Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, {[Sm(4-pya)3(H2O)2]·2H2O}n [4-pya is trans-3-(4-pyrid­yl)acrylate, C8H6NO2], each SmIII atom is ten-coordinated and has a bicapped square-antiprismatic coordination geometry. There is a crystallographic center of symmetry at the mid-point of the Sm...Sm line within each [Sm(4-pya)3(H2O)2]2 dimer. Each dimer is inter­connected by two pairs of bridging 4-pya ligands to form a one-dimensional chain. Neighboring chains are connected via hydrogen bonds to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105031471/sq1225sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031471/sq1225Isup2.hkl
Contains datablock I

CCDC reference: 290564

Comment top

Over the past few decades, there has been considerable interest in the coordination chemistry of lanthanide compounds due to their unique structures and their potential applications in advanced materials, such as Ln-doped semiconductors (Taniguchi & Takahei, 1993), and catalytic (Costes et al., 1997; Bencini et al., 1985), magnetic (Lisowski & Starynowicz, 1999), fluorescent (Alexander, 1995; Bermudez et al., 2001), and nonlinear optical materials (Reinhard & Gudel, 2002). As is well known, ligands containing a combination of N and O donor atoms are good building blocks for the formation of various lanthanide coordination compounds (Liang et al., 2000; Pan et al., 2000; Ma et al., 1999; Costes et al., 2002; Ouchi et al., 1988; Kim et al., 2004). Trans-4-pyridylacrylic acid (4-Hpya) is one such interesting multifunctional ligand. Four coordination modes of 4-pya have been observed in the crystal structures of transition metal complexes of this ligand (Evans & Lin, 2001; Zhang et al., 2000; Liu et al., 2001). However, the chemistry of lanthanide complexes of 4-Hpya is less well studied (Zhou et al., 2003). Owing to the large radii and the strong oxophilicity of LnIII ions, we anticipated that coordination of 4-Hpya by LnIII metals may lead to the formation of new compounds with different coordination modes. In this regard, we carried out the reaction of Sm2O3 with 4-Hpya by hydrothermal synthesis. We report here the crystal structure of (I).

Complex (I) crystallizes in space group P-1 and the asymmetric unit contains one-half of an [Sm(4-pya)3(H2O)2]2 dimer and two solvent water molecules. Complex (I) has a one-dimensional chain structure extended along the a axis (Fig. 1). Each repeating [Sm(4-pya)3(H2O)2]2 dimer within the chain is interconnected by four tridentate bridging 4-pya anions. There is a crystallographic center of symmetry at the midpoint of the Sm1···Sm1i [symmetry code: (i) 1 − x, 1 − y, 1 − z] line within the dimer. The Sm1 center coordinates to eight O atoms of 4-pya ligands and two O atoms of water molecules, forming a bicapped square-antiprismatic coordination geometry. The Sm···Sm contact within the dimer is 4.303 (1) Å, shorter than the Sm···Sm separation [4.468 (1) Å] between dimers. Both Sm···Sm contacts are too long to include metal–metal interactions. In the dimer, the 4-pya ligand exhibits two coordination modes. In neither of the two modes does the N atom of the pyridyl group bond to Sm. In one mode, the 4-pya ligand chelates the SmIII center via atoms O1 and O2 to form an SmO2C four-membered ring. In the other mode, 4-pya acts as a tridentate ligand, chelating the Sm1 ion via atoms O3i and O4i and bridging the Sm1i ion via atom O3i. Because of the existence of the different coordination modes of 4-pya, the Sm1—O bond distances range from 2.404 (2) Å to 2.713 (2) Å (Table 1). The Sm1—O1 bond length is comparable to that of the Sm1—O2 bond, implying that atoms O1 and O2 of this 4-pya ligand are almost symmetrically bound to atom Sm1. However, the 4-pya ligand carrying O3i and O4i binds to Sm1 in an unsymmetric way as the Sm1—O3i bond is 0.24 (2) Å longer than the Sm1—O4i bond. It is noted that the Sm1—O3i bond length is the longest among all the Sm1—O bonds. This may be ascribed to the fact that atom O3i strongly binds to atom Sm1i of the same dimer with Sm1i—O3i = 2.487 (2) Å. Interestingly, the structure of (I) differs from that reported in the lanthanide/3-pya complex La[(C8H6NO2)3]n (3-pya is trans-4-pyridylacrylate; Zhou et al., 2003). Each LaIII ion in the latter complex is eight-coordinated with seven O atoms and one N atom from the 3-pya ligand, forming a two-dimensional network.

In the unit cell of (I), the coordinated water molecules interact with the O atoms of the 4-pya ligands to form intramolecular hydrogen bonds (O8—H27···O1 and O7—H25···O2; Table 2). Furthermore, one of the free water molecules and the coordinated water molecules interact with the O and N atoms of the 4-pya ligands of the adjacent chains to afford intermolecular hydrogen bonds, thereby forming a three-dimensional hydrogen-bonded network (Fig. 2).

Experimental top

4-Hpya was prepared as reported previously (Alcalde et al., 1992). Other reagents were obtained from commercial sources and used as received. A mixture of Sm2O3 (0.06 g, 0.17 mmol), 4-Hpya (0.15 g, 1 mmol) and water (10 ml) was heated in a stainless-steel reactor with a Teflon liner at 413 K for 4 d and then cooled slowly to room temperature. The resulting colorless crystals were collected by filtration, washed with ethanol and then air-dried (yield 8%, 0.018 g). The crystal used for the structure determination was obtained directly from the above preparation. Analysis found: C 43.59, H 3.86, N 6.38%; calculated for C48H52Sm2N6O20: C 43.23, H 3.93, N 6.30%. Spectroscopic analysis: IR (KBr, cm−1): 3238 (m), 3045 (m), 1646 (s), 1601 (s), 1544 (s), 1404 (s), 1253 (m), 990 (m), 822 (m), 744 (m), 590 (m).

Refinement top

The positions of the H atoms of the water molecules were located from difference Fourier maps and were refined freely along with isotropic displacement parameters. All other hydrogen atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) view of the dimeric unit and atom labelling for (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z + 1.]
[Figure 2] Fig. 2. A packing diagram (looking down the a axis) for (I), showing the three-dimensional network formed by hydrogen bonds (dotted lines) between the polymeric chains.
catena-Poly[[[diaqua[trans-3-(4-pyridyl)acrylato]samarium(III)]-di-µ-trans- 3-(4-pyridyl)acrylato] dihydrate] top
Crystal data top
[Sm(C8H6NO2)3(H2O)2]·2H2OZ = 2
Mr = 666.83F(000) = 666
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.2459 (8) ÅCell parameters from 5348 reflections
b = 12.6631 (15) Åθ = 3.1–25.3°
c = 14.3286 (16) ŵ = 2.28 mm1
α = 111.782 (2)°T = 193 K
β = 98.825 (2)°Block, colorless
γ = 100.605 (2)°0.35 × 0.15 × 0.10 mm
V = 1324.7 (3) Å3
Data collection top
Rigaku Mercury
diffractometer
4571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 3.1°
/w scansh = 99
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1215
Tmin = 0.678, Tmax = 0.796l = 1717
13165 measured reflections720 standard reflections every 6 reflections
4840 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.9553P]
where P = (Fo2 + 2Fc2)/3
4812 reflections(Δ/σ)max = 0.011
338 parametersΔρmax = 0.95 e Å3
12 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Sm(C8H6NO2)3(H2O)2]·2H2Oγ = 100.605 (2)°
Mr = 666.83V = 1324.7 (3) Å3
Triclinic, P1Z = 2
a = 8.2459 (8) ÅMo Kα radiation
b = 12.6631 (15) ŵ = 2.28 mm1
c = 14.3286 (16) ÅT = 193 K
α = 111.782 (2)°0.35 × 0.15 × 0.10 mm
β = 98.825 (2)°
Data collection top
Rigaku Mercury
diffractometer
4571 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Jacobson, 1998)
Rint = 0.025
Tmin = 0.678, Tmax = 0.796720 standard reflections every 6 reflections
13165 measured reflections intensity decay: none
4840 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02712 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.95 e Å3
4812 reflectionsΔρmin = 0.70 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.781720 (19)0.565469 (13)0.529619 (11)0.01467 (7)
O10.8531 (3)0.4493 (2)0.63592 (17)0.0232 (5)
O20.6943 (3)0.5701 (2)0.69022 (17)0.0201 (5)
O30.5300 (3)0.39386 (19)0.47128 (17)0.0196 (5)
O40.3006 (3)0.2467 (2)0.41408 (19)0.0235 (5)
O50.8865 (3)0.41318 (19)0.41783 (16)0.0187 (5)
O60.9950 (3)0.2866 (2)0.31192 (18)0.0244 (5)
O70.6364 (3)0.5384 (2)0.35607 (17)0.0202 (5)
H250.5329 (18)0.499 (3)0.335 (2)0.024*
H260.679 (3)0.533 (3)0.3049 (16)0.024*
O80.9550 (3)0.6918 (2)0.46166 (18)0.0212 (5)
H271.016 (4)0.658 (3)0.425 (2)0.025*
H280.908 (4)0.732 (3)0.437 (2)0.025*
O91.1028 (5)0.0278 (4)0.2276 (3)0.0782 (12)
H291.142 (7)0.086 (3)0.286 (2)0.094*
H301.017 (5)0.039 (5)0.195 (4)0.094*
O101.1122 (8)0.2044 (5)0.2021 (9)0.183 (4)
H311.168 (13)0.153 (8)0.185 (10)0.220*
H321.033 (10)0.179 (9)0.227 (8)0.220*
N10.7293 (4)0.5283 (4)1.1685 (3)0.0452 (9)
N20.7913 (4)0.1654 (3)0.3829 (2)0.0318 (7)
N30.2294 (7)0.0697 (3)0.0816 (3)0.0696 (14)
C10.7771 (4)0.4988 (3)0.7022 (2)0.0184 (4)
C20.7835 (4)0.4750 (3)0.7964 (3)0.0240 (8)
H20.82370.41050.79980.029*
C30.7338 (4)0.5428 (3)0.8756 (3)0.0250 (8)
H30.69100.60410.86690.030*
C40.7365 (5)0.5351 (3)0.9754 (3)0.0282 (8)
C50.6781 (5)0.6164 (4)1.0492 (3)0.0345 (9)
H50.63960.67641.03510.041*
C60.6766 (6)0.6094 (4)1.1426 (4)0.0506 (6)
H60.63570.66561.19150.061*
C70.7863 (6)0.4511 (4)1.0978 (4)0.0506 (6)
H70.82610.39321.11490.061*
C80.7915 (5)0.4496 (4)1.0014 (3)0.0339 (9)
H80.83170.39150.95380.041*
C90.4602 (4)0.2839 (3)0.4367 (2)0.0184 (4)
C100.5702 (4)0.2026 (3)0.4264 (3)0.0201 (7)
H100.69010.23410.44700.024*
C110.5067 (4)0.0868 (3)0.3892 (3)0.0237 (7)
H110.38680.05710.36440.028*
C120.6071 (4)0.0005 (3)0.3833 (3)0.0235 (7)
C130.5276 (5)0.1110 (3)0.3732 (3)0.0280 (8)
H130.40810.13360.36480.034*
C140.6238 (5)0.1889 (3)0.3753 (3)0.0313 (9)
H140.56760.26360.37120.038*
C150.8654 (5)0.0597 (3)0.3876 (3)0.0328 (9)
H150.98350.04210.39010.039*
C160.7809 (5)0.0259 (3)0.3892 (3)0.0278 (8)
H160.84050.10030.39420.033*
C170.8716 (4)0.3278 (3)0.3312 (2)0.0184 (4)
C180.7059 (4)0.2804 (3)0.2541 (3)0.0221 (7)
H180.60880.30150.27570.027*
C190.6880 (5)0.2100 (3)0.1566 (3)0.0298 (8)
H190.78530.18690.13690.036*
C200.5275 (6)0.1645 (3)0.0754 (3)0.0383 (10)
C210.5313 (7)0.1257 (4)0.0281 (3)0.0522 (13)
H210.63680.13050.04730.063*
C220.3791 (6)0.0798 (4)0.1032 (4)0.0506 (6)
H220.38350.05440.17380.061*
C230.2235 (6)0.1081 (4)0.0171 (3)0.0506 (6)
H230.11540.10250.03310.061*
C240.3689 (6)0.1562 (4)0.0986 (3)0.0462 (11)
H240.36000.18270.16840.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01735 (10)0.01504 (10)0.01451 (10)0.00717 (7)0.00520 (7)0.00734 (7)
O10.0270 (13)0.0300 (13)0.0220 (12)0.0168 (11)0.0130 (10)0.0137 (11)
O20.0222 (12)0.0250 (12)0.0175 (11)0.0104 (10)0.0065 (10)0.0110 (10)
O30.0254 (12)0.0160 (11)0.0199 (12)0.0076 (10)0.0062 (10)0.0087 (10)
O40.0188 (12)0.0206 (12)0.0338 (14)0.0079 (10)0.0074 (10)0.0123 (11)
O50.0219 (12)0.0177 (11)0.0165 (11)0.0084 (9)0.0049 (9)0.0055 (9)
O60.0220 (12)0.0247 (13)0.0242 (13)0.0096 (10)0.0064 (10)0.0056 (10)
O70.0184 (12)0.0286 (13)0.0177 (12)0.0072 (10)0.0064 (10)0.0128 (10)
O80.0231 (12)0.0226 (13)0.0276 (13)0.0132 (10)0.0106 (11)0.0157 (11)
O90.062 (3)0.073 (3)0.060 (3)0.000 (2)0.010 (2)0.002 (2)
O100.079 (4)0.084 (4)0.297 (10)0.043 (3)0.003 (5)0.012 (5)
N10.0357 (19)0.068 (3)0.0241 (17)0.0066 (18)0.0021 (15)0.0218 (18)
N20.048 (2)0.0274 (17)0.0269 (17)0.0247 (15)0.0095 (15)0.0121 (14)
N30.091 (4)0.034 (2)0.052 (3)0.000 (2)0.031 (2)0.0101 (19)
C10.0211 (10)0.0206 (10)0.0171 (9)0.0076 (8)0.0053 (8)0.0105 (8)
C20.0256 (18)0.0321 (19)0.0217 (18)0.0127 (16)0.0070 (15)0.0162 (16)
C30.0268 (18)0.0304 (19)0.0227 (18)0.0081 (16)0.0051 (15)0.0162 (16)
C40.0287 (19)0.036 (2)0.0210 (18)0.0036 (16)0.0060 (16)0.0146 (16)
C50.042 (2)0.037 (2)0.0227 (19)0.0061 (19)0.0101 (18)0.0111 (17)
C60.0548 (15)0.0495 (14)0.0379 (13)0.0026 (12)0.0008 (11)0.0176 (11)
C70.0548 (15)0.0495 (14)0.0379 (13)0.0026 (12)0.0008 (11)0.0176 (11)
C80.034 (2)0.048 (2)0.030 (2)0.0127 (19)0.0109 (17)0.0242 (19)
C90.0211 (10)0.0206 (10)0.0171 (9)0.0076 (8)0.0053 (8)0.0105 (8)
C100.0202 (17)0.0235 (18)0.0235 (17)0.0108 (14)0.0086 (14)0.0136 (15)
C110.0256 (18)0.0217 (18)0.0258 (18)0.0102 (15)0.0067 (15)0.0099 (15)
C120.0310 (19)0.0207 (17)0.0194 (17)0.0121 (15)0.0062 (15)0.0065 (14)
C130.037 (2)0.0231 (18)0.0278 (19)0.0127 (16)0.0125 (17)0.0107 (16)
C140.053 (3)0.0217 (18)0.029 (2)0.0190 (18)0.0167 (19)0.0151 (16)
C150.036 (2)0.034 (2)0.028 (2)0.0196 (18)0.0050 (17)0.0087 (17)
C160.036 (2)0.0189 (17)0.0263 (19)0.0123 (16)0.0030 (16)0.0057 (15)
C170.0211 (10)0.0206 (10)0.0171 (9)0.0076 (8)0.0053 (8)0.0105 (8)
C180.0246 (18)0.0222 (17)0.0205 (17)0.0065 (14)0.0027 (14)0.0107 (15)
C190.037 (2)0.0264 (19)0.0246 (19)0.0089 (17)0.0031 (16)0.0098 (16)
C200.054 (3)0.0217 (19)0.027 (2)0.0034 (18)0.0075 (19)0.0067 (16)
C210.080 (4)0.037 (2)0.025 (2)0.011 (2)0.006 (2)0.0066 (19)
C220.0548 (15)0.0495 (14)0.0379 (13)0.0026 (12)0.0008 (11)0.0176 (11)
C230.0548 (15)0.0495 (14)0.0379 (13)0.0026 (12)0.0008 (11)0.0176 (11)
C240.045 (3)0.038 (2)0.040 (2)0.002 (2)0.012 (2)0.013 (2)
Geometric parameters (Å, º) top
Sm1—O52.404 (2)C3—C41.465 (5)
Sm1—O72.457 (2)C3—H30.9500
Sm1—O4i2.471 (2)C4—C51.393 (5)
Sm1—O32.488 (2)C4—C81.396 (5)
Sm1—O22.499 (2)C5—C61.376 (6)
Sm1—O82.508 (2)C5—H50.9500
Sm1—O6ii2.519 (2)C6—H60.9500
Sm1—O12.557 (2)C7—C81.381 (6)
Sm1—O5ii2.659 (2)C7—H70.9500
Sm1—O3i2.712 (2)C8—H80.9500
O1—C11.254 (4)C9—C101.475 (4)
O2—C11.272 (4)C10—C111.327 (5)
O3—C91.273 (4)C10—H100.9500
O3—Sm1i2.712 (2)C11—C121.473 (5)
O4—C91.259 (4)C11—H110.9500
O4—Sm1i2.471 (2)C12—C131.387 (5)
O5—C171.278 (4)C12—C161.393 (5)
O5—Sm1ii2.659 (2)C13—C141.380 (5)
O6—C171.249 (4)C13—H130.9500
O6—Sm1ii2.519 (2)C14—H140.9500
O7—H250.848 (10)C15—C161.387 (5)
O7—H260.848 (10)C15—H150.9500
O8—H270.84 (3)C16—H160.9500
O8—H280.84 (4)C17—C181.480 (5)
O9—H290.85 (3)C18—C191.316 (5)
O9—H300.85 (5)C18—H180.9500
O10—H310.86 (12)C19—C201.479 (5)
O10—H320.85 (10)C19—H190.9500
N1—C71.336 (6)C20—C211.385 (6)
N1—C61.334 (6)C20—C241.393 (6)
N2—C141.337 (5)C21—C221.387 (6)
N2—C151.338 (5)C21—H210.9500
N3—C231.327 (6)C22—H220.9500
N3—C221.313 (7)C23—C241.394 (6)
C1—C21.483 (4)C23—H230.9500
C2—C31.320 (5)C24—H240.9500
C2—H20.9500
O5—Sm1—O777.38 (7)C3—C2—C1120.5 (3)
O5—Sm1—O4i154.64 (8)C3—C2—H2119.8
O7—Sm1—O4i83.76 (8)C1—C2—H2119.8
O5—Sm1—O379.83 (7)C2—C3—C4128.0 (3)
O7—Sm1—O374.40 (7)C2—C3—H3116.0
O4i—Sm1—O3111.35 (7)C4—C3—H3116.0
O5—Sm1—O2125.51 (7)C5—C4—C8117.0 (3)
O7—Sm1—O2135.99 (7)C5—C4—C3118.8 (3)
O4i—Sm1—O279.84 (7)C8—C4—C3124.2 (3)
O3—Sm1—O274.19 (7)C6—C5—C4119.7 (4)
O5—Sm1—O883.36 (7)C6—C5—H5120.2
O7—Sm1—O867.87 (8)C4—C5—H5120.2
O4i—Sm1—O873.84 (7)N1—C6—C5123.8 (5)
O3—Sm1—O8141.18 (7)N1—C6—H6118.1
O2—Sm1—O8141.99 (8)C5—C6—H6118.1
O5—Sm1—O6ii113.49 (7)N1—C7—C8124.5 (5)
O7—Sm1—O6ii141.26 (8)N1—C7—H7117.7
O4i—Sm1—O6ii72.14 (8)C8—C7—H7117.7
O3—Sm1—O6ii142.43 (7)C7—C8—C4118.6 (4)
O2—Sm1—O6ii69.65 (7)C7—C8—H8120.7
O8—Sm1—O6ii76.38 (8)C4—C8—H8120.7
O5—Sm1—O175.81 (7)O4—C9—O3120.1 (3)
O7—Sm1—O1141.76 (8)O4—C9—C10121.3 (3)
O4i—Sm1—O1128.45 (7)O3—C9—C10118.6 (3)
O3—Sm1—O174.43 (7)C11—C10—C9122.0 (3)
O2—Sm1—O151.50 (7)C11—C10—H10119.0
O8—Sm1—O1134.11 (7)C9—C10—H10119.0
O6ii—Sm1—O175.36 (8)C10—C11—C12125.4 (3)
O5—Sm1—O5ii63.65 (8)C10—C11—H11117.3
O7—Sm1—O5ii122.22 (7)C12—C11—H11117.3
O4i—Sm1—O5ii115.00 (7)C13—C12—C16117.5 (3)
O3—Sm1—O5ii131.89 (7)C13—C12—C11119.4 (3)
O2—Sm1—O5ii101.70 (7)C16—C12—C11123.1 (3)
O8—Sm1—O5ii66.80 (7)C14—C13—C12119.4 (4)
O6ii—Sm1—O5ii50.04 (7)C14—C13—H13120.3
O1—Sm1—O5ii67.31 (7)C12—C13—H13120.3
O5—Sm1—O3i133.91 (7)N2—C14—C13123.9 (3)
O7—Sm1—O3i69.11 (7)N2—C14—H14118.1
O4i—Sm1—O3i49.83 (7)C13—C14—H14118.1
O3—Sm1—O3i61.58 (8)N2—C15—C16124.2 (4)
O2—Sm1—O3i69.10 (7)N2—C15—H15117.9
O8—Sm1—O3i110.69 (7)C16—C15—H15117.9
O6ii—Sm1—O3i112.47 (7)C15—C16—C12118.7 (3)
O1—Sm1—O3i113.26 (7)C15—C16—H16120.7
O5ii—Sm1—O3i162.44 (7)C12—C16—H16120.7
C1—O1—Sm192.57 (18)O6—C17—O5120.5 (3)
C1—O2—Sm194.83 (18)O6—C17—C18121.0 (3)
C9—O3—Sm1152.5 (2)O5—C17—C18118.5 (3)
C9—O3—Sm1i89.06 (18)C19—C18—C17122.4 (3)
Sm1—O3—Sm1i118.42 (8)C19—C18—H18118.8
C9—O4—Sm1i100.81 (19)C17—C18—H18118.8
C17—O5—Sm1151.5 (2)C18—C19—C20124.7 (4)
C17—O5—Sm1ii90.87 (18)C18—C19—H19117.7
Sm1—O5—Sm1ii116.35 (8)C20—C19—H19117.7
C17—O6—Sm1ii98.24 (19)C21—C20—C24117.7 (4)
Sm1—O7—H25116 (2)C21—C20—C19120.0 (4)
Sm1—O7—H26128 (2)C24—C20—C19122.3 (4)
H25—O7—H26110.1 (16)C20—C21—C22119.1 (5)
Sm1—O8—H27114 (2)C20—C21—H21120.4
Sm1—O8—H28119 (2)C22—C21—H21120.4
H27—O8—H28111.5 (17)N3—C22—C21123.4 (5)
H29—O9—H30109 (5)N3—C22—H22118.3
H31—O10—H32109 (11)C21—C22—H22118.3
C7—N1—C6116.3 (4)N3—C23—C24122.9 (5)
C14—N2—C15116.2 (3)N3—C23—H23118.6
C23—N3—C22118.3 (4)C24—C23—H23118.6
O1—C1—O2120.9 (3)C20—C24—C23118.7 (4)
O1—C1—C2120.1 (3)C20—C24—H24120.7
O2—C1—C2119.0 (3)C23—C24—H24120.7
O5—Sm1—O1—C1167.9 (2)Sm1—O1—C1—C2174.9 (3)
O7—Sm1—O1—C1121.1 (2)Sm1—O2—C1—O15.0 (3)
O4i—Sm1—O1—C120.5 (2)Sm1—O2—C1—C2174.8 (3)
O3—Sm1—O1—C184.69 (19)O1—C1—C2—C3166.5 (3)
O2—Sm1—O1—C12.72 (18)O2—C1—C2—C313.2 (5)
O8—Sm1—O1—C1126.41 (19)C1—C2—C3—C4177.8 (3)
O6ii—Sm1—O1—C172.72 (19)C2—C3—C4—C5179.8 (4)
O5ii—Sm1—O1—C1125.1 (2)C2—C3—C4—C81.4 (6)
O3i—Sm1—O1—C135.8 (2)C8—C4—C5—C60.1 (6)
O5—Sm1—O2—C120.5 (2)C3—C4—C5—C6178.8 (4)
O7—Sm1—O2—C1131.08 (19)C7—N1—C6—C50.2 (7)
O4i—Sm1—O2—C1159.1 (2)C4—C5—C6—N10.3 (7)
O3—Sm1—O2—C185.14 (19)C6—N1—C7—C80.9 (7)
O8—Sm1—O2—C1112.6 (2)N1—C7—C8—C41.1 (7)
O6ii—Sm1—O2—C184.48 (19)C5—C4—C8—C70.5 (6)
O1—Sm1—O2—C12.69 (18)C3—C4—C8—C7179.4 (4)
O5ii—Sm1—O2—C145.40 (19)Sm1i—O4—C9—O34.5 (3)
O3i—Sm1—O2—C1150.2 (2)Sm1i—O4—C9—C10174.0 (2)
O5—Sm1—O3—C924.9 (4)Sm1—O3—C9—O4174.9 (3)
O7—Sm1—O3—C9104.5 (4)Sm1i—O3—C9—O44.0 (3)
O4i—Sm1—O3—C9178.8 (4)Sm1—O3—C9—C106.5 (6)
O2—Sm1—O3—C9106.7 (4)Sm1i—O3—C9—C10174.5 (3)
O8—Sm1—O3—C990.7 (4)O4—C9—C10—C112.7 (5)
O6ii—Sm1—O3—C990.6 (4)O3—C9—C10—C11178.8 (3)
O1—Sm1—O3—C953.1 (4)C9—C10—C11—C12175.4 (3)
O5ii—Sm1—O3—C915.0 (5)C10—C11—C12—C13160.5 (3)
O3i—Sm1—O3—C9178.8 (5)C10—C11—C12—C1618.3 (6)
O5—Sm1—O3—Sm1i153.94 (10)C16—C12—C13—C143.6 (5)
O7—Sm1—O3—Sm1i74.34 (9)C11—C12—C13—C14175.3 (3)
O4i—Sm1—O3—Sm1i2.35 (11)C15—N2—C14—C130.6 (5)
O2—Sm1—O3—Sm1i74.44 (9)C12—C13—C14—N22.6 (6)
O8—Sm1—O3—Sm1i88.18 (13)C14—N2—C15—C162.6 (5)
O6ii—Sm1—O3—Sm1i90.53 (13)N2—C15—C16—C121.4 (6)
O1—Sm1—O3—Sm1i128.09 (10)C13—C12—C16—C151.8 (5)
O5ii—Sm1—O3—Sm1i166.11 (7)C11—C12—C16—C15177.1 (3)
O3i—Sm1—O3—Sm1i0.0Sm1ii—O6—C17—O56.3 (3)
O7—Sm1—O5—C1725.2 (4)Sm1ii—O6—C17—C18172.7 (3)
O4i—Sm1—O5—C1768.1 (5)Sm1—O5—C17—O6169.2 (3)
O3—Sm1—O5—C1751.0 (4)Sm1ii—O5—C17—O65.9 (3)
O2—Sm1—O5—C17113.1 (4)Sm1—O5—C17—C189.9 (6)
O8—Sm1—O5—C1793.9 (4)Sm1ii—O5—C17—C18173.1 (3)
O6ii—Sm1—O5—C17165.9 (4)O6—C17—C18—C1913.1 (5)
O1—Sm1—O5—C17127.3 (4)O5—C17—C18—C19166.0 (3)
O5ii—Sm1—O5—C17161.3 (5)C17—C18—C19—C20177.2 (3)
O3i—Sm1—O5—C1718.5 (5)C18—C19—C20—C21158.2 (4)
O7—Sm1—O5—Sm1ii136.10 (10)C18—C19—C20—C2423.3 (6)
O4i—Sm1—O5—Sm1ii93.21 (18)C24—C20—C21—C220.6 (6)
O3—Sm1—O5—Sm1ii147.77 (10)C19—C20—C21—C22178.0 (4)
O2—Sm1—O5—Sm1ii85.68 (11)C23—N3—C22—C211.7 (7)
O8—Sm1—O5—Sm1ii67.37 (9)C20—C21—C22—N30.7 (7)
O6ii—Sm1—O5—Sm1ii4.63 (11)C22—N3—C23—C241.4 (7)
O1—Sm1—O5—Sm1ii71.42 (9)C21—C20—C24—C230.9 (6)
O5ii—Sm1—O5—Sm1ii0.0C19—C20—C24—C23177.6 (4)
O3i—Sm1—O5—Sm1ii179.81 (7)N3—C23—C24—C200.1 (7)
Sm1—O1—C1—O24.9 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H25···O2i0.85 (1)1.83 (1)2.675 (3)171 (3)
O7—H26···N1iii0.85 (1)2.04 (1)2.870 (4)166 (3)
O8—H27···O1ii0.84 (3)1.93 (3)2.741 (3)162 (3)
O8—H28···N2iv0.84 (4)2.05 (4)2.883 (4)177 (3)
O9—H29···O4v0.85 (3)2.17 (2)2.997 (4)163 (6)
O9—H30···N3vi0.85 (5)2.22 (4)2.913 (6)138 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sm(C8H6NO2)3(H2O)2]·2H2O
Mr666.83
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.2459 (8), 12.6631 (15), 14.3286 (16)
α, β, γ (°)111.782 (2), 98.825 (2), 100.605 (2)
V3)1324.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.678, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
13165, 4840, 4571
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.18
No. of reflections4812
No. of parameters338
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.70

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Sm1—O52.404 (2)Sm1—O82.508 (2)
Sm1—O72.457 (2)Sm1—O6ii2.519 (2)
Sm1—O4i2.471 (2)Sm1—O12.557 (2)
Sm1—O32.488 (2)Sm1—O5ii2.659 (2)
Sm1—O22.499 (2)Sm1—O3i2.712 (2)
O5—Sm1—O777.38 (7)O4i—Sm1—O3111.35 (7)
O5—Sm1—O4i154.64 (8)O5—Sm1—O883.36 (7)
O7—Sm1—O4i83.76 (8)O5—Sm1—O175.81 (7)
O5—Sm1—O379.83 (7)O1—Sm1—O5ii67.31 (7)
O7—Sm1—O374.40 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H25···O2i0.848 (10)1.834 (10)2.675 (3)171 (3)
O7—H26···N1iii0.848 (10)2.040 (14)2.870 (4)166 (3)
O8—H27···O1ii0.84 (3)1.93 (3)2.741 (3)162 (3)
O8—H28···N2iv0.84 (4)2.05 (4)2.883 (4)177 (3)
O9—H29···O4v0.85 (3)2.17 (2)2.997 (4)163 (6)
O9—H30···N3vi0.85 (5)2.22 (4)2.913 (6)138 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds