Download citation
Download citation
link to html
The mol­ecules of 2-benzoyl-1-benzofuran, C15H10O2, (I), inter­act through double C-H...O hydrogen bonds, forming dimers that are further linked by C-H...O, C-H...[pi] and [pi]-[pi] inter­actions, resulting in a three-dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5-bromo-1-benzofuran-2-yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C-H...O and C-H...[pi] inter­actions and Br...Br contacts to form sheets. The stability of the mol­ecular packing in 3-mesit­yl-3-methyl­cyclo­but­yl 3-methyl­naphtho[1,2-b]furan-2-yl ketone, C28H28O2, (III), arises from C-H...[pi] and [pi]-[pi] stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105016185/sq1211sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016185/sq1211Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016185/sq1211IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016185/sq1211IIIsup4.hkl
Contains datablock III

CCDC references: 278563; 278564; 278565

Comment top

Conventional `strong and directional' hydrogen bonds, such as O—H···O, N—H···O and O—H···N, have long been recognized as being of fundamental importance in determining the supramolecular structure of organic solids (Desiraju & Steiner, 1999). In molecules lacking these hydrogen-bond donors and acceptors, other types of weak and less directional forces, such as C—H···O, C—H···π and ππ interactions, become important in generating supramolecular architectures (Desiraju & Steiner, 1999; Hunder & Sanders, 1990; Nishio et al., 1998; Umezawa et al., 1998; Calhorda, 2000). Since many natural benzofurans have physiological, pharmacological and toxic properties, there is continuing interest in their synthesis (Kappe et al., 1997). Various benzofuran derivatives have been investigated as estrogen receptor ligands, because selective estrogen receptor modulators such as ralixofene have emerged as potential therapeutics for the prevention and treatment of osteoporosis (Sato et al., 1999; Smith et al., 2002). Amiodarone is a well known mitocondrial toxin containing a benzofuran ring. Amiodarone is used in the treatment and prophylaxis of both ventricular and superventricular arrhythmias, particularly in patients with heart insuffiency, because it has no significant negative inotropic effect (Spaniol et al., 2001). Although the synthesis of 2-benzoylbenzofuran, C15H10O2, (I), is known (Demirayak et al., 2002), a CSD literature search showed that its structural characterization has not been performed yet. In addition to (I), we report the molecular and supramolecular structures of two new furan derivatives, namely bis(5-bromo-benzofuran-2-yl)ketone, C17H8Br2O3, (II), and 1-(3-mesityl-3-methylcyclobutyl)(3-methylnaphtho[1,2-b]furan-2-yl)ketone, C28H28O2, (III).

Views of the molecular structures of compounds (I)–(III), including the atom-numbering scheme, are shown in Figs. 1–3. Selected bond distances and angles are listed in Tables 1–3. Compounds (I)–(III) consist mainly of a furan-2-yl moiety connected to another fragment by a carbonyl group. The C O bond distances and the C—C—C bond angles between two fragments are similar in all three compounds. The carbonyl group is known to coordinate to metal ions rather easily, and the presence of the furan O atom adjacent to the carbonyl group in (I)–(III) makes these compounds potential bidentate chelating agents, as reported for lanthanum (Benassi et al. 1987). In (I), the fused benzofuran ring is essentially planar and makes a dihedral angle of 46.15 (3)° with the planar benzoyl ring. The conformation of compound (I) is similar to that of corresponding benzoylbenzofuran derivatives (Benassi et al., 1987; Pei et al., 2005). The crystal packing of (I) is governed by a set of weak intermolecular interactions. A dimer is formed by a C2—H2A···O1 hydrogen bond and the dimeric units are held together by a C7—H7A···O2 hydrogen bond, two C—H···π interactions [C5—H5A···Cg2i = 3.28 Å and C15—H15A···Cg1ii = 2.80 Å, where Cg1 and Cg2 correspond to the centroids of the phenyl rings C1–C6 and C10–C15; symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, 1 − y, −z], and two ππ interactions [Cg1···Cg1i = 3.561 (1) Å and Cg2···Cg2ii = 3.776 (1) Å; symmetry codes: (i) −x, −y, −z; (ii) 1 − x,1 − y,1 − z], resulting in a three-dimensional supramolecular network (Fig. 4).

The molecules of (II) contain two symmetry-related planar bromobenzofuran rings attached to the carbonyl group (C9O2), being situated on the twofold rotation axis. The dihedral angle between the planes of the two equivalent bromobenzofuran ring moieties is 32.70 (4)°. In the packing of (II), the molecules are linked by a combination of a C—H···O hydrogen bond and a C—H···π interaction [C2—H2A···Cgi = 2.87 Å; Cg is the centroid of the C1–C6 ring; symmetry code: (i) x, 1 − y,-1/2 + z]. Each molecule accepts two hydrogen bonds and donates two hydrogen bonds, thus forming chains running parallel to the crystallographic b axis. These chains are further linked by relatively short Br···Br contacts [Br···Bri = 3.499 (2) Å; symmetry code: (i) 1/2 − x, 5/2 − y, −z], resulting in a two-dimensional layer architecture (Fig. 5). The C—Br···Br angle is 146.85 (12) Å, and the Br···Br interactions play a crucial role in determining the crystal packing and compete successfully with other kinds of weak intermolecular interactions.

Compound (III) consists of a fused naphthofuran moiety (O2/C16–C27), a cyclobutane ring (C7/C9–C11) and a mesityl group (C1–C6). The naphthofuran and mesityl ring systems are essentially planar, and the dihedral angle between their planes is 81.86 (3)°, differing from the values reported for 1-(1-benzofuran-2-yl)-2-mesitylethanone [89.08 (4)°; Arici et al., 2004] and (benzofuran-2-yl)(3-methyl-3-phenyl-cyclobutyl)methanone [73.63 (6)°; Yuksektepe et al., 2004]. These differences may be explained by the presence of the different substituents in these compounds. The cyclobutane ring significantly deviates from planarity, with a puckering parameter (q2) of 0.3972 (4) Å, and this finding is consistent with a similar benzofuran derivative containing a cyclobutane ring (Yuksektepe et al., 2004). However, a nearly planar cyclobutane ring was also reported by Ozdemir et al. (2004). The dihedral angles between the planes of the naphthofuran/cyclobutane and mesityl/cyclobutane ring systems are 52.15 (5) and 38.26 (8)°, respectively. In contrast to compounds (I) and (II), compound (III) does not exhibit C—H···O hydrogen bonds, and molecules of (III) are held together by C—H···π and ππ interactions. There are three C—H···π interactions between the H atoms of the methyl groups and phenyl rings [C13—H13A···Cg1i = 3.20 Å, C14—H14B···Cg1ii = 2.73 Å and C28—H28A···Cg2iii = 2.87 Å, where Cg1 and Cg2 are the C1–C6 and C21–C26 rings, respectively; symmetry codes: (i) −x, 1/2 + y, 1/2 − z; (ii) 1 − x, −1/2 + y, 1/2 − z; (iii) −x, 1 − y, −z]. In (III), the packing of the molecules is additionally reinforced by a ππ stacking interaction between adjacent naphthalene rings, with a Cg1···Cg1i distance of 3.695 (1) Å [symmetry code: (i) −x, 1 − y, −z].

Experimental top

A mixture of salicylaldehyde (12.21 g, 0.1 mol) and potassium carbonate (20.70 g, 0.15 mol) was strirred in dry acetone (250 ml) at room temperature for 2 h. A solution of phenacylbromide (19.90 g, 0.1 mol) in dry acetone (20 ml) was added to this mixture. The resulting solution was poured into water (250 ml) and reprecipitated twice from water. Suitable crystals of (I) were obtained by recrystallizing of the precipitate from acetone (yield 19.60 g, 89.1%). A mixture of 5-bromo-2-hydroxybenzaldehyde (20.10 g, 0.1 mol) and potassium carbonate (20.70 g, 0.15 mol) was stirred in dry acetone (250 ml) at room temperature for 2 h. A solution of 1,3-dichloroacetone (6.35 g, 0.05 mol) in dry acetone (20 ml) was added and this mixture was poured into water (250 ml). The separated solid was filtered, washed with water and recrystallized from THF to give (II) (yield 33.8 g, 80.5%). Hydroxynaphthophenone (1.86 g, 10 mmol), potassium carbonate (2.07 g, 15 mmol) and dry tetrahydrofuran (100 ml) were placed in a 500 ml two-necked flask fitted with a reflux condenser, and the mixture was stirred for 1 h at room temperature. To this solution, a solution of 1-mesityl-1-methyl-3-(2-chloro-1-oxoethyl)cyclobutane (2.64 g, 10 mmol) in acetonitrile (100 ml) was added dropwise over a period of about 30 min and the mixture was subsequently refluxed for 4 h. The progress of the reaction was monitored by IR spectroscopy. The mixture was allowed to cool to room temperature, and was poured into water (500 ml) and reprecipitated twice from water. The solid was filtered and recrystallized from tetrahydrofuran to obtain crystals of (III) (yield 2.85 g, 71.96%).

Refinement top

All H atoms were refined with a riding model, with C—H distances of 0.95–1.00 Å and Uiso(H) values of 1.2 Ueq(C).

Computing details top

For all compounds, data collection: COLLECT (Bruker, 2002); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme (50% probability displacement ellipsoids).
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-labelling scheme (50% probability displacement ellipsoids).
[Figure 4] Fig. 4. A packing diagram of (I). C—H···O interactions are indicated by double dashed lines and C—H···.π interactions by single dashed lines, while ππ interactions are shown as double narrow lines. O atoms are shown with octant shading in all packing diagrams.
[Figure 5] Fig. 5. A packing diagram of (II). C—H···O interactions are represented as double dashed lines and Br···Br contacts are indicated by single dashed lines. [Symmetry code: (i) 1 − x, y, 1/2 − z.]
[Figure 6] Fig. 6. A packing diagram of (III), viewed along the crystallographic b axis. C—H···π interactions are indicated by double dashed lines, while ππ interactions are shown as double narrow lines.
(I) 2-Benzoylbenzofuran top
Crystal data top
C15H10O2Z = 2
Mr = 222.23F(000) = 232
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 6.1028 (5) ÅCell parameters from 36 reflections
b = 8.8010 (4) Åθ = 6.0–20.0°
c = 10.1195 (6) ŵ = 0.09 mm1
α = 97.700 (4)°T = 100 K
β = 93.710 (6)°Prism, colorless
γ = 101.073 (6)°0.34 × 0.31 × 0.28 mm
V = 526.31 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2049 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 27.9°, θmin = 3.4°
Detector resolution: 9 pixels mm-1h = 88
ϕ and ω scansk = 1111
17534 measured reflectionsl = 1313
2498 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1374P]
where P = (Fo2 + 2Fc2)/3
2498 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H10O2γ = 101.073 (6)°
Mr = 222.23V = 526.31 (6) Å3
Triclinic, P1Z = 2
a = 6.1028 (5) ÅMo Kα radiation
b = 8.8010 (4) ŵ = 0.09 mm1
c = 10.1195 (6) ÅT = 100 K
α = 97.700 (4)°0.34 × 0.31 × 0.28 mm
β = 93.710 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2049 reflections with I > 2σ(I)
17534 measured reflectionsRint = 0.070
2498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2498 reflectionsΔρmin = 0.30 e Å3
154 parameters
Special details top

Experimental. ϕ- and ω-rotations with 2.0 ° and 16 sec per frame ?

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41842 (13)0.20228 (9)0.03269 (8)0.0151 (2)
O20.73731 (14)0.39489 (11)0.20751 (9)0.0213 (2)
C10.23671 (19)0.14212 (14)0.05891 (11)0.0135 (2)
C20.2104 (2)0.00550 (14)0.14903 (12)0.0166 (3)
H2A0.32110.05710.15340.020*
C30.0128 (2)0.03411 (14)0.23233 (12)0.0174 (3)
H3A0.01280.12630.29660.021*
C40.1513 (2)0.05844 (14)0.22445 (12)0.0176 (3)
H4A0.28450.02780.28380.021*
C50.12279 (19)0.19296 (14)0.13220 (12)0.0158 (3)
H5A0.23500.25430.12660.019*
C60.07652 (19)0.23638 (13)0.04711 (11)0.0133 (2)
C70.16727 (19)0.36055 (14)0.06015 (11)0.0138 (2)
H7A0.09900.44440.09360.017*
C80.37018 (19)0.33510 (13)0.10469 (12)0.0137 (3)
C90.54826 (19)0.42318 (14)0.20613 (12)0.0142 (3)
C100.49519 (19)0.54872 (13)0.30610 (11)0.0133 (3)
C110.28860 (19)0.53465 (14)0.36038 (11)0.0145 (3)
H11A0.17200.44640.32900.017*
C120.2544 (2)0.64960 (14)0.45996 (12)0.0169 (3)
H12A0.11490.63920.49790.020*
C130.4229 (2)0.78001 (14)0.50464 (12)0.0176 (3)
H13A0.39840.85850.57290.021*
C140.6274 (2)0.79578 (14)0.44957 (12)0.0175 (3)
H14A0.74170.88600.47900.021*
C150.6644 (2)0.67989 (14)0.35169 (12)0.0157 (3)
H15A0.80540.68970.31550.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0140 (4)0.0155 (4)0.0154 (4)0.0046 (3)0.0002 (3)0.0007 (3)
O20.0120 (4)0.0272 (5)0.0236 (5)0.0052 (4)0.0004 (3)0.0014 (4)
C10.0130 (5)0.0154 (6)0.0118 (5)0.0013 (4)0.0002 (4)0.0041 (5)
C20.0204 (6)0.0147 (6)0.0156 (6)0.0052 (5)0.0033 (5)0.0027 (5)
C30.0235 (6)0.0133 (6)0.0133 (6)0.0004 (5)0.0022 (5)0.0009 (5)
C40.0166 (6)0.0194 (6)0.0149 (6)0.0017 (5)0.0012 (5)0.0048 (5)
C50.0136 (6)0.0180 (6)0.0162 (6)0.0023 (5)0.0010 (5)0.0053 (5)
C60.0141 (6)0.0133 (6)0.0130 (6)0.0020 (4)0.0035 (4)0.0041 (4)
C70.0138 (6)0.0136 (6)0.0141 (6)0.0024 (4)0.0024 (4)0.0029 (4)
C80.0152 (6)0.0121 (6)0.0143 (6)0.0033 (4)0.0040 (4)0.0020 (5)
C90.0129 (6)0.0159 (6)0.0138 (6)0.0018 (4)0.0018 (4)0.0039 (5)
C100.0136 (6)0.0142 (6)0.0120 (5)0.0023 (4)0.0013 (4)0.0031 (5)
C110.0129 (6)0.0145 (6)0.0150 (6)0.0000 (4)0.0009 (4)0.0033 (5)
C120.0156 (6)0.0193 (6)0.0166 (6)0.0043 (5)0.0024 (5)0.0039 (5)
C130.0229 (6)0.0153 (6)0.0145 (6)0.0056 (5)0.0011 (5)0.0001 (5)
C140.0189 (6)0.0136 (6)0.0174 (6)0.0017 (5)0.0036 (5)0.0029 (5)
C150.0131 (6)0.0180 (6)0.0158 (6)0.0014 (5)0.0006 (4)0.0053 (5)
Geometric parameters (Å, º) top
O1—C11.3709 (14)C7—H7A0.9500
O1—C81.3841 (14)C8—C91.4678 (17)
O2—C91.2257 (14)C9—C101.4932 (16)
C1—C21.3843 (17)C10—C151.3964 (17)
C1—C61.3994 (16)C10—C111.3981 (16)
C2—C31.3838 (18)C11—C121.3849 (17)
C2—H2A0.9500C11—H11A0.9500
C3—C41.4068 (17)C12—C131.3881 (18)
C3—H3A0.9500C12—H12A0.9500
C4—C51.3809 (17)C13—C141.3898 (17)
C4—H4A0.9500C13—H13A0.9500
C5—C61.4017 (17)C14—C151.3854 (17)
C5—H5A0.9500C14—H14A0.9500
C6—C71.4321 (17)C15—H15A0.9500
C7—C81.3595 (16)
C1—O1—C8105.82 (9)C7—C8—C9133.25 (11)
O1—C1—C2125.37 (10)O1—C8—C9115.23 (10)
O1—C1—C6110.53 (10)O2—C9—C8120.40 (11)
C2—C1—C6124.08 (11)O2—C9—C10120.85 (11)
C3—C2—C1115.80 (11)C8—C9—C10118.74 (10)
C3—C2—H2A122.1C15—C10—C11119.59 (11)
C1—C2—H2A122.1C15—C10—C9117.96 (10)
C2—C3—C4121.80 (11)C11—C10—C9122.33 (10)
C2—C3—H3A119.1C12—C11—C10119.84 (11)
C4—C3—H3A119.1C12—C11—H11A120.1
C5—C4—C3121.32 (11)C10—C11—H11A120.1
C5—C4—H4A119.3C11—C12—C13120.34 (11)
C3—C4—H4A119.3C11—C12—H12A119.8
C4—C5—C6118.09 (11)C13—C12—H12A119.8
C4—C5—H5A121.0C12—C13—C14120.06 (11)
C6—C5—H5A121.0C12—C13—H13A120.0
C1—C6—C5118.90 (11)C14—C13—H13A120.0
C1—C6—C7105.57 (10)C15—C14—C13119.95 (11)
C5—C6—C7135.51 (11)C15—C14—H14A120.0
C8—C7—C6106.64 (10)C13—C14—H14A120.0
C8—C7—H7A126.7C14—C15—C10120.20 (11)
C6—C7—H7A126.7C14—C15—H15A119.9
C7—C8—O1111.42 (10)C10—C15—H15A119.9
C8—O1—C1—C2177.65 (11)C1—O1—C8—C9177.58 (9)
C8—O1—C1—C60.95 (12)C7—C8—C9—O2163.26 (12)
O1—C1—C2—C3179.70 (10)O1—C8—C9—O212.65 (16)
C6—C1—C2—C31.29 (17)C7—C8—C9—C1016.00 (19)
C1—C2—C3—C40.60 (17)O1—C8—C9—C10168.09 (9)
C2—C3—C4—C50.43 (18)O2—C9—C10—C1532.58 (16)
C3—C4—C5—C60.80 (17)C8—C9—C10—C15146.68 (11)
O1—C1—C6—C5179.56 (10)O2—C9—C10—C11143.58 (12)
C2—C1—C6—C50.94 (17)C8—C9—C10—C1137.16 (16)
O1—C1—C6—C70.77 (12)C15—C10—C11—C120.84 (17)
C2—C1—C6—C7177.85 (11)C9—C10—C11—C12175.26 (10)
C4—C5—C6—C10.15 (16)C10—C11—C12—C131.06 (17)
C4—C5—C6—C7178.49 (12)C11—C12—C13—C140.06 (18)
C1—C6—C7—C80.27 (12)C12—C13—C14—C151.15 (18)
C5—C6—C7—C8178.76 (13)C13—C14—C15—C101.36 (17)
C6—C7—C8—O10.32 (13)C11—C10—C15—C140.36 (17)
C6—C7—C8—C9176.34 (12)C9—C10—C15—C14176.63 (10)
C1—O1—C8—C70.78 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.573.4182 (14)149
C7—H7A···O2ii0.952.553.1449 (14)121
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(II) Bis(5-bromobenzofuran-2-yl) ketone top
Crystal data top
C17H8Br2O3F(000) = 816
Mr = 420.05Dx = 1.994 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 89 reflections
a = 29.644 (2) Åθ = 6.0–20.0°
b = 6.2536 (5) ŵ = 5.80 mm1
c = 7.8188 (8) ÅT = 100 K
β = 105.091 (6)°Irregular, colorless
V = 1399.5 (2) Å30.25 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1814 independent reflections
Radiation source: fine-focus sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 28.7°, θmin = 3.3°
ϕ and ω scansh = 4040
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 88
Tmin = 0.262, Tmax = 0.398l = 1010
19777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0084P)2 + 2.8382P]
where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H8Br2O3V = 1399.5 (2) Å3
Mr = 420.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.644 (2) ŵ = 5.80 mm1
b = 6.2536 (5) ÅT = 100 K
c = 7.8188 (8) Å0.25 × 0.24 × 0.16 mm
β = 105.091 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1604 reflections with I > 2σ(I)
Tmin = 0.262, Tmax = 0.398Rint = 0.046
19777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
1814 reflectionsΔρmin = 0.32 e Å3
101 parameters
Special details top

Experimental. ϕ- and ω-rotations with 2.0 ° and 60 sec per frame

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.717962 (6)0.60233 (3)0.11795 (2)0.01751 (6)
O10.56490 (4)0.01371 (19)0.12336 (15)0.0133 (2)
O20.50000.2031 (3)0.25000.0177 (4)
C10.60023 (6)0.1165 (3)0.1029 (2)0.0125 (3)
C20.63717 (6)0.0520 (3)0.0368 (2)0.0146 (3)
H2A0.63870.08770.00920.018*
C30.67171 (6)0.2029 (3)0.0416 (2)0.0151 (3)
H3A0.69820.16660.00060.018*
C40.66779 (6)0.4090 (3)0.1069 (2)0.0145 (3)
C50.63009 (6)0.4749 (3)0.1667 (2)0.0140 (3)
H5A0.62780.61690.20680.017*
C60.59535 (6)0.3223 (3)0.1654 (2)0.0126 (3)
C70.55374 (6)0.3162 (3)0.2269 (2)0.0135 (3)
H7A0.54040.43120.27630.016*
C80.53734 (6)0.1131 (3)0.2003 (2)0.0129 (3)
C90.50000.0075 (4)0.25000.0133 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01199 (8)0.01662 (9)0.02444 (10)0.00274 (7)0.00571 (6)0.00045 (7)
O10.0122 (5)0.0112 (6)0.0177 (6)0.0000 (4)0.0061 (5)0.0012 (4)
O20.0172 (8)0.0119 (8)0.0251 (9)0.0000.0075 (7)0.000
C10.0116 (7)0.0128 (7)0.0126 (7)0.0014 (6)0.0023 (6)0.0009 (6)
C20.0154 (8)0.0134 (8)0.0154 (8)0.0019 (6)0.0047 (6)0.0008 (6)
C30.0119 (7)0.0182 (8)0.0160 (8)0.0019 (6)0.0051 (6)0.0014 (7)
C40.0118 (7)0.0156 (8)0.0155 (8)0.0023 (6)0.0028 (6)0.0015 (6)
C50.0137 (8)0.0126 (7)0.0150 (8)0.0004 (6)0.0026 (6)0.0000 (6)
C60.0116 (7)0.0131 (7)0.0126 (8)0.0010 (6)0.0021 (6)0.0002 (6)
C70.0117 (7)0.0129 (7)0.0158 (8)0.0011 (6)0.0036 (6)0.0010 (6)
C80.0121 (7)0.0128 (7)0.0140 (7)0.0028 (6)0.0040 (6)0.0000 (6)
C90.0127 (10)0.0141 (11)0.0120 (11)0.0000.0012 (8)0.000
Geometric parameters (Å, º) top
Br1—C41.9010 (16)C3—H3A0.9500
O1—C11.3683 (19)C4—C51.382 (2)
O1—C81.3835 (19)C5—C61.402 (2)
O2—C91.223 (3)C5—H5A0.9500
C1—C21.387 (2)C6—C71.436 (2)
C1—C61.398 (2)C7—C81.356 (2)
C2—C31.386 (2)C7—H7A0.9500
C2—H2A0.9500C8—C91.473 (2)
C3—C41.402 (2)C9—C8i1.473 (2)
C1—O1—C8105.45 (12)C4—C5—H5A121.6
O1—C1—C2124.98 (15)C6—C5—H5A121.6
O1—C1—C6110.79 (14)C1—C6—C5119.13 (15)
C2—C1—C6124.17 (15)C1—C6—C7105.57 (14)
C3—C2—C1116.17 (15)C5—C6—C7135.15 (16)
C3—C2—H2A121.9C8—C7—C6106.17 (15)
C1—C2—H2A121.9C8—C7—H7A126.9
C2—C3—C4120.37 (15)C6—C7—H7A126.9
C2—C3—H3A119.8C7—C8—O1112.00 (14)
C4—C3—H3A119.8C7—C8—C9134.67 (16)
C5—C4—C3123.24 (15)O1—C8—C9112.99 (14)
C5—C4—Br1119.15 (13)O2—C9—C8i120.81 (10)
C3—C4—Br1117.59 (12)O2—C9—C8120.81 (10)
C4—C5—C6116.86 (15)C8i—C9—C8118.4 (2)
C8—O1—C1—C2177.24 (16)C4—C5—C6—C10.8 (2)
C8—O1—C1—C60.01 (17)C4—C5—C6—C7173.97 (18)
O1—C1—C2—C3174.22 (15)C1—C6—C7—C80.78 (18)
C6—C1—C2—C32.7 (2)C5—C6—C7—C8174.47 (18)
C1—C2—C3—C41.4 (2)C6—C7—C8—O10.83 (19)
C2—C3—C4—C50.9 (3)C6—C7—C8—C9171.87 (16)
C2—C3—C4—Br1177.46 (13)C1—O1—C8—C70.54 (18)
C3—C4—C5—C62.0 (2)C1—O1—C8—C9173.83 (11)
Br1—C4—C5—C6176.33 (12)C7—C8—C9—O2160.61 (16)
O1—C1—C6—C5175.68 (14)O1—C8—C9—O212.04 (15)
C2—C1—C6—C51.6 (3)C7—C8—C9—C8i19.39 (16)
O1—C1—C6—C70.48 (18)O1—C8—C9—C8i167.96 (15)
C2—C1—C6—C7177.76 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2ii0.952.563.429 (2)151
Symmetry code: (ii) x, y+1, z.
(III) 3-mesityl-3-methylcyclobutyl 3-methylnaphtho[1,2-b]furan-2-yl ketone top
Crystal data top
C28H28O2F(000) = 848
Mr = 396.50Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 134 reflections
a = 7.3816 (3) Åθ = 6.0–20.0°
b = 8.2874 (6) ŵ = 0.08 mm1
c = 34.591 (2) ÅT = 100 K
β = 95.487 (5)°Block, colorless
V = 2106.4 (2) Å30.34 × 0.25 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4182 independent reflections
Radiation source: fine-focus sealed tube3360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 3.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1010
Tmin = 0.970, Tmax = 0.988l = 4343
20365 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.2434P]
where P = (Fo2 + 2Fc2)/3
4182 reflections(Δ/σ)max = 0.004
276 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C28H28O2V = 2106.4 (2) Å3
Mr = 396.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3816 (3) ŵ = 0.08 mm1
b = 8.2874 (6) ÅT = 100 K
c = 34.591 (2) Å0.34 × 0.25 × 0.16 mm
β = 95.487 (5)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3360 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.032
20365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4182 reflectionsΔρmin = 0.25 e Å3
276 parameters
Special details top

Experimental. ϕ- and ω-rotations with 0.80 ° and 72 sec per frame

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35269 (16)1.19691 (13)0.63289 (3)0.0250 (3)
O20.33251 (14)0.94790 (13)0.54892 (3)0.0180 (2)
C10.1302 (2)0.60782 (18)0.69920 (4)0.0162 (3)
C20.0324 (2)0.57522 (18)0.73095 (4)0.0172 (3)
H2A0.07900.51770.72670.021*
C30.0921 (2)0.62370 (18)0.76836 (4)0.0170 (3)
C40.2591 (2)0.70156 (18)0.77377 (4)0.0161 (3)
H4A0.30390.73380.79930.019*
C50.36378 (19)0.73429 (17)0.74308 (4)0.0145 (3)
C60.29542 (19)0.69371 (17)0.70468 (4)0.0141 (3)
C70.40305 (19)0.73378 (18)0.67044 (4)0.0153 (3)
C80.5336 (2)0.5962 (2)0.66262 (4)0.0208 (3)
H8A0.46370.49760.65620.031*
H8B0.61800.57760.68580.031*
H8C0.60260.62540.64080.031*
C90.5016 (2)0.90119 (19)0.67043 (4)0.0177 (3)
H9A0.44890.98340.68690.021*
H9B0.63520.89420.67640.021*
C100.2933 (2)0.78953 (19)0.63178 (4)0.0169 (3)
H10A0.28440.70630.61120.020*
H10B0.17210.83500.63540.020*
C110.4411 (2)0.91936 (19)0.62690 (4)0.0178 (3)
H11A0.53630.87750.61080.021*
C120.0543 (2)0.5382 (2)0.66041 (4)0.0209 (3)
H12A0.03860.45730.66460.031*
H12B0.15270.48760.64770.031*
H12C0.00040.62490.64390.031*
C130.0173 (2)0.5846 (2)0.80187 (4)0.0245 (4)
H13A0.12270.51860.79250.037*
H13B0.05920.68490.81310.037*
H13C0.05890.52480.82170.037*
C140.5516 (2)0.8038 (2)0.75348 (4)0.0191 (3)
H14A0.58620.78920.78130.029*
H14B0.55090.91920.74720.029*
H14C0.63950.74820.73860.029*
C150.3692 (2)1.07979 (19)0.61197 (4)0.0183 (3)
C160.3102 (2)1.08854 (19)0.57013 (4)0.0180 (3)
C170.2372 (2)1.2094 (2)0.54687 (4)0.0198 (3)
C180.2116 (2)1.1420 (2)0.50854 (4)0.0201 (3)
C190.1429 (2)1.2021 (2)0.47132 (5)0.0258 (4)
H19A0.09891.30960.46840.031*
C200.1420 (2)1.1022 (2)0.44004 (5)0.0276 (4)
H20A0.09711.14200.41520.033*
C210.2060 (2)0.9397 (2)0.44327 (4)0.0240 (4)
C220.2067 (2)0.8363 (3)0.41062 (5)0.0306 (4)
H22A0.16350.87590.38570.037*
C230.2680 (2)0.6813 (2)0.41424 (5)0.0312 (4)
H23A0.26780.61500.39180.037*
C240.3315 (2)0.6188 (2)0.45087 (5)0.0285 (4)
H24A0.37240.51030.45320.034*
C250.3342 (2)0.7147 (2)0.48332 (5)0.0226 (4)
H25A0.37770.67230.50800.027*
C260.2729 (2)0.8753 (2)0.48020 (4)0.0200 (3)
C270.27164 (19)0.9845 (2)0.51157 (4)0.0183 (3)
C280.1950 (2)1.3783 (2)0.55824 (5)0.0267 (4)
H28D0.28781.41550.57840.040*
H28A0.07531.38110.56820.040*
H28B0.19431.44890.53550.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (7)0.0202 (6)0.0216 (6)0.0005 (5)0.0063 (5)0.0012 (5)
O20.0204 (5)0.0193 (6)0.0142 (5)0.0021 (5)0.0005 (4)0.0018 (4)
C10.0176 (7)0.0137 (8)0.0166 (7)0.0019 (6)0.0012 (6)0.0000 (6)
C20.0141 (7)0.0156 (8)0.0217 (7)0.0008 (6)0.0008 (6)0.0019 (6)
C30.0185 (8)0.0150 (8)0.0176 (7)0.0047 (6)0.0031 (6)0.0025 (6)
C40.0208 (8)0.0134 (8)0.0137 (7)0.0031 (6)0.0013 (6)0.0013 (6)
C50.0166 (7)0.0102 (7)0.0164 (7)0.0024 (6)0.0000 (6)0.0011 (6)
C60.0162 (7)0.0102 (7)0.0156 (7)0.0021 (6)0.0007 (6)0.0004 (6)
C70.0155 (7)0.0163 (8)0.0138 (7)0.0017 (6)0.0003 (6)0.0004 (6)
C80.0205 (8)0.0229 (9)0.0193 (7)0.0029 (7)0.0029 (6)0.0005 (7)
C90.0169 (7)0.0200 (8)0.0163 (7)0.0028 (6)0.0015 (6)0.0003 (6)
C100.0191 (8)0.0176 (8)0.0138 (7)0.0012 (6)0.0011 (6)0.0003 (6)
C110.0186 (8)0.0197 (8)0.0153 (7)0.0015 (7)0.0029 (6)0.0006 (6)
C120.0207 (8)0.0217 (9)0.0198 (7)0.0059 (7)0.0012 (6)0.0022 (7)
C130.0225 (8)0.0318 (10)0.0198 (8)0.0009 (7)0.0050 (6)0.0020 (7)
C140.0208 (8)0.0200 (8)0.0157 (7)0.0033 (7)0.0029 (6)0.0005 (6)
C150.0170 (8)0.0201 (8)0.0187 (7)0.0044 (6)0.0060 (6)0.0013 (6)
C160.0174 (8)0.0173 (8)0.0200 (7)0.0026 (6)0.0055 (6)0.0005 (6)
C170.0142 (7)0.0231 (9)0.0228 (8)0.0023 (7)0.0056 (6)0.0046 (7)
C180.0135 (7)0.0253 (9)0.0219 (8)0.0027 (7)0.0035 (6)0.0056 (7)
C190.0180 (8)0.0317 (10)0.0276 (9)0.0005 (7)0.0022 (6)0.0125 (7)
C200.0188 (8)0.0438 (11)0.0196 (8)0.0030 (8)0.0015 (6)0.0108 (8)
C210.0151 (8)0.0388 (10)0.0182 (8)0.0073 (7)0.0012 (6)0.0036 (7)
C220.0205 (8)0.0552 (13)0.0159 (8)0.0088 (9)0.0003 (6)0.0005 (8)
C230.0225 (9)0.0494 (12)0.0220 (8)0.0103 (9)0.0033 (7)0.0121 (8)
C240.0207 (8)0.0337 (10)0.0314 (9)0.0067 (8)0.0048 (7)0.0087 (8)
C250.0177 (8)0.0291 (10)0.0209 (8)0.0063 (7)0.0021 (6)0.0007 (7)
C260.0134 (7)0.0290 (9)0.0178 (7)0.0064 (7)0.0018 (6)0.0019 (7)
C270.0130 (7)0.0262 (9)0.0155 (7)0.0035 (7)0.0009 (6)0.0050 (6)
C280.0257 (9)0.0244 (9)0.0309 (9)0.0028 (7)0.0079 (7)0.0054 (7)
Geometric parameters (Å, º) top
O1—C151.2237 (19)C12—H12C0.9800
O2—C271.3609 (17)C13—H13A0.9800
O2—C161.3954 (19)C13—H13B0.9800
C1—C21.397 (2)C13—H13C0.9800
C1—C61.409 (2)C14—H14A0.9800
C1—C121.517 (2)C14—H14B0.9800
C2—C31.386 (2)C14—H14C0.9800
C2—H2A0.9500C15—C161.473 (2)
C3—C41.388 (2)C16—C171.363 (2)
C3—C131.510 (2)C17—C181.434 (2)
C4—C51.398 (2)C17—C281.495 (2)
C4—H4A0.9500C18—C271.379 (2)
C5—C61.4156 (19)C18—C191.428 (2)
C5—C141.513 (2)C19—C201.362 (2)
C6—C71.525 (2)C19—H19A0.9500
C7—C81.534 (2)C20—C211.428 (3)
C7—C101.5656 (19)C20—H20A0.9500
C7—C91.566 (2)C21—C221.418 (2)
C8—H8A0.9800C21—C261.428 (2)
C8—H8B0.9800C22—C231.363 (3)
C8—H8C0.9800C22—H22A0.9500
C9—C111.5366 (19)C23—C241.407 (2)
C9—H9A0.9900C23—H23A0.9500
C9—H9B0.9900C24—C251.374 (2)
C10—C111.553 (2)C24—H24A0.9500
C10—H10A0.9900C25—C261.407 (2)
C10—H10B0.9900C25—H25A0.9500
C11—C151.505 (2)C26—C271.414 (2)
C11—H11A1.0000C28—H28D0.9800
C12—H12A0.9800C28—H28A0.9800
C12—H12B0.9800C28—H28B0.9800
C27—O2—C16105.54 (12)C3—C13—H13B109.5
C2—C1—C6119.82 (13)H13A—C13—H13B109.5
C2—C1—C12116.53 (13)C3—C13—H13C109.5
C6—C1—C12123.55 (13)H13A—C13—H13C109.5
C3—C2—C1122.41 (14)H13B—C13—H13C109.5
C3—C2—H2A118.8C5—C14—H14A109.5
C1—C2—H2A118.8C5—C14—H14B109.5
C2—C3—C4117.35 (13)H14A—C14—H14B109.5
C2—C3—C13120.57 (14)C5—C14—H14C109.5
C4—C3—C13122.00 (13)H14A—C14—H14C109.5
C3—C4—C5122.41 (13)H14B—C14—H14C109.5
C3—C4—H4A118.8O1—C15—C16120.35 (14)
C5—C4—H4A118.8O1—C15—C11123.36 (13)
C4—C5—C6119.55 (13)C16—C15—C11116.25 (13)
C4—C5—C14116.98 (12)C17—C16—O2111.30 (13)
C6—C5—C14123.37 (13)C17—C16—C15132.80 (15)
C1—C6—C5118.20 (13)O2—C16—C15115.90 (13)
C1—C6—C7120.94 (12)C16—C17—C18105.62 (14)
C5—C6—C7120.78 (13)C16—C17—C28127.83 (14)
C6—C7—C8110.98 (12)C18—C17—C28126.55 (14)
C6—C7—C10117.54 (12)C27—C18—C19118.88 (15)
C8—C7—C10110.57 (12)C27—C18—C17106.58 (13)
C6—C7—C9118.00 (12)C19—C18—C17134.55 (16)
C8—C7—C9111.03 (12)C20—C19—C18118.58 (16)
C10—C7—C986.61 (11)C20—C19—H19A120.7
C7—C8—H8A109.5C18—C19—H19A120.7
C7—C8—H8B109.5C19—C20—C21122.32 (15)
H8A—C8—H8B109.5C19—C20—H20A118.8
C7—C8—H8C109.5C21—C20—H20A118.8
H8A—C8—H8C109.5C22—C21—C20122.28 (15)
H8B—C8—H8C109.5C22—C21—C26117.33 (16)
C11—C9—C789.75 (11)C20—C21—C26120.39 (15)
C11—C9—H9A113.7C23—C22—C21121.52 (16)
C7—C9—H9A113.7C23—C22—H22A119.2
C11—C9—H9B113.7C21—C22—H22A119.2
C7—C9—H9B113.7C22—C23—C24120.55 (16)
H9A—C9—H9B110.9C22—C23—H23A119.7
C11—C10—C789.18 (11)C24—C23—H23A119.7
C11—C10—H10A113.8C25—C24—C23120.04 (18)
C7—C10—H10A113.8C25—C24—H24A120.0
C11—C10—H10B113.8C23—C24—H24A120.0
C7—C10—H10B113.8C24—C25—C26120.34 (15)
H10A—C10—H10B111.0C24—C25—H25A119.8
C15—C11—C9118.87 (13)C26—C25—H25A119.8
C15—C11—C10114.89 (12)C25—C26—C27124.93 (14)
C9—C11—C1088.09 (11)C25—C26—C21120.21 (15)
C15—C11—H11A111.0C27—C26—C21114.86 (15)
C9—C11—H11A111.0O2—C27—C18110.96 (13)
C10—C11—H11A111.0O2—C27—C26124.07 (14)
C1—C12—H12A109.5C18—C27—C26124.96 (14)
C1—C12—H12B109.5C17—C28—H28D109.5
H12A—C12—H12B109.5C17—C28—H28A109.5
C1—C12—H12C109.5H28D—C28—H28A109.5
H12A—C12—H12C109.5C17—C28—H28B109.5
H12B—C12—H12C109.5H28D—C28—H28B109.5
C3—C13—H13A109.5H28A—C28—H28B109.5
C6—C1—C2—C30.3 (2)O1—C15—C16—C171.5 (3)
C12—C1—C2—C3176.27 (14)C11—C15—C16—C17178.95 (16)
C1—C2—C3—C42.6 (2)O1—C15—C16—O2179.16 (13)
C1—C2—C3—C13179.50 (14)C11—C15—C16—O21.69 (19)
C2—C3—C4—C51.3 (2)O2—C16—C17—C180.04 (17)
C13—C3—C4—C5178.18 (14)C15—C16—C17—C18179.35 (16)
C3—C4—C5—C62.8 (2)O2—C16—C17—C28179.02 (14)
C3—C4—C5—C14173.74 (14)C15—C16—C17—C280.4 (3)
C2—C1—C6—C54.5 (2)C16—C17—C18—C270.10 (16)
C12—C1—C6—C5171.86 (14)C28—C17—C18—C27178.91 (14)
C2—C1—C6—C7178.81 (13)C16—C17—C18—C19179.65 (17)
C12—C1—C6—C74.8 (2)C28—C17—C18—C190.7 (3)
C4—C5—C6—C15.7 (2)C27—C18—C19—C201.0 (2)
C14—C5—C6—C1170.65 (14)C17—C18—C19—C20178.55 (16)
C4—C5—C6—C7177.61 (13)C18—C19—C20—C210.4 (2)
C14—C5—C6—C76.0 (2)C19—C20—C21—C22179.33 (15)
C1—C6—C7—C887.65 (16)C19—C20—C21—C260.6 (2)
C5—C6—C7—C888.95 (16)C20—C21—C22—C23179.85 (15)
C1—C6—C7—C1041.0 (2)C26—C21—C22—C230.2 (2)
C5—C6—C7—C10142.42 (14)C21—C22—C23—C240.5 (3)
C1—C6—C7—C9142.62 (14)C22—C23—C24—C250.8 (2)
C5—C6—C7—C940.78 (19)C23—C24—C25—C260.3 (2)
C6—C7—C9—C11138.45 (13)C24—C25—C26—C27179.30 (15)
C8—C7—C9—C1191.85 (12)C24—C25—C26—C210.5 (2)
C10—C7—C9—C1118.90 (11)C22—C21—C26—C250.7 (2)
C6—C7—C10—C11138.66 (13)C20—C21—C26—C25179.36 (14)
C8—C7—C10—C1192.51 (13)C22—C21—C26—C27179.05 (14)
C9—C7—C10—C1118.69 (11)C20—C21—C26—C270.9 (2)
C7—C9—C11—C15136.58 (13)C16—O2—C27—C180.22 (15)
C7—C9—C11—C1019.03 (11)C16—O2—C27—C26178.96 (14)
C7—C10—C11—C15140.18 (12)C19—C18—C27—O2179.84 (13)
C7—C10—C11—C919.05 (11)C17—C18—C27—O20.20 (16)
C9—C11—C15—O11.5 (2)C19—C18—C27—C260.7 (2)
C10—C11—C15—O1100.90 (17)C17—C18—C27—C26178.97 (14)
C9—C11—C15—C16178.85 (13)C25—C26—C27—O21.0 (2)
C10—C11—C15—C1676.49 (16)C21—C26—C27—O2178.82 (13)
C27—O2—C16—C170.16 (16)C25—C26—C27—C18179.98 (15)
C27—O2—C16—C15179.34 (12)C21—C26—C27—C180.3 (2)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H10O2C17H8Br2O3C28H28O2
Mr222.23420.05396.50
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, P21/c
Temperature (K)100100100
a, b, c (Å)6.1028 (5), 8.8010 (4), 10.1195 (6)29.644 (2), 6.2536 (5), 7.8188 (8)7.3816 (3), 8.2874 (6), 34.591 (2)
α, β, γ (°)97.700 (4), 93.710 (6), 101.073 (6)90, 105.091 (6), 9090, 95.487 (5), 90
V3)526.31 (6)1399.5 (2)2106.4 (2)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.095.800.08
Crystal size (mm)0.34 × 0.31 × 0.280.25 × 0.24 × 0.160.34 × 0.25 × 0.16
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.262, 0.3980.970, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
17534, 2498, 2049 19777, 1814, 1604 20365, 4182, 3360
Rint0.0700.0460.032
(sin θ/λ)max1)0.6580.6760.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.06 0.019, 0.043, 1.08 0.044, 0.106, 1.03
No. of reflections249818144182
No. of parameters154101276
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.300.43, 0.320.26, 0.25

Computer programs: COLLECT (Bruker, 2002), EVALCCD (Duisenberg et al., 2003), EVALCCD, SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
O2—C91.2257 (14)C9—C101.4932 (16)
C8—C91.4678 (17)
C8—C9—C10118.74 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.573.4182 (14)149
C7—H7A···O2ii0.952.553.1449 (14)121
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
Br1—C41.9010 (16)C8—C91.473 (2)
O2—C91.223 (3)
O2—C9—C8i120.81 (10)C8i—C9—C8118.4 (2)
O2—C9—C8120.81 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2ii0.952.563.429 (2)151
Symmetry code: (ii) x, y+1, z.
Selected bond lengths (Å) for (III) top
O1—C151.2237 (19)C15—C161.473 (2)
C11—C151.505 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds