Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 1-adamantyl-2,8,9-trioxa-5-aza-1-germabicyclo­[3.3.3]undecane or 1-adamantylgermatrane, [Ge(C10H15)(C6H12NO3)], (I), and (2,8,9-trioxa-5-aza-1-germabicyclo­[3.3.3]undecan-1-yl)methyl N-cyclo­hexyl­carbamate or [(germatran-1-yl)meth­yl] N-cyclo­hexyl­carbamate, [Ge(C6H12NO3)(C8H14NO2)], (II), the Ge atoms are characterized by trigonal-bypiramidal configurations. The Ge...N distances [2.266 (3) and 2.206 (3) Å in (I) and (II), respectively] are among the longest observed in germatranes. The significant distortion of the apical N-Ge-C angle in (II) is caused by crystal packing effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106019317/sq3019sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106019317/sq3019Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106019317/sq3019IIsup3.hkl
Contains datablock II

CCDC references: 616116; 616117

Comment top

Organogermanic compounds with expanded coordination spheres around the metal, such as substituted germatranes, continue to be of interest even after 60 years. Most probably, this is due to their potential use as biologically active substances (Lukevics et al., 1990, 1992). The wide spectrum of pharmacological action of organogermanic compounds, their low toxicity and other useful properties have created favourable conditions for the development of bioorganogermanic chemistry. Successful progress in this area is impossible without a wide search for the most active substances and discovering the correlation between their structure and biological activity. As a continuation and development of our work in this area (Gurkova et al., 1984; Knyazev et al., 2000; Korlyukov et al., 2003), the crystal and molecular structures of 1-germanyladamantane, (I), and [1-(germathranyl)methyl]cyclohexylcarbamate, (II), have been studied by X-ray diffraction and the results are presented here (Figs. 1 and 2).

The coordination around atom Ge1 in (I) and (II) is trigonal–bipyramidal. Atom N1 of the atrane framework and the organic R group occupy the axial positions, while three O atoms occupy the equatorial positions. The Ge1 atoms deviate from the plane of the equatorial O atoms towards R by 0.28 Å in (I) and 0.24 Å in (II). Analysis of the Cambridge Structural Database (CSD, Version?; Allen, 2002) reveals that the Ge1···N1 interatomic distance in (I) is among the longest observed for this class of compounds. According to the CSD, the Ge1···N1 distance varies in the range 2.01–2.32 Å (for 85 examined structures). The longest Ge1···N1 distances are observed in 1-(1-trimethylsylilcyclopropyl)germatrane (Gurkova et al., 1982; Korlyukov et al., 2003) and 1-germatranylmethyl-germatrane (Reference?) (2.300 and 2.315 Å). The presence of the electron-withdrawing carbamate group in (II) leads to a decrease in this interatomic distance by 0.06 Å compared with the corresponding value in (I). The absence of a greater shortening of the Ge1···N1 interatomic distance in (II) can be explained by a significant delocalization of electron density in the N2/C8/O4/O5 carbamate fragment. Indeed, the N2—C8 and C8—O4 bonds are shorter than the respective standard single bonds, but they are noticeably longer than the corresponding double bonds (Allen et al., 1987). Thus, in both (I) and (II), the Ge1···N1 interatomic distances are typical for germatranes with donor substituents (for instance in 1-ethylgermatrane, the Ge1···N1 distance is 2.24 Å; Atovmyan et al., 1970).

In the present compounds, the Ge atoms are bonded to bulky carbamate and adamantane substituents. In (II), the N1—Ge1—C7 angle is 173.73 (13)°, while in the majority of germatranes, the relative values are in the range 175–179°. In the case of the adamantane group in (I), the N1—Ge1—C7 angle remains almost undistorted [178.69 (11)°]. It is of interest to study the reason for the decrease in the N1—Ge1—C7 angle in (II).

We have found that the distortion of the N1—Ge1—C7 angle is related to the formation of intra- and intermolecular contacts between the O atoms of the atrane framework and the substituents (Allen et al., 1987). For a more reliable analysis of the intramolecular contacts, we normalize all C—H bonds to 1.08 Å according to single-crystal neutron diffraction data [Should Allen et al.reference be here instead of previous sentence?]. The germatranes with R1CCR2R3 substituents (R1 = H, I or Br, R2 = H, Br or Cl and R3 = Ph; N1—Ge1—C7 angle in the range 173.5–178.1°; Karlov et al., 2001; Faller & Kultyshev, 2003; Selina, Karlov et al., 2004; Selina Zhachkina et al., 2004) may serve as examples of the influence of intramolecular contacts on the linearity of the N1—Ge1—C7 angle. In these compounds, short C—H···O contacts between an O atom and a phenyl group are always observed. In addition, the Br and I atoms also form short intermolecular contacts with O atoms of the atrane framework (torsion angle O—Si—C—Hal 22°, where Hal = Br or I).

The influence of the intermolecular contacts can be demonstrated by methyl (germatranyl)trimethylsilylacetate (Zaitseva et al., 1997) and (pentafluorophenyl)germatrane (Kultyshev et al., 2004) (N1—Ge1—C7 = 175.73 and 176.29°, respectively). In the case of the former compound, the acetate group forms four C—H···O contacts (C···O 3.5 Å, H···O 2.6 Å and C—H···O = 107–146°) as well as three H···H and C···H contacts (H···H 2.2 Å and C···H 3.1 Å). In (pentafluorophenyl)germatrane, four C—H···F contacts (C···F 3.4 Å, H···F 2.5 Å and C—H···F = 138–164°) and one C—H···π contact (H···X 2.8 Å and C—H···π = 116°, where X is the centroid of the C6F5 ring) are observed. Of course, all the above contacts are weak, but their total energy is sufficient for the distortion of the N1—Ge1—C7 angle. In (II), one may see that the N1—Ge1—C7 angle deviates further from the ideal value of 180° than in other germatranes. Such a deviation is related to the influence of crystal packing. Actually, atom N2 of the carbamate group participates in an N2—H2···O1 hydrogen bond [H2C···O1 = 2.077 Å, N2···O1 = 2.951 (4) Å and N2—H2C—O1 = 172°; symmetry operation (x, 3/2 − y, z − 1/2)], while atom O5 forms a contact with the atrane framework (Fig. 3). Taking into account the noticeable flexibility of the Ge coordination polyhedron, one may conclude that the formation of the N—H···O interaction leads to distortion of the N1—Ge1—C7 angle.

In (I), the presence of the adamantane fragment does not lead to a significant deviation of N1—Ge1—C7 from ideal linearity. The adamantane hydrocarbon does not afford the O atoms of the atrane cage the opportunity to form intermolecular contacts. In turn, the intramolecular contacts of the methylene groups of the adamantane fragment to the O atoms of the atrane cage are unfavourable, due to large O···H distances (2.7–2.9 Å) and small C—H···O angles (106–110°). So one may therefore conclude that the bulky adamantane group preserves the N1—Ge1—C7 angle from distortion due to crystal packing.

Experimental top

The synthesis of (I) was carried out according to the previously published method of Gar et al. (1985). The compound was recrystallized from what solvent? Compound (II) was prepared from (trichlorogermyl)methanol (21.0 g, 0.1 mol), isocyanatocyclohexane (12.5 g, 0.1 mol) and triethanolamine (14.0 g, 0.9 mol) under what reaction conditions? (yield 17.6 g, 46.9%; m.p. 421–425 K). Spectroscopic analysis: 1H NMR (Bruker AM-360 spectrometer; 360 MHz, DMSO-d6, δ, p.p.m.): 1.53–1.92 (m, 11H, C6H11), 1.96 (t, 6H, CH2), 3.50 (t, 6H, CH2O), 4.42 (s, 1H, NH), 4.64 (s, 2H, OCH2Ge); IR (Bruker IFS-113 V s pectrometer; KBr tablet, ν, cm−1): 3283 (NH), 1707 (CO), 1103, 1074, 1045, 1022 [Ge(OCH2CH2)3N].

Refinement top

The H atoms were calculated geometrically and refined using a rigid-body model, with C—H = 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). [Please check added text] The crystals of (I) were found to be twinned. The structure was refined in XL using the method of Pratt et al. (1971) and Jameson (1982) with a TWIN matrix defined as TWIN 1 0 0 0 − 1 0 0 0 − 1, which is the default for a monoclinic type with β approximately 90°. All calculations were carried out using SHELXTL (version 5.10; Sheldrick, 1998).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of (II). H atoms have been omitted for clarity, with the exception of atom H2C. The N2—H2C···O1 hydrogen bonds are shown as dashed lines.
(I) 1-adamantyl-2,8,9-trioxa-5-aza-1-germabicyclo[3.3.3]undecane top
Crystal data top
[Ge(C10H15)(C6H12NO3)]F(000) = 744
Mr = 353.98Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 898 reflections
a = 10.641 (6) Åθ = 2.8–30.0°
b = 7.292 (4) ŵ = 1.99 mm1
c = 19.943 (11) ÅT = 120 K
β = 90.001 (12)°Prism, colourless
V = 1547.3 (14) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4396 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 30.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1414
Tmin = 0.587, Tmax = 0.826k = 910
15300 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
4396 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ge(C10H15)(C6H12NO3)]V = 1547.3 (14) Å3
Mr = 353.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.641 (6) ŵ = 1.99 mm1
b = 7.292 (4) ÅT = 120 K
c = 19.943 (11) Å0.30 × 0.10 × 0.10 mm
β = 90.001 (12)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3193 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.826Rint = 0.059
15300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.97Δρmax = 1.02 e Å3
4396 reflectionsΔρmin = 0.56 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.74872 (5)0.08892 (4)0.080204 (15)0.01452 (9)
O10.6713 (3)0.0777 (4)0.02609 (13)0.0227 (6)
O20.9186 (2)0.1143 (4)0.07117 (13)0.0220 (6)
O30.6560 (3)0.2863 (4)0.10614 (13)0.0235 (6)
N10.7550 (4)0.2496 (4)0.01702 (12)0.0160 (5)
C10.6727 (4)0.0516 (5)0.04451 (18)0.0221 (8)
H1A0.60010.11560.06490.027*
H1B0.75060.10470.06350.027*
C20.9686 (4)0.2383 (6)0.02363 (18)0.0219 (8)
H2A1.05550.20160.01200.026*
H2B0.97140.36310.04310.026*
C30.6147 (4)0.4150 (5)0.05792 (18)0.0206 (8)
H3A0.60060.53520.07970.025*
H3B0.53410.37370.03830.025*
C40.6663 (4)0.1536 (5)0.06110 (18)0.0206 (8)
H4A0.68900.17430.10860.025*
H4B0.58000.20020.05370.025*
C50.8877 (3)0.2389 (6)0.03910 (18)0.0203 (8)
H5A0.90890.34570.06760.024*
H5B0.90190.12560.06540.024*
C60.7141 (4)0.4351 (5)0.00207 (19)0.0203 (8)
H6A0.67740.49900.03710.024*
H6B0.78650.50750.01850.024*
C70.7430 (4)0.0452 (4)0.16570 (14)0.0122 (6)
C80.6081 (3)0.1016 (5)0.18285 (17)0.0156 (7)
H8A0.57570.18460.14760.019*
H8B0.55390.00880.18390.019*
C90.7931 (4)0.0828 (5)0.22203 (18)0.0205 (8)
H9A0.74180.19600.22380.025*
H9B0.88110.11790.21220.025*
C100.8281 (3)0.2189 (5)0.16362 (18)0.0196 (8)
H10A0.91610.18300.15410.024*
H10B0.79950.30230.12750.024*
C110.6020 (3)0.2001 (5)0.25195 (19)0.0173 (7)
H11A0.51320.23570.26200.021*
C120.6847 (4)0.3729 (5)0.2481 (2)0.0219 (9)
H12A0.68120.43960.29130.026*
H12B0.65270.45540.21260.026*
C130.6507 (4)0.0712 (5)0.30642 (19)0.0215 (8)
H13A0.64660.13290.35060.026*
H13B0.59760.04020.30830.026*
C140.7868 (4)0.0177 (6)0.29079 (19)0.0231 (9)
H14A0.81880.06570.32670.028*
C150.8210 (4)0.3190 (6)0.2326 (2)0.0236 (9)
H15A0.87440.43180.23120.028*
C160.8704 (4)0.1888 (6)0.2872 (2)0.0260 (9)
H16C0.87040.25220.33110.031*
H16A0.95790.15250.27670.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.02097 (16)0.01257 (16)0.01001 (14)0.0002 (2)0.0012 (2)0.00082 (14)
O10.0387 (16)0.0173 (14)0.0122 (11)0.0080 (13)0.0043 (11)0.0004 (10)
O20.0193 (12)0.0248 (15)0.0218 (14)0.0018 (11)0.0008 (11)0.0082 (12)
O30.0361 (15)0.0194 (14)0.0149 (12)0.0102 (13)0.0015 (11)0.0025 (11)
N10.0206 (13)0.0139 (13)0.0134 (11)0.0021 (17)0.0008 (15)0.0009 (10)
C10.032 (2)0.021 (2)0.0130 (16)0.0039 (17)0.0042 (15)0.0012 (14)
C20.0220 (18)0.022 (2)0.0217 (18)0.0008 (16)0.0015 (14)0.0049 (16)
C30.0291 (19)0.0148 (18)0.0178 (16)0.0071 (17)0.0015 (14)0.0030 (15)
C40.0258 (18)0.0214 (19)0.0146 (16)0.0018 (17)0.0048 (14)0.0005 (14)
C50.0211 (18)0.022 (2)0.0176 (16)0.0010 (16)0.0040 (14)0.0041 (16)
C60.029 (2)0.0134 (18)0.0183 (16)0.0013 (14)0.0034 (13)0.0013 (14)
C70.0177 (15)0.0104 (14)0.0085 (12)0.0009 (17)0.0028 (16)0.0016 (10)
C80.0175 (16)0.0140 (17)0.0153 (15)0.0018 (15)0.0018 (12)0.0014 (14)
C90.0294 (18)0.0165 (18)0.0157 (16)0.0025 (16)0.0045 (13)0.0006 (15)
C100.0228 (17)0.018 (2)0.0182 (17)0.0056 (16)0.0012 (14)0.0030 (15)
C110.0192 (17)0.0155 (18)0.0171 (16)0.0024 (15)0.0003 (14)0.0022 (15)
C120.027 (2)0.018 (2)0.0208 (19)0.0019 (16)0.0012 (16)0.0033 (16)
C130.031 (2)0.021 (2)0.0132 (16)0.0034 (18)0.0018 (14)0.0009 (15)
C140.031 (2)0.024 (2)0.0143 (16)0.0040 (16)0.0072 (14)0.0003 (15)
C150.029 (2)0.020 (2)0.0218 (19)0.0085 (18)0.0005 (16)0.0037 (17)
C160.023 (2)0.032 (3)0.0226 (19)0.0004 (18)0.0041 (16)0.0092 (18)
Geometric parameters (Å, º) top
Ge1—O31.820 (3)C7—C91.555 (5)
Ge1—O11.822 (3)C7—C101.559 (5)
Ge1—O21.825 (3)C8—C111.555 (5)
Ge1—C71.966 (3)C8—H8A0.9900
Ge1—N12.266 (3)C8—H8B0.9900
O1—C11.421 (4)C9—C141.556 (5)
O2—C21.414 (4)C9—H9A0.9900
O3—C31.414 (4)C9—H9B0.9900
N1—C41.468 (5)C10—C151.559 (5)
N1—C61.471 (5)C10—H10A0.9900
N1—C51.481 (5)C10—H10B0.9900
C1—C41.534 (6)C11—C131.527 (5)
C1—H1A0.9900C11—C121.539 (5)
C1—H1B0.9900C11—H11A1.0000
C2—C51.518 (5)C12—C151.534 (5)
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C61.543 (5)C13—C141.532 (6)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—H4A0.9900C14—C161.534 (6)
C4—H4B0.9900C14—H14A1.0000
C5—H5A0.9900C15—C161.537 (6)
C5—H5B0.9900C15—H15A1.0000
C6—H6A0.9900C16—H16C0.9900
C6—H6B0.9900C16—H16A0.9900
C7—C81.531 (6)
O3—Ge1—O1116.78 (14)C8—C7—Ge1110.9 (2)
O3—Ge1—O2118.99 (13)C9—C7—Ge1108.5 (2)
O1—Ge1—O2117.17 (13)C10—C7—Ge1111.3 (2)
O3—Ge1—C797.46 (13)C7—C8—C11111.2 (3)
O1—Ge1—C799.67 (13)C7—C8—H8A109.4
O2—Ge1—C799.60 (16)C11—C8—H8A109.4
O3—Ge1—N181.40 (11)C7—C8—H8B109.4
O1—Ge1—N181.45 (12)C11—C8—H8B109.4
O2—Ge1—N180.43 (13)H8A—C8—H8B108.0
C7—Ge1—N1178.69 (11)C7—C9—C14109.8 (3)
C1—O1—Ge1119.5 (2)C7—C9—H9A109.7
C2—O2—Ge1120.3 (2)C14—C9—H9A109.7
C3—O3—Ge1120.0 (2)C7—C9—H9B109.7
C4—N1—C6113.7 (3)C14—C9—H9B109.7
C4—N1—C5114.2 (3)H9A—C9—H9B108.2
C6—N1—C5114.1 (3)C7—C10—C15109.2 (3)
C4—N1—Ge1104.3 (2)C7—C10—H10A109.8
C6—N1—Ge1104.2 (2)C15—C10—H10A109.8
C5—N1—Ge1104.8 (2)C7—C10—H10B109.8
O1—C1—C4110.1 (3)C15—C10—H10B109.8
O1—C1—H1A109.6H10A—C10—H10B108.3
C4—C1—H1A109.6C13—C11—C12110.2 (3)
O1—C1—H1B109.6C13—C11—C8109.4 (3)
C4—C1—H1B109.6C12—C11—C8108.0 (3)
H1A—C1—H1B108.2C13—C11—H11A109.7
O2—C2—C5109.9 (3)C12—C11—H11A109.7
O2—C2—H2A109.7C8—C11—H11A109.7
C5—C2—H2A109.7C15—C12—C11109.9 (3)
O2—C2—H2B109.7C15—C12—H12A109.7
C5—C2—H2B109.7C11—C12—H12A109.7
H2A—C2—H2B108.2C15—C12—H12B109.7
O3—C3—C6109.9 (3)C11—C12—H12B109.7
O3—C3—H3A109.7H12A—C12—H12B108.2
C6—C3—H3A109.7C11—C13—C14109.5 (3)
O3—C3—H3B109.7C11—C13—H13A109.8
C6—C3—H3B109.7C14—C13—H13A109.8
H3A—C3—H3B108.2C11—C13—H13B109.8
N1—C4—C1107.9 (3)C14—C13—H13B109.8
N1—C4—H4A110.1H13A—C13—H13B108.2
C1—C4—H4A110.1C13—C14—C16110.5 (3)
N1—C4—H4B110.1C13—C14—C9109.9 (3)
C1—C4—H4B110.1C16—C14—C9108.4 (3)
H4A—C4—H4B108.4C13—C14—H14A109.3
N1—C5—C2107.2 (3)C16—C14—H14A109.3
N1—C5—H5A110.3C9—C14—H14A109.3
C2—C5—H5A110.3C12—C15—C16109.9 (4)
N1—C5—H5B110.3C12—C15—C10110.1 (3)
C2—C5—H5B110.3C16—C15—C10108.6 (3)
H5A—C5—H5B108.5C12—C15—H15A109.4
N1—C6—C3107.6 (3)C16—C15—H15A109.4
N1—C6—H6A110.2C10—C15—H15A109.4
C3—C6—H6A110.2C14—C16—C15109.7 (3)
N1—C6—H6B110.2C14—C16—H16C109.7
C3—C6—H6B110.2C15—C16—H16C109.7
H6A—C6—H6B108.5C14—C16—H16A109.7
C8—C7—C9108.7 (3)C15—C16—H16A109.7
C8—C7—C10109.4 (3)H16C—C16—H16A108.2
C9—C7—C10107.9 (3)
O3—Ge1—O1—C187.0 (3)O3—Ge1—C7—C864.0 (2)
O2—Ge1—O1—C163.4 (3)O1—Ge1—C7—C854.9 (2)
C7—Ge1—O1—C1169.5 (3)O2—Ge1—C7—C8174.8 (2)
N1—Ge1—O1—C111.2 (3)O3—Ge1—C7—C955.3 (3)
O3—Ge1—O2—C262.0 (3)O1—Ge1—C7—C9174.2 (3)
O1—Ge1—O2—C287.7 (3)O2—Ge1—C7—C965.9 (3)
C7—Ge1—O2—C2166.1 (3)O3—Ge1—C7—C10173.9 (3)
N1—Ge1—O2—C212.5 (3)O1—Ge1—C7—C1067.2 (3)
O1—Ge1—O3—C365.1 (3)O2—Ge1—C7—C1052.7 (3)
O2—Ge1—O3—C384.8 (3)C9—C7—C8—C1158.2 (4)
C7—Ge1—O3—C3169.9 (3)C10—C7—C8—C1159.4 (4)
N1—Ge1—O3—C310.8 (3)Ge1—C7—C8—C11177.5 (2)
O3—Ge1—N1—C4104.2 (2)C8—C7—C9—C1457.9 (4)
O1—Ge1—N1—C414.7 (2)C10—C7—C9—C1460.7 (4)
O2—Ge1—N1—C4134.3 (2)Ge1—C7—C9—C14178.6 (3)
O3—Ge1—N1—C615.3 (2)C8—C7—C10—C1557.6 (4)
O1—Ge1—N1—C6134.2 (3)C9—C7—C10—C1560.6 (4)
O2—Ge1—N1—C6106.2 (2)Ge1—C7—C10—C15179.6 (3)
O3—Ge1—N1—C5135.4 (2)C7—C8—C11—C1359.6 (4)
O1—Ge1—N1—C5105.6 (2)C7—C8—C11—C1260.3 (4)
O2—Ge1—N1—C513.9 (2)C13—C11—C12—C1559.1 (4)
Ge1—O1—C1—C434.7 (4)C8—C11—C12—C1560.4 (4)
Ge1—O2—C2—C536.7 (4)C12—C11—C13—C1458.9 (4)
Ge1—O3—C3—C634.3 (4)C8—C11—C13—C1459.7 (4)
C6—N1—C4—C1147.0 (3)C11—C13—C14—C1659.1 (4)
C5—N1—C4—C179.7 (4)C11—C13—C14—C960.6 (4)
Ge1—N1—C4—C134.2 (3)C7—C9—C14—C1359.7 (4)
O1—C1—C4—N145.3 (4)C7—C9—C14—C1661.2 (4)
C4—N1—C5—C2147.6 (3)C11—C12—C15—C1658.6 (4)
C6—N1—C5—C279.2 (4)C11—C12—C15—C1061.0 (4)
Ge1—N1—C5—C234.1 (3)C7—C10—C15—C1258.8 (4)
O2—C2—C5—N145.8 (4)C7—C10—C15—C1661.5 (4)
C4—N1—C6—C378.4 (4)C13—C14—C16—C1558.9 (4)
C5—N1—C6—C3148.2 (3)C9—C14—C16—C1561.6 (4)
Ge1—N1—C6—C334.5 (3)C12—C15—C16—C1458.4 (4)
O3—C3—C6—N145.3 (4)C10—C15—C16—C1462.1 (4)
(II) (2,8,9-trioxa-5-aza-1-germabicyclo[3.3.3]undecan-1-yl)methyl N-cyclohexylcarbamate top
Crystal data top
[Ge(C6H12NO3)(C8H14NO2)]F(000) = 784
Mr = 374.96Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 759 reflections
a = 9.4398 (13) Åθ = 2.3–29.2°
b = 16.690 (2) ŵ = 1.92 mm1
c = 10.3361 (16) ÅT = 120 K
β = 97.740 (3)°Plate, colourless
V = 1613.6 (4) Å30.20 × 0.10 × 0.03 mm
Z = 4
Data collection top
Bruker Smart CCD 1000 area-detector
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1211
Tmin = 0.700, Tmax = 0.945k = 2120
8957 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ge(C6H12NO3)(C8H14NO2)]V = 1613.6 (4) Å3
Mr = 374.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4398 (13) ŵ = 1.92 mm1
b = 16.690 (2) ÅT = 120 K
c = 10.3361 (16) Å0.20 × 0.10 × 0.03 mm
β = 97.740 (3)°
Data collection top
Bruker Smart CCD 1000 area-detector
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2310 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.945Rint = 0.048
8957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 1.53 e Å3
3487 reflectionsΔρmin = 0.39 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.39838 (4)0.64542 (2)1.00349 (4)0.02019 (14)
O10.4131 (3)0.75377 (14)1.0155 (2)0.0233 (6)
O20.4545 (3)0.58764 (15)1.1476 (2)0.0265 (6)
O30.2663 (3)0.60820 (15)0.8771 (2)0.0257 (6)
O40.5703 (2)0.64959 (14)0.7982 (2)0.0212 (6)
O50.7879 (3)0.59277 (15)0.7956 (2)0.0253 (6)
N10.2102 (3)0.66659 (17)1.1044 (3)0.0204 (7)
N20.6731 (3)0.65629 (19)0.6172 (3)0.0246 (7)
H2C0.60040.68760.58910.029*
C10.3003 (4)0.7972 (2)1.0607 (4)0.0261 (9)
H1A0.22840.81170.98570.031*
H1B0.33850.84741.10310.031*
C20.3769 (4)0.5907 (2)1.2545 (3)0.0258 (9)
H2A0.41330.63491.31360.031*
H2B0.38920.53981.30400.031*
C30.1258 (4)0.5936 (2)0.9069 (4)0.0284 (9)
H3A0.12130.53980.94640.034*
H3B0.05690.59520.82580.034*
C40.2300 (4)0.7480 (2)1.1571 (4)0.0250 (9)
H4A0.29110.74691.24280.030*
H4B0.13650.77171.16910.030*
C50.2186 (4)0.6041 (2)1.2052 (3)0.0239 (9)
H5A0.17460.55391.16810.029*
H5B0.16730.62131.27790.029*
C60.0872 (4)0.6568 (2)1.0012 (3)0.0233 (8)
H6A0.06570.70820.95490.028*
H6B0.00160.64001.04010.028*
C70.5727 (4)0.6186 (2)0.9296 (3)0.0221 (8)
H7A0.65630.64100.98610.026*
H7B0.58370.55960.92810.026*
C80.6877 (4)0.6301 (2)0.7406 (4)0.0227 (8)
C90.7740 (4)0.6346 (2)0.5276 (3)0.0242 (9)
H9A0.87290.63700.57640.029*
C100.7638 (4)0.6949 (2)0.4172 (4)0.0286 (9)
H10A0.79270.74830.45330.034*
H10B0.66320.69860.37580.034*
C110.8581 (4)0.6726 (2)0.3135 (4)0.0310 (10)
H11A0.84270.71160.24080.037*
H11B0.95980.67530.35190.037*
C140.7470 (4)0.5497 (2)0.4762 (4)0.0293 (9)
H14A0.76570.51140.54970.035*
H14B0.64530.54440.43860.035*
C130.8411 (5)0.5282 (2)0.3723 (4)0.0291 (9)
H13B0.94230.52650.41240.035*
H13C0.81470.47430.33690.035*
C120.8242 (4)0.5890 (2)0.2612 (4)0.0274 (9)
H12B0.88930.57510.19720.033*
H12C0.72490.58750.21590.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0206 (2)0.0217 (2)0.0191 (2)0.0003 (2)0.00584 (15)0.00016 (17)
O10.0239 (14)0.0178 (13)0.0306 (15)0.0022 (12)0.0128 (12)0.0004 (11)
O20.0251 (15)0.0312 (15)0.0249 (14)0.0062 (13)0.0088 (12)0.0062 (11)
O30.0239 (15)0.0302 (15)0.0244 (14)0.0023 (13)0.0082 (12)0.0047 (11)
O40.0179 (13)0.0283 (14)0.0187 (12)0.0021 (12)0.0072 (10)0.0022 (11)
O50.0185 (15)0.0316 (15)0.0258 (14)0.0037 (12)0.0029 (12)0.0031 (11)
N10.0184 (16)0.0223 (17)0.0197 (16)0.0023 (14)0.0007 (13)0.0010 (12)
N20.0199 (17)0.034 (2)0.0208 (16)0.0041 (15)0.0071 (13)0.0002 (13)
C10.028 (2)0.020 (2)0.032 (2)0.0002 (18)0.0083 (18)0.0019 (16)
C20.026 (2)0.034 (2)0.0181 (19)0.0012 (19)0.0063 (16)0.0032 (16)
C30.025 (2)0.033 (2)0.028 (2)0.0063 (19)0.0072 (18)0.0090 (17)
C40.026 (2)0.023 (2)0.027 (2)0.0057 (18)0.0072 (17)0.0052 (16)
C50.024 (2)0.030 (2)0.0180 (19)0.0005 (18)0.0055 (16)0.0054 (16)
C60.018 (2)0.030 (2)0.0220 (18)0.0007 (18)0.0051 (15)0.0018 (16)
C70.023 (2)0.023 (2)0.0209 (19)0.0010 (17)0.0062 (16)0.0006 (15)
C80.023 (2)0.025 (2)0.0219 (19)0.0083 (18)0.0073 (16)0.0066 (15)
C90.020 (2)0.034 (2)0.0200 (19)0.0034 (18)0.0064 (15)0.0003 (16)
C100.035 (2)0.027 (2)0.027 (2)0.0044 (19)0.0154 (18)0.0015 (17)
C110.029 (2)0.031 (2)0.036 (2)0.001 (2)0.0175 (19)0.0050 (18)
C140.037 (2)0.031 (2)0.022 (2)0.003 (2)0.0122 (18)0.0006 (16)
C130.041 (3)0.025 (2)0.023 (2)0.0021 (19)0.0083 (18)0.0043 (16)
C120.025 (2)0.039 (2)0.019 (2)0.0009 (19)0.0065 (17)0.0018 (16)
Geometric parameters (Å, º) top
Ge1—O31.791 (2)C4—H4A0.9900
Ge1—O21.794 (2)C4—H4B0.9900
Ge1—O11.817 (2)C5—H5A0.9900
Ge1—C71.957 (4)C5—H5B0.9900
Ge1—N12.206 (3)C6—H6A0.9900
O1—C11.418 (4)C6—H6B0.9900
O2—C21.406 (4)C7—H7A0.9900
O3—C31.422 (4)C7—H7B0.9900
O4—C81.366 (4)C9—C101.515 (5)
O4—C71.451 (4)C9—C141.524 (5)
O5—C81.209 (4)C9—H9A1.0000
N1—C41.467 (4)C10—C111.528 (5)
N1—C51.469 (4)C10—H10A0.9900
N1—C61.476 (4)C10—H10B0.9900
N2—C81.337 (5)C11—C121.514 (5)
N2—C91.460 (4)C11—H11A0.9900
N2—H2C0.8800C11—H11B0.9900
C1—C41.511 (5)C14—C131.526 (5)
C1—H1A0.9900C14—H14A0.9900
C1—H1B0.9900C14—H14B0.9900
C2—C51.529 (5)C13—C121.525 (5)
C2—H2A0.9900C13—H13B0.9900
C2—H2B0.9900C13—H13C0.9900
C3—C61.515 (5)C12—H12B0.9900
C3—H3A0.9900C12—H12C0.9900
C3—H3B0.9900
O3—Ge1—O2121.20 (12)H5A—C5—H5B108.5
O3—Ge1—O1115.75 (11)N1—C6—C3108.0 (3)
O2—Ge1—O1117.84 (12)N1—C6—H6A110.1
O3—Ge1—C7100.09 (14)C3—C6—H6A110.1
O2—Ge1—C791.80 (13)N1—C6—H6B110.1
O1—Ge1—C7101.19 (14)C3—C6—H6B110.1
O3—Ge1—N182.80 (11)H6A—C6—H6B108.4
O2—Ge1—N181.96 (11)O4—C7—Ge1112.1 (2)
O1—Ge1—N182.36 (11)O4—C7—H7A109.2
C7—Ge1—N1173.73 (13)Ge1—C7—H7A109.2
C1—O1—Ge1118.5 (2)O4—C7—H7B109.2
C2—O2—Ge1120.4 (2)Ge1—C7—H7B109.2
C3—O3—Ge1118.7 (2)H7A—C7—H7B107.9
C8—O4—C7114.3 (3)O5—C8—N2126.2 (4)
C4—N1—C5113.8 (3)O5—C8—O4123.1 (3)
C4—N1—C6114.8 (3)N2—C8—O4110.6 (3)
C5—N1—C6113.4 (3)N2—C9—C10109.4 (3)
C4—N1—Ge1104.7 (2)N2—C9—C14111.0 (3)
C5—N1—Ge1104.6 (2)C10—C9—C14111.4 (3)
C6—N1—Ge1104.2 (2)N2—C9—H9A108.3
C8—N2—C9122.1 (3)C10—C9—H9A108.3
C8—N2—H2C118.9C14—C9—H9A108.3
C9—N2—H2C118.9C9—C10—C11112.5 (3)
O1—C1—C4110.8 (3)C9—C10—H10A109.1
O1—C1—H1A109.5C11—C10—H10A109.1
C4—C1—H1A109.5C9—C10—H10B109.1
O1—C1—H1B109.5C11—C10—H10B109.1
C4—C1—H1B109.5H10A—C10—H10B107.8
H1A—C1—H1B108.1C12—C11—C10111.1 (3)
O2—C2—C5109.5 (3)C12—C11—H11A109.4
O2—C2—H2A109.8C10—C11—H11A109.4
C5—C2—H2A109.8C12—C11—H11B109.4
O2—C2—H2B109.8C10—C11—H11B109.4
C5—C2—H2B109.8H11A—C11—H11B108.0
H2A—C2—H2B108.2C13—C14—C9112.2 (3)
O3—C3—C6109.4 (3)C13—C14—H14A109.2
O3—C3—H3A109.8C9—C14—H14A109.2
C6—C3—H3A109.8C13—C14—H14B109.2
O3—C3—H3B109.8C9—C14—H14B109.2
C6—C3—H3B109.8H14A—C14—H14B107.9
H3A—C3—H3B108.2C12—C13—C14111.2 (3)
N1—C4—C1107.7 (3)C12—C13—H13B109.4
N1—C4—H4A110.2C14—C13—H13B109.4
C1—C4—H4A110.2C12—C13—H13C109.4
N1—C4—H4B110.2C14—C13—H13C109.4
C1—C4—H4B110.2H13B—C13—H13C108.0
H4A—C4—H4B108.5C11—C12—C13110.4 (3)
N1—C5—C2107.3 (3)C11—C12—H12B109.6
N1—C5—H5A110.3C13—C12—H12B109.6
C2—C5—H5A110.3C11—C12—H12C109.6
N1—C5—H5B110.3C13—C12—H12C109.6
C2—C5—H5B110.3H12B—C12—H12C108.1
O3—Ge1—O1—C170.1 (3)O1—C1—C4—N144.0 (4)
O2—Ge1—O1—C184.8 (3)C4—N1—C5—C278.3 (4)
C7—Ge1—O1—C1177.2 (2)C6—N1—C5—C2148.2 (3)
N1—Ge1—O1—C18.1 (2)Ge1—N1—C5—C235.3 (3)
O3—Ge1—O2—C285.2 (3)O2—C2—C5—N144.1 (4)
O1—Ge1—O2—C268.2 (3)C4—N1—C6—C3147.2 (3)
C7—Ge1—O2—C2171.9 (3)C5—N1—C6—C379.8 (4)
N1—Ge1—O2—C28.7 (3)Ge1—N1—C6—C333.3 (3)
O2—Ge1—O3—C363.0 (3)O3—C3—C6—N145.3 (4)
O1—Ge1—O3—C390.9 (3)C8—O4—C7—Ge1177.9 (2)
C7—Ge1—O3—C3161.4 (3)O3—Ge1—C7—O453.2 (3)
N1—Ge1—O3—C313.0 (3)O2—Ge1—C7—O4175.3 (2)
O3—Ge1—N1—C4133.9 (2)O1—Ge1—C7—O465.8 (3)
O2—Ge1—N1—C4103.1 (2)C9—N2—C8—O56.7 (6)
O1—Ge1—N1—C416.6 (2)C9—N2—C8—O4171.8 (3)
O3—Ge1—N1—C5106.2 (2)C7—O4—C8—O52.6 (5)
O2—Ge1—N1—C516.8 (2)C7—O4—C8—N2175.9 (3)
O1—Ge1—N1—C5136.5 (2)C8—N2—C9—C10159.1 (3)
O3—Ge1—N1—C613.0 (2)C8—N2—C9—C1477.5 (4)
O2—Ge1—N1—C6136.0 (2)N2—C9—C10—C11175.5 (3)
O1—Ge1—N1—C6104.3 (2)C14—C9—C10—C1152.4 (5)
Ge1—O1—C1—C431.3 (4)C9—C10—C11—C1255.2 (5)
Ge1—O2—C2—C532.0 (4)N2—C9—C14—C13174.4 (3)
Ge1—O3—C3—C636.4 (4)C10—C9—C14—C1352.2 (4)
C5—N1—C4—C1148.6 (3)C9—C14—C13—C1254.7 (4)
C6—N1—C4—C178.6 (4)C10—C11—C12—C1356.8 (5)
Ge1—N1—C4—C135.0 (3)C14—C13—C12—C1156.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.882.082.951 (4)172
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ge(C10H15)(C6H12NO3)][Ge(C6H12NO3)(C8H14NO2)]
Mr353.98374.96
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)10.641 (6), 7.292 (4), 19.943 (11)9.4398 (13), 16.690 (2), 10.3361 (16)
β (°) 90.001 (12) 97.740 (3)
V3)1547.3 (14)1613.6 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.991.92
Crystal size (mm)0.30 × 0.10 × 0.100.20 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker Smart CCD 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.587, 0.8260.700, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
15300, 4396, 3193 8957, 3487, 2310
Rint0.0590.048
(sin θ/λ)max1)0.7040.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 0.97 0.047, 0.108, 1.05
No. of reflections43963487
No. of parameters191199
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.561.53, 0.39

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SAINT-Plus, SHELXTL (Sheldrick, 1998), SHELXTL.

Selected bond lengths (Å) in (I) and (II) top
Bond(I)(II)
Ge1···N12.206 (3)2.266 (3)
Ge1—O11.817 (2)1.822 (3)
Ge1—O21.794 (2)1.825 (3)
Ge1—O31.791 (2)1.820 (3)
Ge1—C71.957 (4)1.966 (3)
N—Cmean1.471 (4)1.473 (5)
O—Cmean1.415 (4)1.416 (3)
Selected bond angles(°) in (I) and (II) top
Angle(I)(II)
N1—Ge1—C7104.5 (2)104.4 (3)
O—Ge—Omean118.26 (12)117.65 (14)
C—N—Cmean114.0 (3)114.0 (3)
C7—O4—C8114.3 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds