—C11—C12—C70.4 (6)
S6—Re1—S1—C174.18 (14)C1—C2—C13—C18115.5 (5)
S2—Re1—S1—C11.00 (14)S2—C2—C13—C1865.3 (5)
S1—Re1—S2—C22.06 (14)C1—C2—C13—C1462.4 (5)
S5—Re1—S2—C266.90 (14)S2—C2—C13—C14116.9 (4)
S3—Re1—S2—C270.63 (14)C18—C13—C14—C150.1 (6)
S4—Re1—S2—C2135.99 (14)C2—C13—C14—C15177.8 (4)
S6—Re1—S2—C2140.22 (14)C13—C14—C15—C160.5 (7)
S1—Re1—S3—C3139.23 (14)C14—C15—C16—C170.0 (8)
S5—Re1—S3—C3141.56 (14)C15—C16—C17—C181.2 (8)
S4—Re1—S3—C32.79 (14)C14—C13—C18—C171.2 (7)
S6—Re1—S3—C370.88 (14)C2—C13—C18—C17176.6 (4)
S2—Re1—S3—C367.71 (14)C16—C17—C18—C131.8 (8)
S1—Re1—S4—C474.92 (14)C4—C3—C19—C2461.1 (6)
S5—Re1—S4—C462.33 (15)S3—C3—C19—C24119.4 (4)
S3—Re1—S4—C40.46 (14)C4—C3—C19—C20117.5 (5)
S6—Re1—S4—C4131.28 (14)S3—C3—C19—C2062.0 (4)
S2—Re1—S4—C4143.11 (14)C24—C19—C20—C212.8 (6)
S1—Re1—S5—C5139.82 (13)C3—C19—C20—C21175.8 (4)
S3—Re1—S5—C5133.21 (13)C19—C20—C21—C222.1 (7)
S4—Re1—S5—C569.76 (13)C20—C21—C22—C230.5 (7)
S6—Re1—S5—C50.53 (12)C21—C22—C23—C240.4 (7)
S2—Re1—S5—C573.75 (13)C20—C19—C24—C231.9 (6)
S1—Re1—S6—C665.00 (13)C3—C19—C24—C23176.7 (4)
S5—Re1—S6—C60.63 (12)C22—C23—C24—C190.3 (6)
S3—Re1—S6—C668.92 (13)C3—C4—C25—C2644.7 (6)
S4—Re1—S6—C6141.97 (13)S4—C4—C25—C26135.4 (3)
S2—Re1—S6—C6137.11 (13)C3—C4—C25—C30136.5 (4)
Re1—S1—C1—C20.6 (3)S4—C4—C25—C3043.4 (5)
Re1—S1—C1—C7176.7 (2)C30—C25—C26—C271.1 (6)
C7—C1—C2—C136.3 (6)C4—C25—C26—C27180.0 (4)
S1—C1—C2—C13176.6 (3)C25—C26—C27—C280.7 (6)
C7—C1—C2—S2174.5 (3)C26—C27—C28—C290.7 (7)
S1—C1—C2—S22.6 (4)C27—C28—C29—C301.0 (8)
Re1—S2—C2—C13.3 (3)C28—C29—C30—C251.5 (8)
Re1—S2—C2—C13176.0 (3)C26—C25—C30—C291.5 (7)
Re1—S3—C3—C45.6 (3)C4—C25—C30—C29179.6 (4)
Re1—S3—C3—C19174.0 (2)C6—C5—C31—C3249.1 (5)
C19—C3—C4—C256.1 (6)S5—C5—C31—C32127.3 (3)
S3—C3—C4—C25174.3 (3)C6—C5—C31—C36134.9 (4)
C19—C3—C4—S4174.0 (3)S5—C5—C31—C3648.8 (4)
S3—C3—C4—S45.6 (4)C36—C31—C32—C330.2 (6)
Re1—S4—C4—C32.8 (3)C5—C31—C32—C33175.8 (3)
Re1—S4—C4—C25177.2 (2)C31—C32—C33—C340.0 (6)
Re1—S5—C5—C62.0 (3)C32—C33—C34—C350.5 (6)
Re1—S5—C5—C31178.7 (2)C33—C34—C35—C360.8 (6)
C31—C5—C6—C370.3 (6)C34—C35—C36—C310.5 (6)
S5—C5—C6—C37175.8 (3)C32—C31—C36—C350.0 (6)
C31—C5—C6—S6179.0 (3)C5—C31—C36—C35176.2 (4)
S5—C5—C6—S62.8 (4)C5—C6—C37—C3851.7 (5)
Re1—S6—C6—C52.1 (3)S6—C6—C37—C38129.6 (3)
Re1—S6—C6—C37176.6 (2)C5—C6—C37—C42122.4 (4)
C2—C1—C7—C12145.0 (4)S6—C6—C37—C4256.3 (4)
S1—C1—C7—C1237.9 (5)C42—C37—C38—C393.1 (6)
C2—C1—C7—C837.0 (6)C6—C37—C38—C39171.0 (4)
S1—C1—C7—C8140.1 (3)C37—C38—C39—C400.8 (7)
C12—C7—C8—C91.0 (6)C38—C39—C40—C411.5 (7)
C1—C7—C8—C9179.0 (4)C39—C40—C41—C421.3 (7)
C7—C8—C9—C100.8 (6)C40—C41—C42—C371.1 (6)
C8—C9—C10—C110.0 (6)C38—C37—C42—C413.3 (6)
C9—C10—C11—C120.6 (6)C6—C37—C42—C41170.9 (4)

Experimental details

Crystal data
Chemical formula[Re(C14H10S2)3]
Mr913.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7949 (9), 10.8765 (10), 19.4517 (17)
α, β, γ (°)80.190 (1), 76.770 (1), 68.758 (1)
V3)1871.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.61
Crystal size (mm)0.28 × 0.24 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD Platform
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.376, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
27614, 10391, 8772
Rint0.039
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.04
No. of reflections10391
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.47, 3.08

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SAINT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Average trigonal prismatic distortion angles (°) for selected chromium and manganese group complexes. See text for definition of distortion angle. top
ComplexAverage Distortion AngleRefcode
Re(S2C2Ph2)33.4REPETD10a
Re(S2C2Ph2)33.8xxxb
Cr(S2C2(CN)2)32−45.4DUJDANc
Cr(S2C2(CN)2)33−51.5DUJCIUc
Mo(S2C2Me2)32.4DIZQOSd
Mo(S2C2Me2)31.6DIZQUYd
Mo(S2C2Me2)32−2.6QEPDOEe
Mo(S2C2S2CS)32−16.6KUWWII,f KUWWII10g
Mo(S2C2(CF3)2)30.0hQUQBOTi
Mo(S2C2(CF3)2)32−16.1QUPZUWi
Mo(S2C2(CN)2)32−28.2PASMOD10j
W(S2C2Me2)32−2.8, 2.4QEPDUK, QEPFASe
W(S2C2Ph2)33.2CUNMIHk
W(S2C2Ph2)32.2, 14.3lCUNBIWk
W(S2C2S2CS)30.8LEFHOTg
W(S2C2S2CS)32−15.5LEFHEJg
W(S2C2S2CO)32−24.9SOLKEJm
W(S2C2(CF3)2)32−15.8QUQBAFi
W(S2C2(CN)2)327.8ASCETUj
Tc(S2C2(CN)2)32−38.9GOKCUEn
Notes: (a) Eisenberg & Ibers (1966); (b) this work; (c) Lewis & Dance (2000); (d) Lim et al. (2000); (e) Fomitchev et al. (2001); (f) Matsubayashi et al. (1992); (g) Matsubayashi et al. (1993); (h) Mo atom on 6 position; (i) Wang et al. (1999); (j) Brown & Stiefel (1973); (k) Goddard & Holm (1999); (l) two unique molecules; (m) Yang et al. (1991); (n) Colmanet & Mackay (1988).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds