Download citation
Download citation
link to html
The crystal structure of the title compound, C38H32, presents a novel framework that combines the functionalities of a 1,6-diarene-substituted 1,2-dihydro­naphthalene (DHN) with a 1,4-distyrylbenzene (DSB) to form a crossed bis-diarene. The lamellar crystal structure is held together by arene-arene inter­actions. While the orientations of the phenyl rings of the DSB units alternate within both the R and the S substructures, the homochiral substructures feature opposing polarity along the long axes of the DHN-based diarenes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106000023/sq3001sup1.cif
Contains datablocks global, I, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106000023/sq3001Isup2.hkl
Contains datablock I

CCDC reference: 299643

Comment top

1,2-Dihydronaphthalenes (DHNs, dialin) (Autrey et al., 2003; Gorner et al., 2002; Laarhoven et al., 1985; Woning et al., 1991) and distyrylbenzenes (DSBs) (Bartholomew & Bazan, 2002; Hong et al., 2005; Lupton et al., 2002; Ma et al., 2002; Wang et al., 2003; Marri et al., 2005; Ni et al., 1999; Sarker et al., 2003; Xie et al., 2005) have been attracting increased attention recently because of their optical and optoelectronic properties, and more efficient syntheses of DHN (Maeda et al., 2002) and DSB (Wong et al., 1998) have been sought because of this interest in their properties. The C38H32 hydrocarbon (I), 1-methyl-1,3,6-triphenyl-7-(2-phenylpropenyl)-1,2- dihydronaphthalene, presents a novel framework that combines the functionalities of a bis-arene substituted DHN and of a substituted DSB.

We have relied on arene–arene interactions of diarenes (Ar–spacer–Ar') as lateral synthons (Lewis et al., 2001) in the design of polar crystals with layers of parallel beloamphiphiles (Glaser, Knotts & Wu, 2003; Glaser, 2006). We have explored 1,4-diphenylazines (Chen et al., 1995; Lewis et al., 2000a,b) 1,4-diphenylbutadienes (Glaser, Dendi et al., 2003) and biphenyls (Glaser et al., 2006). Facile torsion of the arenes along with conformational flexibility of the spacer (Glaser & Chen, 1998) allow for optimization of arene–arene interactions. Hydrocarbon (I) is a crossed bis-diarene with the ability to engage in arene–arene interactions in every direction and various types of arene–arene interactions cooperate in the formation of its lamellar crystal architecture.

We report here the single-crystal structure of (I) (Fig. 1). The systematic name of (I) stresses its `dihydronaphthalene' nature, and the DSB framework also is highlighted in the scheme above. A search of the Cambridge Structural Database (Allen, 2002) suggests that (I) is the first compound with a framework that combines the DSB and DHN moieties.

Distyrylbenzene prefers the E configuration at both double bonds so as to place the terminal arenes B and C far from the central arene A, and the same is true in (I). There is, however, a remarkable conformational difference. While DSB itself prefers the anti conformation with regard to the 1,4-exocyclic bonds of arene A (highlighted in bold in the first scheme below) (Wu et al., 2003), compound (I) crystallizes in the syn conformation. It is not clear whether this conformation is the result of intramolecular features (e.g. steric interference by arene E) or whether this conformation is adopted to improve intermolecular bonding in the crystal structure.

Molecule (I) has a chiral center at atom C1 and the crystal is a racemate (Jacques et al., 1981; Brock et al., 1991). As can be seen in Fig. 2, layers are formed by stacking pure R and S enantiomers in one layer direction and stacks of R and S enantiomers alternate in the second layer direction with double-stack alternation. In addition to the two neighbors with the same configuration in the stack, every molecule is surrounded by two S and two R enantiomers (and vice versa) in the neighboring stacks because of this double-stack alternation.

The stacking distance is very long (7.883 Å) and there are no direct stacking interactions. Instead, the stacks are held together by bridging interactions with molecules in the neighboring stacks. All of these intermolecular interactions involve arene–arene bonding, viz. pair interactions involving arenes B and C, and triple interactions involving arenes A, D and E. The long axes of the DSB units are more or less perpendicular to the layer surfaces. For a molecule with a given B-to-C direction, all of its next neighbors in neighboring stacks are oriented in the opposite direction (see Fig. 3). The homochiral double-stacks together with this alternation of the orientations results in the four-stack repeating unit {RCRBSCSB}. In contrast, the D-to-E direction is the same for all the molecules in every homochiral double stack and the D-to-E direction alternates between the homochiral double stacks. While the DSB units alternate within both the R and the S substructures, the homochiral substructures feature opposing polarity along the long axes of the DHN-based diarenes.

Experimental top

The crude product of the synthesis (Sui & Glaser, 2006) was purified by crystallization induced by slow diffusion of hexanes into an ethyl acetate solution. Single crystals suitable for X-ray analysis were grown by repeated recrystallization at room temperature.

Refinement top

H atoms were placed at calculated positions and included in the refinement using a riding model.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid representation of (I). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Homochiral stacks of R and S enantiomers (shown in green and orange in the online version), respectively, alternate in layers of (I).
[Figure 3] Fig. 3. The D-to-E orientation and polarity of the R and S substructures. A Newman-type projection of a layer of (±)-(I); arenes B and C are shown side-on, and arenes D and E as circles; a smaller font size (and in the online version also fainter colors) indicate arenes D and E that are farther away.
(±)-1-Methyl-1,3,6-triphenyl-7-(2-phenylpropenyl)-1,2-dihydronaphthalene top
Crystal data top
C38H32F(000) = 1040
Mr = 488.64Dx = 1.198 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 6938 reflections
a = 16.7069 (7) Åθ = 2.5–27.1°
b = 7.8826 (3) ŵ = 0.07 mm1
c = 21.2218 (8) ÅT = 173 K
β = 104.129 (1)°Prism, colorless
V = 2710.23 (18) Å30.35 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5965 independent reflections
Radiation source: fine-focus sealed tube4592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(Blessing, 1996)
h = 2121
Tmin = 0.92, Tmax = 0.98k = 1010
18791 measured reflectionsl = 2721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6288P]
where P = (Fo2 + 2Fc2)/3
5965 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C38H32V = 2710.23 (18) Å3
Mr = 488.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.7069 (7) ŵ = 0.07 mm1
b = 7.8826 (3) ÅT = 173 K
c = 21.2218 (8) Å0.35 × 0.35 × 0.25 mm
β = 104.129 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5965 independent reflections
Absorption correction: multi-scan
(Blessing, 1996)
4592 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.030
18791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5965 reflectionsΔρmin = 0.15 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22531 (7)0.47276 (16)0.14738 (6)0.0251 (3)
C20.16964 (7)0.62448 (16)0.15015 (6)0.0253 (3)
C30.18496 (8)0.77633 (16)0.11942 (6)0.0266 (3)
C40.25732 (8)0.78667 (17)0.09249 (7)0.0294 (3)
H40.25990.87340.06190.035*
C50.32049 (8)0.67671 (17)0.10976 (6)0.0276 (3)
C60.31366 (8)0.54349 (17)0.15962 (6)0.0282 (3)
H6A0.32960.59400.20360.034*
H6B0.35240.44950.15790.034*
C70.10500 (8)0.62126 (17)0.18047 (6)0.0266 (3)
H70.09460.51920.20090.032*
C80.05423 (8)0.76219 (17)0.18231 (6)0.0260 (3)
C90.06573 (8)0.90904 (16)0.14728 (6)0.0264 (3)
C100.13100 (8)0.91225 (17)0.11670 (6)0.0283 (3)
H100.13881.01090.09320.034*
C110.20047 (8)0.38731 (16)0.07999 (6)0.0261 (3)
C120.25787 (9)0.3024 (2)0.05407 (7)0.0389 (4)
H120.31410.30130.07750.047*
C130.23506 (10)0.2191 (2)0.00514 (8)0.0461 (4)
H130.27550.16130.02170.055*
C140.15370 (10)0.2200 (2)0.04007 (7)0.0432 (4)
H140.13800.16460.08100.052*
C150.09551 (10)0.30212 (19)0.01494 (7)0.0413 (4)
H150.03930.30230.03840.050*
C160.11875 (8)0.38436 (18)0.04440 (7)0.0338 (3)
H160.07790.44000.06120.041*
C170.22143 (8)0.33882 (18)0.19915 (7)0.0306 (3)
H17A0.23670.39100.24230.046*
H17B0.25990.24640.19690.046*
H17C0.16520.29360.19120.046*
C180.39515 (8)0.68333 (17)0.08358 (7)0.0303 (3)
C190.46815 (8)0.60006 (19)0.11420 (7)0.0357 (3)
H190.47030.53740.15280.043*
C200.53780 (9)0.6070 (2)0.08933 (8)0.0413 (4)
H200.58680.55000.11120.050*
C210.53595 (10)0.6961 (2)0.03322 (8)0.0444 (4)
H210.58350.70110.01620.053*
C220.46440 (10)0.7780 (2)0.00191 (9)0.0473 (4)
H220.46280.83960.03680.057*
C230.39489 (10)0.7713 (2)0.02630 (8)0.0409 (4)
H230.34600.82760.00370.049*
C240.01344 (8)0.74966 (16)0.21561 (6)0.0270 (3)
H240.06380.80300.19450.032*
C250.01255 (8)0.67198 (17)0.27222 (6)0.0274 (3)
C260.08955 (8)0.66035 (18)0.29558 (6)0.0291 (3)
C270.10207 (8)0.52268 (19)0.33339 (7)0.0335 (3)
H270.06020.43900.34560.040*
C280.17476 (9)0.5060 (2)0.35351 (8)0.0414 (4)
H280.18270.40990.37830.050*
C290.23536 (10)0.6275 (2)0.33788 (8)0.0466 (4)
H290.28490.61590.35190.056*
C300.22347 (10)0.7665 (2)0.30158 (9)0.0509 (4)
H300.26490.85150.29100.061*
C310.15167 (9)0.7828 (2)0.28053 (8)0.0416 (4)
H310.14460.87890.25540.050*
C320.06290 (8)0.5901 (2)0.31534 (7)0.0356 (3)
H32A0.06010.46700.30880.053*
H32B0.06500.61570.36090.053*
H32C0.11260.63460.30440.053*
C330.01057 (8)1.05973 (16)0.14203 (6)0.0262 (3)
C340.00444 (8)1.13959 (18)0.19661 (7)0.0314 (3)
H340.02021.09630.23860.038*
C350.05489 (9)1.28145 (18)0.19036 (8)0.0357 (3)
H350.06431.33450.22810.043*
C360.09152 (9)1.34600 (18)0.12986 (8)0.0382 (3)
H360.12551.44400.12580.046*
C370.07847 (10)1.26711 (19)0.07521 (8)0.0405 (4)
H370.10441.30960.03330.049*
C380.02762 (9)1.12580 (18)0.08134 (7)0.0343 (3)
H380.01871.07320.04340.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0247 (6)0.0256 (7)0.0256 (7)0.0011 (5)0.0074 (5)0.0015 (5)
C20.0258 (6)0.0259 (7)0.0237 (6)0.0021 (5)0.0049 (5)0.0012 (5)
C30.0291 (6)0.0263 (7)0.0251 (7)0.0019 (5)0.0081 (5)0.0014 (5)
C40.0345 (7)0.0265 (7)0.0301 (7)0.0045 (6)0.0137 (6)0.0008 (6)
C50.0279 (6)0.0284 (7)0.0277 (7)0.0063 (5)0.0094 (5)0.0051 (5)
C60.0249 (6)0.0321 (7)0.0275 (7)0.0009 (5)0.0063 (5)0.0022 (6)
C70.0285 (6)0.0255 (7)0.0261 (7)0.0024 (5)0.0072 (5)0.0028 (5)
C80.0250 (6)0.0285 (7)0.0244 (6)0.0018 (5)0.0059 (5)0.0005 (5)
C90.0279 (6)0.0261 (7)0.0250 (6)0.0011 (5)0.0062 (5)0.0016 (5)
C100.0329 (7)0.0250 (7)0.0282 (7)0.0031 (6)0.0100 (6)0.0017 (5)
C110.0294 (6)0.0230 (7)0.0264 (7)0.0033 (5)0.0076 (5)0.0029 (5)
C120.0324 (7)0.0491 (9)0.0363 (8)0.0037 (7)0.0107 (6)0.0099 (7)
C130.0494 (9)0.0529 (10)0.0419 (9)0.0083 (8)0.0222 (8)0.0138 (8)
C140.0597 (10)0.0401 (9)0.0282 (8)0.0153 (8)0.0078 (7)0.0052 (7)
C150.0431 (8)0.0350 (8)0.0381 (8)0.0049 (7)0.0052 (7)0.0008 (7)
C160.0333 (7)0.0273 (7)0.0380 (8)0.0004 (6)0.0031 (6)0.0006 (6)
C170.0307 (7)0.0310 (7)0.0308 (7)0.0033 (6)0.0091 (6)0.0061 (6)
C180.0305 (7)0.0286 (7)0.0339 (7)0.0066 (6)0.0119 (6)0.0074 (6)
C190.0322 (7)0.0430 (9)0.0334 (8)0.0044 (6)0.0107 (6)0.0056 (6)
C200.0301 (7)0.0507 (10)0.0443 (9)0.0026 (7)0.0117 (7)0.0118 (7)
C210.0378 (8)0.0495 (10)0.0537 (10)0.0100 (7)0.0265 (7)0.0113 (8)
C220.0516 (9)0.0478 (10)0.0515 (10)0.0035 (8)0.0299 (8)0.0042 (8)
C230.0404 (8)0.0405 (9)0.0462 (9)0.0015 (7)0.0192 (7)0.0052 (7)
C240.0252 (6)0.0254 (7)0.0312 (7)0.0009 (5)0.0083 (5)0.0020 (5)
C250.0264 (6)0.0265 (7)0.0299 (7)0.0008 (5)0.0078 (5)0.0009 (5)
C260.0291 (6)0.0320 (7)0.0276 (7)0.0003 (6)0.0092 (5)0.0006 (6)
C270.0342 (7)0.0364 (8)0.0326 (8)0.0027 (6)0.0131 (6)0.0040 (6)
C280.0421 (8)0.0465 (9)0.0409 (9)0.0031 (7)0.0205 (7)0.0071 (7)
C290.0351 (8)0.0600 (11)0.0521 (10)0.0023 (8)0.0248 (7)0.0050 (8)
C300.0392 (8)0.0570 (11)0.0629 (11)0.0169 (8)0.0251 (8)0.0149 (9)
C310.0394 (8)0.0410 (9)0.0495 (9)0.0079 (7)0.0207 (7)0.0124 (7)
C320.0279 (7)0.0464 (9)0.0326 (8)0.0003 (6)0.0074 (6)0.0077 (7)
C330.0260 (6)0.0238 (7)0.0301 (7)0.0041 (5)0.0092 (5)0.0006 (5)
C340.0290 (7)0.0345 (8)0.0306 (7)0.0014 (6)0.0072 (6)0.0014 (6)
C350.0333 (7)0.0334 (8)0.0442 (9)0.0017 (6)0.0169 (6)0.0082 (7)
C360.0346 (7)0.0254 (7)0.0570 (10)0.0027 (6)0.0155 (7)0.0032 (7)
C370.0469 (9)0.0333 (8)0.0404 (9)0.0037 (7)0.0091 (7)0.0114 (7)
C380.0455 (8)0.0291 (7)0.0300 (7)0.0011 (6)0.0128 (6)0.0022 (6)
Geometric parameters (Å, º) top
C1—C21.5250 (18)C19—H190.9500
C1—C171.5365 (18)C20—C211.376 (2)
C1—C61.5395 (17)C20—H200.9500
C1—C111.5432 (18)C21—C221.378 (2)
C2—C71.3856 (17)C21—H210.9500
C2—C31.4160 (18)C22—C231.383 (2)
C3—C101.3923 (18)C22—H220.9500
C3—C41.4602 (18)C23—H230.9500
C4—C51.3455 (19)C24—C251.3453 (18)
C4—H40.9500C24—H240.9500
C5—C181.4851 (18)C25—C261.4902 (18)
C5—C61.5148 (19)C25—C321.5098 (18)
C6—H6A0.9900C26—C271.3954 (19)
C6—H6B0.9900C26—C311.396 (2)
C7—C81.4040 (18)C27—C281.3884 (19)
C7—H70.9500C27—H270.9500
C8—C91.4139 (18)C28—C291.374 (2)
C8—C241.4755 (17)C28—H280.9500
C9—C101.3987 (18)C29—C301.381 (2)
C9—C331.4908 (18)C29—H290.9500
C10—H100.9500C30—C311.384 (2)
C11—C121.3885 (19)C30—H300.9500
C11—C161.3898 (18)C31—H310.9500
C12—C131.386 (2)C32—H32A0.9800
C12—H120.9500C32—H32B0.9800
C13—C141.380 (2)C32—H32C0.9800
C13—H130.9500C33—C381.3914 (19)
C14—C151.379 (2)C33—C341.3938 (18)
C14—H140.9500C34—C351.387 (2)
C15—C161.385 (2)C34—H340.9500
C15—H150.9500C35—C361.378 (2)
C16—H160.9500C35—H350.9500
C17—H17A0.9800C36—C371.379 (2)
C17—H17B0.9800C36—H360.9500
C17—H17C0.9800C37—C381.388 (2)
C18—C191.398 (2)C37—H370.9500
C18—C231.398 (2)C38—H380.9500
C19—C201.3912 (19)
C2—C1—C17112.26 (10)C20—C19—C18121.39 (14)
C2—C1—C6106.15 (10)C20—C19—H19119.3
C17—C1—C6109.52 (10)C18—C19—H19119.3
C2—C1—C11110.46 (10)C21—C20—C19120.27 (15)
C17—C1—C11108.30 (11)C21—C20—H20119.9
C6—C1—C11110.14 (10)C19—C20—H20119.9
C7—C2—C3118.58 (12)C20—C21—C22119.32 (14)
C7—C2—C1123.73 (11)C20—C21—H21120.3
C3—C2—C1117.69 (11)C22—C21—H21120.3
C10—C3—C2118.79 (12)C21—C22—C23120.70 (16)
C10—C3—C4122.03 (12)C21—C22—H22119.6
C2—C3—C4119.17 (12)C23—C22—H22119.7
C5—C4—C3121.78 (12)C22—C23—C18121.30 (15)
C5—C4—H4119.1C22—C23—H23119.3
C3—C4—H4119.1C18—C23—H23119.4
C4—C5—C18123.37 (13)C25—C24—C8127.98 (12)
C4—C5—C6116.68 (11)C25—C24—H24116.0
C18—C5—C6119.94 (12)C8—C24—H24116.0
C5—C6—C1111.45 (10)C24—C25—C26120.19 (12)
C5—C6—H6A109.3C24—C25—C32124.15 (12)
C1—C6—H6A109.3C26—C25—C32115.65 (11)
C5—C6—H6B109.3C27—C26—C31117.51 (12)
C1—C6—H6B109.3C27—C26—C25120.12 (12)
H6A—C6—H6B108.0C31—C26—C25122.37 (12)
C2—C7—C8122.89 (12)C28—C27—C26121.02 (13)
C2—C7—H7118.6C28—C27—H27119.5
C8—C7—H7118.6C26—C27—H27119.5
C7—C8—C9118.20 (11)C29—C28—C27120.56 (14)
C7—C8—C24119.94 (12)C29—C28—H28119.7
C9—C8—C24121.66 (11)C27—C28—H28119.7
C10—C9—C8118.69 (12)C28—C29—C30119.31 (14)
C10—C9—C33119.25 (12)C28—C29—H29120.3
C8—C9—C33122.06 (11)C30—C29—H29120.3
C3—C10—C9122.49 (12)C29—C30—C31120.49 (15)
C3—C10—H10118.8C29—C30—H30119.8
C9—C10—H10118.8C31—C30—H30119.8
C12—C11—C16117.30 (12)C30—C31—C26121.09 (14)
C12—C11—C1121.47 (11)C30—C31—H31119.5
C16—C11—C1121.14 (12)C26—C31—H31119.5
C13—C12—C11121.59 (14)C25—C32—H32A109.5
C13—C12—H12119.2C25—C32—H32B109.5
C11—C12—H12119.2H32A—C32—H32B109.5
C14—C13—C12120.07 (15)C25—C32—H32C109.5
C14—C13—H13120.0H32A—C32—H32C109.5
C12—C13—H13120.0H32B—C32—H32C109.5
C15—C14—C13119.31 (14)C38—C33—C34117.73 (12)
C15—C14—H14120.3C38—C33—C9120.19 (12)
C13—C14—H14120.3C34—C33—C9122.08 (12)
C14—C15—C16120.25 (14)C35—C34—C33120.87 (13)
C14—C15—H15119.9C35—C34—H34119.6
C16—C15—H15119.9C33—C34—H34119.6
C15—C16—C11121.47 (14)C36—C35—C34120.54 (14)
C15—C16—H16119.3C36—C35—H35119.7
C11—C16—H16119.3C34—C35—H35119.7
C1—C17—H17A109.5C35—C36—C37119.45 (14)
C1—C17—H17B109.5C35—C36—H36120.3
H17A—C17—H17B109.5C37—C36—H36120.3
C1—C17—H17C109.5C36—C37—C38120.12 (14)
H17A—C17—H17C109.5C36—C37—H37119.9
H17B—C17—H17C109.5C38—C37—H37119.9
C19—C18—C23117.01 (13)C37—C38—C33121.27 (14)
C19—C18—C5121.79 (13)C37—C38—H38119.4
C23—C18—C5121.19 (13)C33—C38—H38119.4
C17—C1—C2—C718.80 (17)C12—C11—C16—C150.9 (2)
C6—C1—C2—C7138.43 (12)C1—C11—C16—C15177.41 (13)
C11—C1—C2—C7102.18 (14)C4—C5—C18—C19162.43 (13)
C17—C1—C2—C3161.71 (11)C6—C5—C18—C1916.20 (19)
C6—C1—C2—C342.08 (15)C4—C5—C18—C2318.7 (2)
C11—C1—C2—C377.31 (14)C6—C5—C18—C23162.68 (13)
C7—C2—C3—C104.64 (18)C23—C18—C19—C201.1 (2)
C1—C2—C3—C10174.88 (11)C5—C18—C19—C20179.99 (13)
C7—C2—C3—C4174.43 (12)C18—C19—C20—C210.4 (2)
C1—C2—C3—C46.05 (17)C19—C20—C21—C220.1 (2)
C10—C3—C4—C5161.77 (13)C20—C21—C22—C230.0 (3)
C2—C3—C4—C517.27 (19)C21—C22—C23—C180.7 (3)
C3—C4—C5—C18179.85 (12)C19—C18—C23—C221.2 (2)
C3—C4—C5—C61.18 (19)C5—C18—C23—C22179.85 (14)
C4—C5—C6—C140.45 (16)C7—C8—C24—C2540.7 (2)
C18—C5—C6—C1140.84 (12)C9—C8—C24—C25144.45 (14)
C2—C1—C6—C558.45 (13)C8—C24—C25—C26174.88 (12)
C17—C1—C6—C5179.85 (11)C8—C24—C25—C324.2 (2)
C11—C1—C6—C561.14 (14)C24—C25—C26—C27149.57 (14)
C3—C2—C7—C80.29 (19)C32—C25—C26—C2729.59 (18)
C1—C2—C7—C8179.77 (12)C24—C25—C26—C3129.8 (2)
C2—C7—C8—C95.12 (19)C32—C25—C26—C31151.08 (14)
C2—C7—C8—C24179.89 (12)C31—C26—C27—C281.9 (2)
C7—C8—C9—C104.92 (18)C25—C26—C27—C28177.45 (13)
C24—C8—C9—C10179.82 (12)C26—C27—C28—C291.6 (2)
C7—C8—C9—C33175.07 (12)C27—C28—C29—C300.3 (3)
C24—C8—C9—C330.17 (19)C28—C29—C30—C310.7 (3)
C2—C3—C10—C94.81 (19)C29—C30—C31—C260.3 (3)
C4—C3—C10—C9174.23 (12)C27—C26—C31—C301.0 (2)
C8—C9—C10—C30.06 (19)C25—C26—C31—C30178.38 (15)
C33—C9—C10—C3179.94 (12)C10—C9—C33—C3853.49 (17)
C2—C1—C11—C12150.82 (13)C8—C9—C33—C38126.50 (14)
C17—C1—C11—C1285.87 (15)C10—C9—C33—C34126.21 (14)
C6—C1—C11—C1233.88 (17)C8—C9—C33—C3453.79 (18)
C2—C1—C11—C1632.79 (16)C38—C33—C34—C350.87 (19)
C17—C1—C11—C1690.52 (14)C9—C33—C34—C35178.85 (12)
C6—C1—C11—C16149.73 (12)C33—C34—C35—C360.3 (2)
C16—C11—C12—C130.6 (2)C34—C35—C36—C370.8 (2)
C1—C11—C12—C13177.09 (14)C35—C36—C37—C381.2 (2)
C11—C12—C13—C140.4 (2)C36—C37—C38—C330.6 (2)
C12—C13—C14—C151.0 (2)C34—C33—C38—C370.5 (2)
C13—C14—C15—C160.7 (2)C9—C33—C38—C37179.26 (13)
C14—C15—C16—C110.2 (2)

Experimental details

Crystal data
Chemical formulaC38H32
Mr488.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)16.7069 (7), 7.8826 (3), 21.2218 (8)
β (°) 104.129 (1)
V3)2710.23 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1996)
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
18791, 5965, 4592
Rint0.030
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.04
No. of reflections5965
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), CIFTAB in SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds