Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two polymorphic forms of the title compound, C24H20Cl2N4, were obtained and characterized using X-ray crystal structure analysis. Colourless crystals of polymorph (Ia) were obtained from the oily mother residue. Recrystallization of polymorph (Ia) from an acetone-methanol mixture resulted in pale-yellow crystals of polymorph (Ib). The major feature distinguishing the two polymorphic forms is their inter­action modes, and hence their packing arrangements. In the crystal structure of polymorph (Ia), there are N-H...N hydrogen bonds and also aromatic [pi]-[pi] stacking inter­actions between mol­ecules. The mol­ecules of polymorph (Ib) are linked by N-H...Cl hydrogen bonds only.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106010390/sq3007sup1.cif
Contains datablocks global, Ia, Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010390/sq3007Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106010390/sq3007Ibsup3.hkl
Contains datablock Ib

CCDC references: 609416; 609417

Comment top

Pyrimidine derivatives have very interesting biological properties and many applications in the areas of pharmaceuticals. For example, alkoxy- and amino-substitued O6-benzyloxy-5-nitropyrimidines are important as potential inhibitors of the human DNA-repair protein O6-alkylguanine-DNA-transferase (Quesada et al., 2002; Glidewell et al., 2003). Several pyrimidine derivatives have been developed as agrochemicals (Maeno et al., 1990), antiviral agents, such as AZT, which is the most widely used anti-HIV drug (Gilchrist, 1997), or antifolate drugs, such as TMP and DHFR (Feeney, 2000).

In order to discover more active pyrimidine compounds displaying immunomodulatory activity, we synthesized new 6-methyl-2-phenyl-5-substitued pyrimidine derivatives (Cieplik et al., 1995). We report here the structures of two polymorphic forms of N-(4-chlorophenyl)-5-{[(4-chlorophenyl)amino]methyl}-6-methyl-2-phenylpyrimidin-4-amine, (Ia) and (Ib).

The polymorphs (Ia) (Fig. 1) and (Ib) (Fig. 2) crystallize in space group Pbca with Z = 8 and in P21/c with Z = 4, respectively. The bond lengths and angles for (Ia) and (Ib) are in accordance with anticipated values (Reference for standard values?). However, pronounced differences between these polymorphs are apparent in the conformation of the 4-chlorophenylamino group about atom C51.

In both cases, the orientation of N amide atoms with respect to each other is the result of an intramolecular N—H···N hydrogen bond between atoms N4 and N5, which generates an S(6) motif (Bernstein et al., 1995). The C—N distances are in the ranges 1.329 (3)–1.360 (3) Å in (Ia) and 1.329 (3)–1.353 (3) Å in (Ib) (Table 1), with no significant bond fixation within the pyrimidine ring. In addition, the pyrimidine ring distances are comparable with the corresponding bonds in 4,6-disubstitued 2-aminopyrimidines (Quesada et al., 2004). The phenyl ring is nearly coplanar with the pyrimidine ring: the angle between the least-squares planes through the pyrimidine and phenyl rings is 5.2 (2)° in (Ia) and 6.4 (2)° in (Ib). Aromatic atom C41 of the N-(4-chlorophenyl)-4-amine group is also nearly coplanar with the pyrimidine ring, whereas atom C51 of the 5-[(4-chlorophenyl)amino]methyl group deviates from the pyrimidine ring plane by −1.20 (1) Å in (Ia) and −2.19 (1) Å in (Ib). The C5—C57—N5—C51 torsion angle describing the orientation of aromatic atom C51 with respect to the pyrimidine atom C5 is 179.8 (2)° in (Ia) and 80.5 (2)° in (Ib).

The molecules of (Ia) are linked by N—H···N hydrogen bonds (Table 2), with amide atom N5 as a donor and ring atom N1 of the molecule at (x − 1/2, y, −z + 1/2) as acceptor in this linkage. Propagation of the hydrogen-bonding C(7) motif generates a chain running along the a axis (Fig. 3). Between pyrimidine rings of adjacent molecules within a chain there is also an aromatic ππ stacking interaction, with an interplanar spacing of 3.47 (4) Å, a centroid-to-centroid separation of 3.71 (3) Å and a centroid offset of 1.31 Å. These chains run through each unit cell, but there is no direction-specific interaction between adjacent chains.

It is interesting to note that the aromatic ππ stacking interactions found in (Ia) are absent in the structure of (Ib) and molecules are linked by N—H···Cl hydrogen bonds only (Table 2). Amide atom N5 acts as a hydrogen-bond donor to atom Cl4 in the molecule at (x, −y + 1/2, z − 1/2). This hydrogen-bond motif, which can be described as C(11), generates a chain running along the c axis (Fig. 4).

Experimental top

Compound (I) was obtained as a yellowish oil using the procedure described previously by Cieplik et al. (1995). Colourless crystals of polymorph (Ia) were grown by slow evaporation of a solution of the oily residue in an acetone–methanol mixture (1:4 v/v). Pale-yellow crystals of polymorph (Ib) were obtained via recrystallization of (Ia) from an acetone–methanol mixture (4:1 v/v).

Refinement top

The N-bonded H atoms were found in difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N). The remaining H atoms were treated as riding, with C—H distances in the range 0.95–0.99 Å, and refined with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of polymorph (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dotted line indicates the intramolecular N—H···N hydrogen bond.
[Figure 2] Fig. 2. The molecule of polymorph (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dotted line indicates the intramolecular N—H···N hydrogen bond.
[Figure 3] Fig. 3. Part of the crystal structure of (Ia), showing the chain formed via the N—H···N hydrogen bonds. Dashed lines indicate intermolecular hydrogen bonds. [Symmetry code: (i) x − 1/2, y, −z + 1/2.]
[Figure 4] Fig. 4. Part of the crystal structure of (Ib), showing the chain formed via N—H···Cl hydrogen bonds. Dashed lines indicate intermolecular hydrogen bonds. [Symmetry code (ii) x, −y + 3/2, z + 1/2.]
(Ia) N-(4-chlorophenyl)-5-{[(4-chlorophenyl)amino]methyl}-6-methyl-2- phenylpyrimidin-4-amine top
Crystal data top
C24H20Cl2N4Dx = 1.369 Mg m3
Mr = 435.34Melting point: 190 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12344 reflections
a = 7.378 (3) Åθ = 4.5–27.5°
b = 23.875 (6) ŵ = 0.33 mm1
c = 23.984 (6) ÅT = 100 K
V = 4225 (2) Å3Plate, colourless
Z = 80.50 × 0.15 × 0.05 mm
F(000) = 1808
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
3240 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 27.5°, θmin = 4.5°
Detector resolution: 0 pixels mm-1h = 79
ω scansk = 2431
34892 measured reflectionsl = 3129
4829 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0597P)2
where P = (Fo2 + 2Fc2)/3
4829 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H20Cl2N4V = 4225 (2) Å3
Mr = 435.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.378 (3) ŵ = 0.33 mm1
b = 23.875 (6) ÅT = 100 K
c = 23.984 (6) Å0.50 × 0.15 × 0.05 mm
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
3240 reflections with I > 2σ(I)
34892 measured reflectionsRint = 0.075
4829 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.58 e Å3
4829 reflectionsΔρmin = 0.30 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Diffraction data for I were collected on a Xcalibur PX ω-geometry diffractometer equipped with an Oxford Cryosystems low-temperature device. The crystal structure was solved by direct methods using the SHELXS97 program (Sheldrick, 1990) and refined using SHELXL97 (Sheldrick, 1997). The full-matrix least-squares were completed, using anisotropic parameters for all non H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.20555 (11)0.71671 (3)0.36059 (3)0.0266 (2)
Cl50.28914 (12)0.28069 (4)0.61868 (3)0.0399 (3)
C610.5135 (4)0.29693 (11)0.24457 (12)0.0242 (7)
H61A0.53180.28460.20600.036*
H61B0.42520.27230.26280.036*
H61C0.62890.29530.26470.036*
C60.4434 (4)0.35619 (11)0.24487 (12)0.0184 (6)
N10.4188 (3)0.37939 (9)0.19362 (9)0.0198 (6)
C20.3554 (4)0.43214 (11)0.19285 (11)0.0181 (6)
C210.3198 (4)0.45829 (11)0.13745 (12)0.0191 (6)
C220.3602 (4)0.43067 (12)0.08810 (12)0.0225 (7)
H220.41380.39450.08930.027*
C230.3233 (4)0.45521 (13)0.03712 (12)0.0301 (8)
H230.35310.43600.00370.036*
C240.2433 (4)0.50742 (14)0.03453 (13)0.0333 (8)
H240.21710.52410.00050.040*
C250.2015 (4)0.53532 (13)0.08368 (13)0.0322 (8)
H250.14600.57120.08230.039*
C260.2406 (4)0.51102 (12)0.13485 (12)0.0250 (7)
H260.21300.53060.16830.030*
N30.3180 (3)0.46380 (9)0.23722 (9)0.0186 (5)
C40.3440 (4)0.44081 (11)0.28706 (11)0.0183 (6)
N40.3069 (3)0.47235 (10)0.33327 (10)0.0212 (6)
H40.293 (4)0.4552 (12)0.3635 (13)0.025*
C410.2765 (4)0.53068 (11)0.33572 (11)0.0192 (6)
C420.3541 (4)0.56818 (12)0.29829 (12)0.0243 (7)
H420.42310.55460.26770.029*
C430.3311 (4)0.62540 (12)0.30549 (12)0.0263 (7)
H430.38490.65110.28010.032*
C440.2293 (4)0.64472 (11)0.34990 (11)0.0202 (7)
C450.1504 (4)0.60820 (12)0.38682 (12)0.0221 (7)
H450.07930.62200.41680.026*
C460.1753 (4)0.55118 (12)0.38001 (11)0.0209 (7)
H460.12260.52580.40590.025*
C50.4077 (4)0.38528 (11)0.29363 (11)0.0179 (6)
C570.4425 (4)0.36231 (12)0.35113 (11)0.0215 (7)
H57A0.49230.32390.34800.026*
H57B0.53410.38590.37010.026*
N50.2776 (4)0.36087 (10)0.38460 (10)0.0209 (6)
H50.187 (4)0.3505 (13)0.3662 (12)0.025*
C510.2840 (4)0.34056 (11)0.43936 (11)0.0189 (6)
C520.4367 (4)0.34795 (12)0.47281 (12)0.0227 (7)
H520.54090.36590.45800.027*
C530.4378 (4)0.32925 (12)0.52777 (12)0.0255 (7)
H530.54270.33410.55020.031*
C540.2867 (4)0.30373 (12)0.54934 (12)0.0256 (7)
C550.1341 (4)0.29545 (12)0.51717 (12)0.0247 (7)
H550.03050.27750.53240.030*
C560.1338 (4)0.31362 (11)0.46229 (12)0.0224 (7)
H560.02940.30760.43990.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0333 (5)0.0167 (3)0.0299 (4)0.0014 (3)0.0024 (4)0.0000 (3)
Cl50.0367 (5)0.0634 (6)0.0194 (4)0.0065 (5)0.0023 (4)0.0129 (4)
C610.0252 (17)0.0197 (14)0.0276 (17)0.0006 (13)0.0053 (14)0.0007 (13)
C60.0139 (16)0.0172 (13)0.0241 (16)0.0026 (12)0.0025 (12)0.0010 (13)
N10.0199 (14)0.0196 (12)0.0201 (13)0.0018 (11)0.0044 (11)0.0007 (10)
C20.0129 (15)0.0216 (15)0.0197 (15)0.0042 (13)0.0021 (12)0.0001 (12)
C210.0147 (16)0.0215 (15)0.0213 (15)0.0028 (13)0.0006 (13)0.0033 (12)
C220.0238 (18)0.0221 (15)0.0216 (16)0.0016 (14)0.0015 (13)0.0008 (13)
C230.035 (2)0.0368 (19)0.0184 (16)0.0079 (16)0.0007 (14)0.0033 (14)
C240.037 (2)0.0411 (19)0.0217 (17)0.0039 (17)0.0049 (15)0.0088 (15)
C250.032 (2)0.0312 (17)0.0332 (19)0.0064 (16)0.0012 (16)0.0097 (15)
C260.0246 (18)0.0296 (16)0.0208 (16)0.0039 (15)0.0020 (13)0.0002 (13)
N30.0207 (14)0.0178 (12)0.0172 (12)0.0019 (10)0.0000 (11)0.0000 (10)
C40.0154 (16)0.0218 (15)0.0178 (15)0.0046 (13)0.0015 (12)0.0025 (12)
N40.0322 (15)0.0179 (12)0.0135 (12)0.0013 (11)0.0023 (12)0.0006 (10)
C410.0237 (17)0.0178 (13)0.0163 (14)0.0029 (13)0.0038 (13)0.0012 (11)
C420.0282 (18)0.0229 (15)0.0217 (16)0.0002 (14)0.0046 (14)0.0030 (13)
C430.0332 (19)0.0256 (16)0.0200 (16)0.0058 (15)0.0029 (14)0.0044 (13)
C440.0244 (17)0.0148 (13)0.0214 (15)0.0007 (13)0.0042 (13)0.0011 (12)
C450.0233 (17)0.0241 (15)0.0188 (15)0.0010 (14)0.0033 (13)0.0025 (12)
C460.0240 (18)0.0216 (14)0.0171 (15)0.0060 (14)0.0007 (13)0.0020 (12)
C50.0150 (15)0.0186 (14)0.0200 (15)0.0042 (12)0.0018 (12)0.0011 (12)
C570.0210 (17)0.0203 (15)0.0231 (16)0.0009 (13)0.0004 (13)0.0027 (12)
N50.0194 (14)0.0254 (13)0.0179 (13)0.0025 (12)0.0021 (11)0.0032 (10)
C510.0255 (17)0.0145 (13)0.0167 (14)0.0003 (14)0.0002 (14)0.0006 (11)
C520.0248 (18)0.0230 (16)0.0204 (16)0.0007 (14)0.0032 (13)0.0012 (13)
C530.0282 (19)0.0279 (17)0.0204 (16)0.0041 (15)0.0025 (14)0.0014 (13)
C540.0342 (19)0.0263 (15)0.0163 (15)0.0059 (15)0.0028 (15)0.0026 (13)
C550.0287 (18)0.0206 (16)0.0246 (16)0.0031 (14)0.0066 (14)0.0005 (13)
C560.0279 (18)0.0180 (15)0.0214 (16)0.0030 (14)0.0021 (13)0.0010 (12)
Geometric parameters (Å, º) top
Cl4—C441.746 (3)C41—C461.388 (4)
Cl5—C541.752 (3)C41—C421.391 (4)
C61—C61.506 (4)C42—C431.387 (4)
C61—H61A0.9800C42—H420.9500
C61—H61B0.9800C43—C441.383 (4)
C61—H61C0.9800C43—H430.9500
C6—N11.360 (3)C44—C451.372 (4)
C6—C51.385 (4)C45—C461.383 (4)
N1—C21.344 (3)C45—H450.9500
C2—N31.334 (3)C46—H460.9500
C2—C211.491 (4)C5—C571.506 (4)
C21—C221.387 (4)C57—N51.458 (4)
C21—C261.390 (4)C57—H57A0.9900
C22—C231.383 (4)C57—H57B0.9900
C22—H220.9500N5—C511.401 (3)
C23—C241.381 (4)N5—H50.84 (3)
C23—H230.9500C51—C561.394 (4)
C24—C251.389 (5)C51—C521.394 (4)
C24—H240.9500C52—C531.392 (4)
C25—C261.388 (4)C52—H520.9500
C25—H250.9500C53—C541.372 (4)
C26—H260.9500C53—H530.9500
N3—C41.329 (3)C54—C551.379 (4)
C4—N41.368 (3)C55—C561.386 (4)
C4—C51.416 (4)C55—H550.9500
N4—C411.412 (3)C56—H560.9500
N4—H40.84 (3)
C6—C61—H61A109.5C41—C42—H42119.9
C6—C61—H61B109.5C44—C43—C42119.4 (3)
H61A—C61—H61B109.5C44—C43—H43120.3
C6—C61—H61C109.5C42—C43—H43120.3
H61A—C61—H61C109.5C45—C44—C43121.0 (3)
H61B—C61—H61C109.5C45—C44—Cl4119.2 (2)
N1—C6—C5122.2 (2)C43—C44—Cl4119.7 (2)
N1—C6—C61115.1 (2)C44—C45—C46119.5 (3)
C5—C6—C61122.7 (3)C44—C45—H45120.2
C2—N1—C6116.1 (2)C46—C45—H45120.2
N3—C2—N1126.3 (3)C45—C46—C41120.6 (3)
N3—C2—C21115.9 (2)C45—C46—H46119.7
N1—C2—C21117.8 (2)C41—C46—H46119.7
C22—C21—C26118.9 (3)C6—C5—C4116.0 (3)
C22—C21—C2121.6 (2)C6—C5—C57123.9 (2)
C26—C21—C2119.6 (3)C4—C5—C57120.0 (2)
C23—C22—C21120.7 (3)N5—C57—C5111.7 (2)
C23—C22—H22119.6N5—C57—H57A109.3
C21—C22—H22119.6C5—C57—H57A109.3
C24—C23—C22120.4 (3)N5—C57—H57B109.3
C24—C23—H23119.8C5—C57—H57B109.3
C22—C23—H23119.8H57A—C57—H57B107.9
C23—C24—C25119.3 (3)C51—N5—C57119.8 (2)
C23—C24—H24120.3C51—N5—H5115 (2)
C25—C24—H24120.3C57—N5—H5112 (2)
C26—C25—C24120.3 (3)C56—C51—C52118.3 (3)
C26—C25—H25119.9C56—C51—N5120.2 (3)
C24—C25—H25119.9C52—C51—N5121.5 (3)
C25—C26—C21120.4 (3)C53—C52—C51120.6 (3)
C25—C26—H26119.8C53—C52—H52119.7
C21—C26—H26119.8C51—C52—H52119.7
C4—N3—C2117.0 (2)C54—C53—C52119.7 (3)
N3—C4—N4118.2 (2)C54—C53—H53120.2
N3—C4—C5122.3 (2)C52—C53—H53120.2
N4—C4—C5119.5 (3)C53—C54—C55121.1 (3)
C4—N4—C41127.5 (2)C53—C54—Cl5119.3 (2)
C4—N4—H4117 (2)C55—C54—Cl5119.7 (2)
C41—N4—H4115 (2)C54—C55—C56119.2 (3)
C46—C41—C42119.2 (3)C54—C55—H55120.4
C46—C41—N4117.7 (2)C56—C55—H55120.4
C42—C41—N4122.9 (3)C55—C56—C51121.2 (3)
C43—C42—C41120.2 (3)C55—C56—H56119.4
C43—C42—H42119.9C51—C56—H56119.4
C5—C6—N1—C20.8 (4)C43—C44—C45—C460.9 (4)
C61—C6—N1—C2179.6 (2)Cl4—C44—C45—C46177.2 (2)
C6—N1—C2—N31.4 (4)C44—C45—C46—C411.1 (4)
C6—N1—C2—C21177.7 (2)C42—C41—C46—C450.4 (4)
N3—C2—C21—C22177.2 (3)N4—C41—C46—C45175.8 (3)
N1—C2—C21—C223.6 (4)N1—C6—C5—C40.1 (4)
N3—C2—C21—C264.3 (4)C61—C6—C5—C4179.5 (3)
N1—C2—C21—C26174.9 (3)N1—C6—C5—C57176.6 (3)
C26—C21—C22—C230.3 (4)C61—C6—C5—C573.0 (4)
C2—C21—C22—C23178.8 (3)N3—C4—C5—C60.6 (4)
C21—C22—C23—C240.8 (5)N4—C4—C5—C6179.5 (2)
C22—C23—C24—C250.5 (5)N3—C4—C5—C57177.3 (2)
C23—C24—C25—C260.3 (5)N4—C4—C5—C572.9 (4)
C24—C25—C26—C210.8 (5)C6—C5—C57—N5121.7 (3)
C22—C21—C26—C250.5 (4)C4—C5—C57—N561.9 (3)
C2—C21—C26—C25178.1 (3)C5—C57—N5—C51179.8 (2)
N1—C2—N3—C40.8 (4)C57—N5—C51—C56148.8 (3)
C21—C2—N3—C4178.2 (2)C57—N5—C51—C5233.1 (4)
C2—N3—C4—N4179.9 (2)C56—C51—C52—C530.5 (4)
C2—N3—C4—C50.2 (4)N5—C51—C52—C53177.6 (3)
N3—C4—N4—C4113.3 (4)C51—C52—C53—C540.6 (4)
C5—C4—N4—C41166.9 (3)C52—C53—C54—C551.0 (4)
C4—N4—C41—C46155.5 (3)C52—C53—C54—Cl5179.7 (2)
C4—N4—C41—C4229.3 (5)C53—C54—C55—C560.4 (4)
C46—C41—C42—C430.4 (4)Cl5—C54—C55—C56179.7 (2)
N4—C41—C42—C43174.8 (3)C54—C55—C56—C510.7 (4)
C41—C42—C43—C440.5 (4)C52—C51—C56—C551.1 (4)
C42—C43—C44—C450.1 (4)N5—C51—C56—C55177.0 (3)
C42—C43—C44—Cl4178.0 (2)
(Ib) N-(4-chlorophenyl)-5-{[(4-chlorophenyl)amino]methyl}-6-methyl-2- phenylpyrimidin-4-amine top
Crystal data top
C24H20Cl2N4F(000) = 904
Mr = 435.34Dx = 1.411 Mg m3
Monoclinic, P21/cMelting point: 190 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.332 (4) ÅCell parameters from 16673 reflections
b = 7.993 (2) Åθ = 4.7–28.1°
c = 17.235 (4) ŵ = 0.34 mm1
β = 104.06 (3)°T = 100 K
V = 2048.9 (9) Å3Plate, pale yellow
Z = 40.16 × 0.15 × 0.10 mm
Data collection top
Kuma KM4 CCD κ-geometry diffractometr3895 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.1°, θmin = 4.7°
Detector resolution: 0 pixels mm-1h = 2020
ω scansk = 810
26386 measured reflectionsl = 2222
4952 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.4721P]
where P = (Fo2 + 2Fc2)/3
4952 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H20Cl2N4V = 2048.9 (9) Å3
Mr = 435.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.332 (4) ŵ = 0.34 mm1
b = 7.993 (2) ÅT = 100 K
c = 17.235 (4) Å0.16 × 0.15 × 0.10 mm
β = 104.06 (3)°
Data collection top
Kuma KM4 CCD κ-geometry diffractometr3895 reflections with I > 2σ(I)
26386 measured reflectionsRint = 0.043
4952 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.49 e Å3
4952 reflectionsΔρmin = 0.30 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Diffraction data for I were collected on a Xcalibur PX ω-geometry diffractometer equipped with an Oxford Cryosystems low-temperature device. The crystal structure was solved by direct methods using the SHELXS97 program (Sheldrick, 1990) and refined using SHELXL97 (Sheldrick, 1997). The full-matrix least-squares were completed, using anisotropic parameters for all non H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.66123 (4)0.33111 (7)0.37837 (3)0.02978 (17)
Cl50.33415 (4)0.49845 (8)0.89159 (4)0.03679 (18)
N10.88258 (12)0.3531 (2)0.91081 (10)0.0211 (4)
C20.86547 (13)0.2882 (3)0.83714 (12)0.0186 (4)
C210.90082 (13)0.1179 (3)0.82712 (12)0.0189 (4)
C220.95206 (14)0.0301 (3)0.89212 (13)0.0247 (5)
H220.96750.08110.94340.030*
C230.98096 (15)0.1325 (3)0.88235 (14)0.0276 (5)
H231.01510.19220.92720.033*
C240.96003 (15)0.2073 (3)0.80745 (15)0.0270 (5)
H240.98010.31770.80090.032*
C250.90980 (16)0.1202 (3)0.74239 (14)0.0266 (5)
H250.89570.17110.69100.032*
C260.87980 (15)0.0411 (3)0.75156 (13)0.0230 (5)
H260.84500.09940.70660.028*
N30.81732 (12)0.3611 (2)0.77059 (10)0.0194 (4)
C40.78123 (14)0.5096 (2)0.77805 (12)0.0187 (4)
N40.73384 (12)0.5890 (2)0.70989 (10)0.0215 (4)
H40.7017 (17)0.676 (3)0.7178 (15)0.026*
C410.72011 (14)0.5287 (3)0.63102 (12)0.0206 (4)
C420.78666 (15)0.4462 (3)0.60340 (13)0.0232 (5)
H420.84440.43030.63820.028*
C430.76924 (15)0.3872 (3)0.52539 (13)0.0245 (5)
H430.81440.32960.50680.029*
C440.68490 (15)0.4135 (3)0.47504 (12)0.0226 (5)
C450.61949 (15)0.5026 (3)0.50023 (13)0.0250 (5)
H450.56290.52400.46440.030*
C460.63733 (15)0.5600 (3)0.57807 (13)0.0233 (5)
H460.59270.62150.59570.028*
C50.78988 (14)0.5870 (3)0.85380 (12)0.0201 (4)
C570.74856 (15)0.7570 (3)0.86288 (13)0.0239 (5)
H57A0.74550.77060.91920.029*
H57B0.78890.84530.85120.029*
N50.65831 (13)0.7829 (2)0.81104 (11)0.0244 (4)
H50.6506 (17)0.890 (3)0.7994 (15)0.029*
C510.58325 (15)0.7165 (3)0.83278 (12)0.0217 (4)
C520.58972 (14)0.5813 (3)0.88475 (13)0.0224 (4)
H520.64700.53460.90830.027*
C530.51332 (15)0.5139 (3)0.90247 (13)0.0237 (5)
H530.51830.42100.93760.028*
C540.42980 (15)0.5828 (3)0.86870 (13)0.0258 (5)
C550.42173 (16)0.7183 (3)0.81736 (13)0.0270 (5)
H550.36430.76550.79480.032*
C560.49781 (16)0.7847 (3)0.79899 (13)0.0261 (5)
H560.49220.87690.76330.031*
C60.84411 (14)0.5028 (3)0.91826 (13)0.0209 (4)
C610.86469 (16)0.5710 (3)1.00255 (13)0.0288 (5)
H61A0.91190.50321.03700.043*
H61B0.81030.56691.02280.043*
H61C0.88530.68711.00250.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0434 (4)0.0247 (3)0.0194 (3)0.0037 (2)0.0041 (2)0.0016 (2)
Cl50.0213 (3)0.0443 (4)0.0447 (4)0.0003 (2)0.0078 (3)0.0010 (3)
N10.0212 (9)0.0237 (9)0.0178 (9)0.0022 (7)0.0034 (7)0.0006 (7)
C20.0169 (10)0.0205 (10)0.0196 (10)0.0035 (8)0.0066 (8)0.0012 (8)
C210.0160 (10)0.0189 (10)0.0225 (10)0.0019 (8)0.0058 (8)0.0023 (8)
C220.0202 (11)0.0289 (11)0.0233 (11)0.0001 (9)0.0018 (9)0.0021 (9)
C230.0199 (11)0.0282 (12)0.0341 (13)0.0031 (9)0.0051 (9)0.0065 (10)
C240.0227 (11)0.0206 (11)0.0410 (13)0.0028 (9)0.0142 (10)0.0022 (10)
C250.0307 (12)0.0237 (11)0.0283 (12)0.0031 (9)0.0127 (10)0.0040 (9)
C260.0237 (11)0.0239 (11)0.0220 (11)0.0003 (9)0.0066 (9)0.0032 (9)
N30.0208 (9)0.0198 (9)0.0176 (8)0.0005 (7)0.0047 (7)0.0008 (7)
C40.0181 (10)0.0198 (10)0.0188 (10)0.0025 (8)0.0055 (8)0.0009 (8)
N40.0251 (10)0.0211 (9)0.0180 (9)0.0050 (8)0.0050 (7)0.0005 (7)
C410.0247 (11)0.0204 (10)0.0174 (10)0.0005 (8)0.0065 (8)0.0026 (8)
C420.0218 (11)0.0269 (11)0.0206 (10)0.0048 (9)0.0044 (9)0.0040 (9)
C430.0295 (12)0.0236 (11)0.0220 (11)0.0048 (9)0.0094 (9)0.0027 (9)
C440.0321 (12)0.0197 (10)0.0158 (10)0.0038 (9)0.0055 (9)0.0025 (8)
C450.0220 (11)0.0298 (12)0.0209 (11)0.0006 (9)0.0010 (9)0.0050 (9)
C460.0223 (11)0.0255 (11)0.0225 (11)0.0042 (9)0.0063 (9)0.0037 (9)
C50.0201 (10)0.0203 (10)0.0212 (10)0.0042 (8)0.0077 (8)0.0013 (8)
C570.0263 (11)0.0216 (10)0.0248 (11)0.0047 (9)0.0083 (9)0.0036 (9)
N50.0304 (10)0.0183 (9)0.0261 (10)0.0043 (8)0.0102 (8)0.0029 (8)
C510.0278 (11)0.0212 (10)0.0170 (10)0.0028 (9)0.0072 (9)0.0059 (8)
C520.0208 (11)0.0225 (10)0.0228 (11)0.0050 (9)0.0032 (9)0.0033 (9)
C530.0250 (11)0.0235 (11)0.0221 (11)0.0017 (9)0.0048 (9)0.0008 (9)
C540.0219 (11)0.0286 (12)0.0267 (11)0.0003 (9)0.0058 (9)0.0081 (9)
C550.0258 (12)0.0326 (12)0.0196 (10)0.0103 (10)0.0000 (9)0.0057 (9)
C560.0334 (13)0.0261 (11)0.0180 (10)0.0083 (10)0.0045 (9)0.0025 (9)
C60.0219 (11)0.0233 (10)0.0185 (10)0.0072 (8)0.0073 (8)0.0029 (8)
C610.0358 (13)0.0321 (12)0.0171 (11)0.0020 (10)0.0039 (9)0.0039 (9)
Geometric parameters (Å, º) top
Cl4—C441.746 (2)C43—H430.9500
Cl5—C541.744 (2)C44—C451.383 (3)
N1—C21.337 (3)C45—C461.381 (3)
N1—C61.353 (3)C45—H450.9500
C2—N31.337 (3)C46—H460.9500
C2—C211.491 (3)C5—C61.389 (3)
C21—C221.392 (3)C5—C571.524 (3)
C21—C261.405 (3)C57—N51.468 (3)
C22—C231.397 (3)C57—H57A0.9900
C22—H220.9500C57—H57B0.9900
C23—C241.388 (3)N5—C511.399 (3)
C23—H230.9500N5—H50.88 (3)
C24—C251.384 (3)C51—C521.392 (3)
C24—H240.9500C51—C561.408 (3)
C25—C261.391 (3)C52—C531.389 (3)
C25—H250.9500C52—H520.9500
C26—H260.9500C53—C541.386 (3)
N3—C41.329 (3)C53—H530.9500
C4—N41.377 (3)C54—C551.385 (3)
C4—C51.421 (3)C55—C561.386 (3)
N4—C411.409 (3)C55—H550.9500
N4—H40.88 (3)C56—H560.9500
C41—C421.392 (3)C6—C611.511 (3)
C41—C461.394 (3)C61—H61A0.9800
C42—C431.388 (3)C61—H61B0.9800
C42—H420.9500C61—H61C0.9800
C43—C441.387 (3)
C2—N1—C6116.32 (18)C44—C45—H45120.4
N1—C2—N3125.84 (19)C45—C46—C41120.7 (2)
N1—C2—C21118.12 (18)C45—C46—H46119.7
N3—C2—C21116.03 (18)C41—C46—H46119.7
C22—C21—C26118.9 (2)C6—C5—C4115.33 (19)
C22—C21—C2121.16 (19)C6—C5—C57122.22 (19)
C26—C21—C2119.93 (19)C4—C5—C57122.29 (19)
C21—C22—C23120.4 (2)N5—C57—C5114.66 (17)
C21—C22—H22119.8N5—C57—H57A108.6
C23—C22—H22119.8C5—C57—H57A108.6
C24—C23—C22120.3 (2)N5—C57—H57B108.6
C24—C23—H23119.8C5—C57—H57B108.6
C22—C23—H23119.8H57A—C57—H57B107.6
C25—C24—C23119.6 (2)C51—N5—C57119.91 (18)
C25—C24—H24120.2C51—N5—H5110.9 (17)
C23—C24—H24120.2C57—N5—H5109.3 (17)
C24—C25—C26120.6 (2)C52—C51—N5122.18 (19)
C24—C25—H25119.7C52—C51—C56118.7 (2)
C26—C25—H25119.7N5—C51—C56119.1 (2)
C25—C26—C21120.2 (2)C53—C52—C51120.7 (2)
C25—C26—H26119.9C53—C52—H52119.6
C21—C26—H26119.9C51—C52—H52119.6
C4—N3—C2117.52 (18)C54—C53—C52119.8 (2)
N3—C4—N4118.35 (19)C54—C53—H53120.1
N3—C4—C5121.96 (19)C52—C53—H53120.1
N4—C4—C5119.69 (18)C55—C54—C53120.6 (2)
C4—N4—C41126.11 (18)C55—C54—Cl5119.83 (18)
C4—N4—H4115.5 (16)C53—C54—Cl5119.57 (18)
C41—N4—H4117.5 (16)C54—C55—C56119.7 (2)
C42—C41—C46119.17 (19)C54—C55—H55120.1
C42—C41—N4122.80 (19)C56—C55—H55120.1
C46—C41—N4117.97 (19)C55—C56—C51120.5 (2)
C43—C42—C41120.5 (2)C55—C56—H56119.8
C43—C42—H42119.7C51—C56—H56119.8
C41—C42—H42119.7N1—C6—C5122.84 (19)
C44—C43—C42119.0 (2)N1—C6—C61114.58 (19)
C44—C43—H43120.5C5—C6—C61122.6 (2)
C42—C43—H43120.5C6—C61—H61A109.5
C45—C44—C43121.2 (2)C6—C61—H61B109.5
C45—C44—Cl4119.70 (17)H61A—C61—H61B109.5
C43—C44—Cl4119.07 (17)C6—C61—H61C109.5
C46—C45—C44119.2 (2)H61A—C61—H61C109.5
C46—C45—H45120.4H61B—C61—H61C109.5
C6—N1—C2—N33.0 (3)C44—C45—C46—C410.1 (3)
C6—N1—C2—C21175.53 (17)C42—C41—C46—C453.4 (3)
N1—C2—C21—C221.5 (3)N4—C41—C46—C45179.33 (19)
N3—C2—C21—C22179.81 (19)N3—C4—C5—C64.7 (3)
N1—C2—C21—C26176.16 (19)N4—C4—C5—C6175.66 (18)
N3—C2—C21—C262.5 (3)N3—C4—C5—C57179.88 (19)
C26—C21—C22—C230.8 (3)N4—C4—C5—C570.2 (3)
C2—C21—C22—C23176.88 (19)C6—C5—C57—N5144.4 (2)
C21—C22—C23—C241.0 (3)C4—C5—C57—N540.5 (3)
C22—C23—C24—C250.4 (3)C5—C57—N5—C5180.5 (2)
C23—C24—C25—C260.3 (3)C57—N5—C51—C5222.9 (3)
C24—C25—C26—C210.5 (3)C57—N5—C51—C56159.35 (19)
C22—C21—C26—C250.1 (3)N5—C51—C52—C53177.28 (19)
C2—C21—C26—C25177.63 (19)C56—C51—C52—C530.5 (3)
N1—C2—N3—C41.7 (3)C51—C52—C53—C540.6 (3)
C21—C2—N3—C4176.86 (17)C52—C53—C54—C550.0 (3)
C2—N3—C4—N4177.95 (18)C52—C53—C54—Cl5179.65 (16)
C2—N3—C4—C52.4 (3)C53—C54—C55—C560.6 (3)
N3—C4—N4—C410.8 (3)Cl5—C54—C55—C56179.74 (16)
C5—C4—N4—C41179.56 (19)C54—C55—C56—C510.6 (3)
C4—N4—C41—C4239.4 (3)C52—C51—C56—C550.1 (3)
C4—N4—C41—C46143.4 (2)N5—C51—C56—C55177.96 (19)
C46—C41—C42—C433.7 (3)C2—N1—C6—C50.2 (3)
N4—C41—C42—C43179.1 (2)C2—N1—C6—C61179.62 (18)
C41—C42—C43—C440.9 (3)C4—C5—C6—N13.3 (3)
C42—C43—C44—C452.5 (3)C57—C5—C6—N1178.75 (19)
C42—C43—C44—Cl4177.11 (16)C4—C5—C6—C61176.85 (19)
C43—C44—C45—C462.8 (3)C57—C5—C6—C611.4 (3)
Cl4—C44—C45—C46176.75 (17)

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC24H20Cl2N4C24H20Cl2N4
Mr435.34435.34
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)7.378 (3), 23.875 (6), 23.984 (6)15.332 (4), 7.993 (2), 17.235 (4)
α, β, γ (°)90, 90, 9090, 104.06 (3), 90
V3)4225 (2)2048.9 (9)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.330.34
Crystal size (mm)0.50 × 0.15 × 0.050.16 × 0.15 × 0.10
Data collection
DiffractometerKuma KM4 CCD κ-geometry
diffractometer
Kuma KM4 CCD κ-geometry diffractometr
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34892, 4829, 3240 26386, 4952, 3895
Rint0.0750.043
(sin θ/λ)max1)0.6500.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.148, 1.15 0.057, 0.145, 1.12
No. of reflections48294952
No. of parameters278278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.300.49, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 1998), SHELXL97.

Comparison of bond lengths and torsion angles for polymorphs (Ia) and (Ib) (Å, °) top
Parameter(Ia)(Ib)
N1-C21.344 (3)1.337 (2)
C2-N31.334 (3)1.337 (3)
N3-C41.329 (3)1.329 (3)
C4-C51.416 (4)1.421 (3)
C5-C61.385 (4)1.389 (3)
C6-N11.360 (3)1.353 (3)
C4-N41.368 (3)1.377 (3)
N4-C411.412 (3)1.409 (3)
C5-C571.506 (4)1.524 (3)
C57-N51.458 (4)1.468 (3)
N5-C511.401 (3)1.399 (3)
N1-C2-C21-C22-3.6 (4)-1.5 (3)
N3-C4-N4-C41-13.3 (4)-0.8 (3)
C5-C4-N4-C41166.9 (3)179.6 (2)
C4-N4-C41-C42-29.3 (5)-39.4 (3)
C4-C5-C57-N561.9 (3)40.5 (3)
C6-C5-C57-N5-121.7 (3)-144.4 (2)
C5-C57-N5-C51179.8 (2)80.5 (2)
C57-N5-C51-C5233.1 (4)-22.9 (3)
C57-N5-C51-C56-148.8 (3)159.4 (2)
Hydrogen-bonding geometry for polymorphs (Ia) and (Ib) (Å, °) top
D-H···AD-HH···AD···AD-H···A
(Ia)N4-H4···N50.84 (3)2.31 (3)2.940 (3)132 (3)
N5-H5···N1i0.84 (3)2.54 (3)3.274 (4)147 (3)
(Ib)N4-H4···N50.88 (3)2.07 (3)2.786 (3)138 (2)
N5-H5···Cl4ii0.88 (3)2.60 (3)3.292 (2)137 (2)
Symmetry codes: (i) x − 1/2, y, 1/2 − z; (ii) x, −y + 3/2, z + 1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds