Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Hf(C11H23N2)2Cl2], is a monomeric hafnium(IV) complex containing two bidentate amidinate ligands and two cis Cl atoms. The crystals are triclinic (space group P\overline{1}) and there is one independent six-coordinate monomer with a highly distorted octa­hedral geometry in the asymmetric unit. The reported structure is the first hafnium-amidinate complex to be characterized successfully by single-crystal X-ray diffraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105016872/sq1201sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016872/sq1201Isup2.hkl
Contains datablock I

CCDC reference: 278552

Comment top

Amidinate ligands are well established as versatile ligands for a variety of transition metal complexes and particularly for the compounds of early transition metals. The possibility of modifying amidinate ligands at the C and N atoms by having various substituent groups provides a means of tuning the chemical reactivity and thermal properties of the resulting complex (Wedler et al., 1990; Zhou & Richeson, 1996a,b???; Walther, Fischer, Friedrich et al., 1996 or Walther, Fischer, Görls, et al., 1996; Coles et al., 1997). The main importance lies in the generation of element–nitrogen bonds which could be useful for chemical vapor deposition (CVD) and for the synthesis of new catalysts.

Bidentate amidinate ligands offer good possibilities to tune the coordination sphere of the metal. By varying the organic substituents on the N atom as well as on the bridging C atom, it is possible to adjust the coordination of the ligand on the metal center, as has been shown in the case of germanium and silicon (Karsch et al. 1998). However, the amidinate chemistry of group 4 elements has mostly been investigated for titanium and zirconium (Littke et al., 1998; Wood et al., 1999; Boyd et al., 2002; Li et al., 2003). A search of the May 2005 release of the Cambridge Structural Database (CSD; Allen, 2002) for structures containing the [nRC(NR)2]2Hf fragment revealed no similar complex containing two amidinate ligands attached to the hafnium center. The objective of our work was to investigate the reactions leading to hafnium amidinate derivates, because of their possible applications as chemical vapor depostion (CVD) precursors or for catalysis. Our study concentrates on the structural stability and the coordination geometry around the Hf atom, which is very relevant for CVD precursor characteristics such as volatility and reactivity.

The reaction of two equivalents of the anionic amidinate compound [nBuC(NiPr)2]Li, (II), synthesized according to a modified literature procedure (Hao et al., 1993) with one equivalent of HfCl4 resulted in the formation of the six-coordinate complex [nBuC(NiPr)2]2HfCl2, (I), which was obtained as a colorless, crystalline solid. The crystallographic data for (I) are presented in Table 1. The molecular geometry of (I) revealed from the structural analysis is shown in Fig. 1, and selected bond distances and angles are summarized in Table 2. The metal center is in a pseudo-octahedral environment, surrounded by four N atoms of the two amidinate ligands positioned cis to each other and two cis chloride ligands. Similar pseudo-octahedral orientation around a hafnium center is reported (Wood et al., 1993) for a guanidinate HfIV complex of formula [(SiMe3)2NC(NCy)2]2HfCl2. Though the structures show similar ligand orientation, some structural differences concerning the substituents attached to the chelating ligand are evident. Furthermore, the perpendicular orientation of the N(SiMe3)2 function relative to the MNCN plane in the guanidinate complex eliminates the π conjugation, which explains the observed similarity to the amidinate complex reported in our study. The geometry of the monomeric octahedral complex (I) could be described according to the two planes Cl1/N11/N23/Hf1 and Cl2/N13/N21/Hf1, each containing ML3 atoms. The average deviation of the atoms from the corresponding planes is in the region of 0.06 Å. In the case of an ideal octahedral geometry, the bond angles within each of the two planes should be 90°, 90° and 180°. The bond angles for (I) (Cl1—Hf1—N23, N23—Hf1—N11 and N11—Hf1—Cl1 for plane 1, and Cl2—Hf1—N21, N21—Hf1—N13 and N13—Hf1—Cl2 for plane 2; Table 2) deviate significantly from the ideal octahedron. The deviation is especially remarkable for the Cl1—Hf1—N11 [152.84 (10)°] and Cl2—Hf1—N21 [154.01 (10)°] angles, as the differences are about 26–28°, which is comparable to those reported for hafnium guanidinate (29–31°; Wood et al., 1993). Because of the presence of the four bulky isopropyl groups in the girdle, the ideal symmetric arrangement around the metal is impossible and large distortions from ideal geometry are required to minimize the repulsions between the isopropyl groups.

Both amidinate ligands show a bidentate coordination. Their bonding parameters are the same, with bite angles of 60.61 (14) and 60.68 (13)°, and are in a good agreement with those reported for similar zirconium (59.2 and 60.3°), hafnium (59.9 and 60.1°) and tantalum (59.3 and 61.9°) complexes (Littke et al., 1998; Wood et al., 1999; Drew & Wilkins, 1975). Considering the bonding properties of the amidinate ligands in the zirconium complex C28H50N4Cl2Zr, one can see that the two cis Zr—N bond lengths [2.186 (8) and 2.192 (7) Å] are slightly shorter then the trans Zr—N values [2.228 (7) and 2.234 (8) Å]. A possible reason for such behaviour could be the trans effect of the two chlorine ligands, which have π-donating properties. In contrast, the Hf—N bond lengths in (I) and those reported by Wood et al. (1999) for the hafnium guanidinate complex cannot be divided into two groups, because of their similarity on the 2σ level. Additionally there are no significant differences between the NiPr groups cis to the Cl co-ligands (atoms N11 and N21) and the NiPr groups trans to the Cl co-ligands (atoms N13 and N23), for example, in terms of N—C bond lengths. These observations are consistent with the hafnium guanidinate complex, but in disagreement with the results published for several analogous Zr complexes (Littke et al., 1998; Wood et al., 1999; Herskovics-Korine & Eisen, 1995; Walther, Fischer, Friedrich et al., 1996 or Walther, Fischer, Görls, et al., 1996), in which there are marked differences in N—C and Zr—N bond lengths.

To summarize, the present structure demonstrates the versatility of the amidinate ligand, in that varying the substituents on the N atom as well as on the bridging C atoms can be used effectively to tune the electronic properties of the ligand around the metal center.

Experimental top

A stirred suspension of HfCl4 (2.56 g, 8 mmol) in hexane (50 ml) was cooled to 195 K. To this suspension, a solution of [nBuC(NiPr)2]Li (16 mmol) was added dropwise over a period of approximately 1 h and the reaction mixture was allowed to warm up to room temperature. After refluxing for an additional 2 h, the resulting clear pale-yellow solution was concentrated and stored at 253 K overnight to afford clear colorless crystals. Yield 4.26 g (87% based on HfCl4). M.p. 366 K (uncorrected).

Refinement top

H atoms were treated using a riding model (C—H = 0.98–1.00 Å), with isotropic displacement parameters fixed at 120% (150% for methyl groups?) of the Ueq values of the parent C atoms. Due to the higher degree of freedom for the vibrational modes of the CH3 moieties belonging to the isopropyl groups, the displacement ellipsoids are larger and more anisotropic than those of the other C atoms. The maximum residual electron density is located within about 1 Å of the Hf center.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2000); cell refinement: CrysAlis RED (Oxford Diffraction, 2000); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted.
Bis(2-butyl-N,N'-diisopropylamidinate)dichlorohafnium(IV) top
Crystal data top
[Hf(C11H23N2)2Cl2]Z = 2
Mr = 616.02F(000) = 624
Triclinic, P1Dx = 1.493 Mg m3
a = 8.4969 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6309 (9) ÅCell parameters from 9828 reflections
c = 13.5716 (9) Åθ = 2.8–27.5°
α = 76.537 (6)°µ = 4.02 mm1
β = 76.106 (7)°T = 105 K
γ = 82.191 (6)°Prism, colourless
V = 1370.14 (17) Å30.38 × 0.23 × 0.13 mm
Data collection top
Oxford Diffraction Sapphire2 CCD
diffractometer
6267 independent reflections
Radiation source: Enhance (Mo) X-ray Source5602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.335, Tmax = 0.588k = 1616
25779 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0446P)2 + 5.2988P]
where P = (Fo2 + 2Fc2)/3
6267 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 3.44 e Å3
1 restraintΔρmin = 2.15 e Å3
Crystal data top
[Hf(C11H23N2)2Cl2]γ = 82.191 (6)°
Mr = 616.02V = 1370.14 (17) Å3
Triclinic, P1Z = 2
a = 8.4969 (7) ÅMo Kα radiation
b = 12.6309 (9) ŵ = 4.02 mm1
c = 13.5716 (9) ÅT = 105 K
α = 76.537 (6)°0.38 × 0.23 × 0.13 mm
β = 76.106 (7)°
Data collection top
Oxford Diffraction Sapphire2 CCD
diffractometer
6267 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5602 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 0.588Rint = 0.063
25779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 3.44 e Å3
6267 reflectionsΔρmin = 2.15 e Å3
272 parameters
Special details top

Experimental. 1H NMR (room temp., 250 MHz, C6D6): δ [p.p.m.] 0.75 [6H, t, CH3—CH2CH2CH2C(NiPr)2], 1.11 [4H, h, CH3—CH2—CH2CH2C(NiPr)2], 1.30 [4H, overlapping p, CH3CH2—CH2—CH2—C(NiPr)2], 1.37 [24H, d, (CH3)2CHN], 2.04 [4H, t, CH3CH2CH2—CH2—C(NiPr)2], 3.69 [4H, septet, (CH3)2-CH—N]. Mass spectrometry: (EI+) m/z 616, M+={[nBuC(NiPr)2]2HfCl2}+; 601, M+-(CH3); 573, M+-(iPr); 434, M+-[nBuC(NiPr)2]; 398, M+-[nBuC(NiPr)2]Cl; 184, [nBuC(NiPr)2]+.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf10.47268 (2)0.253688 (14)0.744282 (13)0.01960 (7)
Cl10.35975 (15)0.27247 (9)0.59357 (9)0.0286 (2)
Cl20.24512 (16)0.16920 (10)0.86624 (10)0.0357 (3)
N110.6457 (5)0.1801 (3)0.8421 (3)0.0226 (8)
C1110.6925 (6)0.1877 (4)0.9368 (3)0.0264 (10)
H1110.79580.14020.94170.032*
C1120.7245 (8)0.3039 (4)0.9318 (4)0.0382 (12)
H11A0.81390.32630.87270.057*
H11B0.75400.30840.99610.057*
H11C0.62620.35240.92330.057*
C1130.5625 (7)0.1463 (4)1.0322 (4)0.0349 (11)
H11D0.45860.18921.02690.052*
H11E0.59460.15401.09470.052*
H11F0.55070.06921.03630.052*
C120.7007 (8)0.1029 (5)0.7905 (4)0.0419 (14)
C1220.9706 (10)0.0220 (5)0.7806 (5)0.067 (2)
H12A0.99140.09330.79140.080*
H12B0.98740.02630.70510.080*
C1210.8046 (9)0.0026 (6)0.8318 (5)0.0535 (17)
H12C0.78940.01610.90820.064*
H12D0.77580.06720.81250.064*
C1231.0919 (10)0.0721 (7)0.8283 (8)0.081 (3)
H12E1.20140.04500.81010.097*
H12F1.05630.08630.90490.097*
C1241.1059 (9)0.1756 (5)0.7951 (6)0.0541 (17)
H12G1.00560.21200.82640.081*
H12H1.19810.22250.81750.081*
H12I1.12350.16170.71940.081*
N130.6425 (5)0.1172 (3)0.7045 (3)0.0257 (8)
C1310.6782 (7)0.0387 (4)0.6362 (4)0.0321 (11)
H1310.76030.01990.66070.039*
C1320.7496 (9)0.0942 (5)0.5254 (5)0.0467 (15)
H13A0.67130.15280.50060.070*
H13B0.77320.04060.48080.070*
H13C0.85040.12520.52320.070*
C1330.5263 (8)0.0133 (4)0.6417 (4)0.0414 (14)
H13D0.48060.04670.71400.062*
H13E0.55300.06960.59990.062*
H13F0.44650.04250.61470.062*
N210.6274 (4)0.3884 (3)0.6712 (3)0.0192 (7)
C2110.7735 (5)0.4182 (4)0.5929 (3)0.0243 (9)
H2110.79780.49220.59670.029*
C2120.9165 (6)0.3365 (5)0.6170 (4)0.0358 (12)
H21A0.93360.33830.68540.054*
H21B1.01500.35590.56420.054*
H21C0.89240.26280.61680.054*
C2130.7494 (6)0.4232 (4)0.4852 (4)0.0310 (11)
H21D0.73100.35030.47890.046*
H21E0.84660.44840.43390.046*
H21F0.65490.47410.47290.046*
C220.5265 (5)0.4594 (3)0.7196 (3)0.0204 (8)
C2210.5529 (6)0.5781 (4)0.6999 (4)0.0253 (9)
H22A0.44680.62150.71280.030*
H22B0.60810.60310.62650.030*
C2220.6581 (7)0.5955 (4)0.7718 (4)0.0307 (11)
H22C0.59570.57910.84450.037*
H22D0.75630.54320.76610.037*
C2230.7107 (7)0.7107 (4)0.7472 (4)0.0323 (11)
H22E0.61350.76340.74550.039*
H22F0.76030.71990.80330.039*
C2240.8315 (6)0.7368 (4)0.6446 (4)0.0327 (11)
H22G0.92700.68380.64500.049*
H22H0.86510.81050.63430.049*
H22I0.78060.73300.58810.049*
N230.4046 (4)0.4112 (3)0.7907 (3)0.0210 (7)
C2310.2745 (6)0.4724 (4)0.8519 (4)0.0274 (10)
H2310.31200.54550.84730.033*
C2320.1247 (8)0.4907 (8)0.8083 (5)0.072 (3)
H23A0.15090.52850.73540.108*
H23B0.04080.53530.84770.108*
H23C0.08430.42010.81320.108*
C2330.2384 (8)0.4158 (6)0.9641 (4)0.0475 (15)
H23D0.20430.34300.97040.071*
H23E0.15090.45861.00320.071*
H23F0.33630.40880.99210.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.01877 (11)0.02115 (10)0.01944 (10)0.00238 (6)0.00658 (7)0.00240 (7)
Cl10.0313 (6)0.0318 (6)0.0266 (5)0.0006 (4)0.0165 (5)0.0047 (4)
Cl20.0325 (6)0.0379 (6)0.0335 (6)0.0161 (5)0.0012 (5)0.0024 (5)
N110.0249 (19)0.0255 (18)0.0209 (18)0.0060 (15)0.0124 (15)0.0085 (15)
C1110.027 (2)0.038 (2)0.020 (2)0.0066 (19)0.0177 (19)0.0104 (19)
C1120.052 (3)0.039 (3)0.032 (3)0.008 (2)0.022 (3)0.007 (2)
C1130.046 (3)0.038 (3)0.021 (2)0.001 (2)0.013 (2)0.004 (2)
C120.062 (4)0.039 (3)0.033 (3)0.019 (3)0.030 (3)0.018 (2)
C1220.108 (7)0.060 (4)0.043 (4)0.049 (4)0.021 (4)0.001 (3)
C1210.058 (4)0.063 (4)0.043 (3)0.030 (3)0.001 (3)0.016 (3)
C1230.059 (5)0.089 (6)0.116 (7)0.039 (4)0.052 (5)0.053 (6)
C1240.057 (4)0.041 (3)0.076 (5)0.017 (3)0.041 (4)0.021 (3)
N130.030 (2)0.0264 (19)0.0248 (19)0.0076 (16)0.0151 (17)0.0108 (15)
C1310.048 (3)0.026 (2)0.031 (3)0.012 (2)0.023 (2)0.0141 (19)
C1320.064 (4)0.046 (3)0.034 (3)0.002 (3)0.005 (3)0.023 (3)
C1330.072 (4)0.026 (2)0.031 (3)0.000 (2)0.023 (3)0.007 (2)
N210.0147 (17)0.0211 (17)0.0211 (18)0.0017 (13)0.0002 (14)0.0072 (14)
C2110.020 (2)0.027 (2)0.023 (2)0.0066 (17)0.0046 (17)0.0078 (17)
C2120.013 (2)0.063 (3)0.030 (3)0.003 (2)0.0010 (19)0.013 (2)
C2130.026 (2)0.036 (3)0.023 (2)0.0010 (19)0.0018 (19)0.0013 (19)
C220.018 (2)0.025 (2)0.019 (2)0.0003 (16)0.0055 (16)0.0065 (16)
C2210.031 (2)0.023 (2)0.020 (2)0.0019 (18)0.0031 (18)0.0046 (17)
C2220.043 (3)0.028 (2)0.024 (2)0.007 (2)0.012 (2)0.0059 (19)
C2230.043 (3)0.027 (2)0.029 (2)0.007 (2)0.004 (2)0.0118 (19)
C2240.032 (3)0.034 (3)0.034 (3)0.007 (2)0.002 (2)0.013 (2)
N230.0152 (17)0.0222 (17)0.0252 (19)0.0023 (13)0.0020 (14)0.0062 (14)
C2310.024 (2)0.029 (2)0.026 (2)0.0032 (18)0.0008 (19)0.0070 (18)
C2320.030 (3)0.149 (8)0.030 (3)0.039 (4)0.006 (3)0.029 (4)
C2330.047 (4)0.067 (4)0.022 (3)0.017 (3)0.003 (2)0.014 (3)
Geometric parameters (Å, º) top
Hf1—N132.175 (4)C132—H13C0.9800
Hf1—N112.186 (4)C133—H13D0.9800
Hf1—N232.187 (4)C133—H13E0.9800
Hf1—N212.191 (3)C133—H13F0.9800
Hf1—Cl12.4116 (11)N21—C221.330 (5)
Hf1—Cl22.4121 (12)N21—C2111.456 (5)
Hf1—C122.608 (6)C211—C2131.510 (7)
Hf1—C222.631 (4)C211—C2121.530 (7)
N11—C121.303 (6)C211—H2111.0000
N11—C1111.460 (5)C212—H21A0.9800
C111—C1121.513 (7)C212—H21B0.9800
C111—C1131.524 (7)C212—H21C0.9800
C111—H1111.0000C213—H21D0.9800
C112—H11A0.9800C213—H21E0.9800
C112—H11B0.9800C213—H21F0.9800
C112—H11C0.9800C22—N231.339 (5)
C113—H11D0.9800C22—C2211.498 (6)
C113—H11E0.9800C221—C2221.541 (7)
C113—H11F0.9800C221—H22A0.9900
C12—N131.340 (6)C221—H22B0.9900
C12—C1211.561 (9)C222—C2231.519 (6)
C122—C1211.455 (10)C222—H22C0.9900
C122—C1231.589 (8)C222—H22D0.9900
C122—H12A0.9900C223—C2241.514 (7)
C122—H12B0.9900C223—H22E0.9900
C121—H12C0.9900C223—H22F0.9900
C121—H12D0.9900C224—H22G0.9800
C123—C1241.460 (10)C224—H22H0.9800
C123—H12E0.9900C224—H22I0.9800
C123—H12F0.9900N23—C2311.462 (6)
C124—H12G0.9800C231—C2321.498 (8)
C124—H12H0.9800C231—C2331.501 (7)
C124—H12I0.9800C231—H2311.0000
N13—C1311.465 (6)C232—H23A0.9800
C131—C1331.504 (8)C232—H23B0.9800
C131—C1321.519 (8)C232—H23C0.9800
C131—H1311.0000C233—H23D0.9800
C132—H13A0.9800C233—H23E0.9800
C132—H13B0.9800C233—H23F0.9800
N13—Hf1—N1160.61 (14)C133—C131—H131108.5
N13—Hf1—N23154.36 (14)C132—C131—H131108.5
N11—Hf1—N23100.53 (14)C131—C132—H13A109.5
N13—Hf1—N2199.74 (14)C131—C132—H13B109.5
N11—Hf1—N2189.77 (14)H13A—C132—H13B109.5
N23—Hf1—N2160.68 (13)C131—C132—H13C109.5
N13—Hf1—Cl192.31 (11)H13A—C132—H13C109.5
N11—Hf1—Cl1152.84 (10)H13B—C132—H13C109.5
N23—Hf1—Cl1104.43 (10)C131—C133—H13D109.5
N21—Hf1—Cl193.17 (10)C131—C133—H13E109.5
N13—Hf1—Cl2104.40 (12)H13D—C133—H13E109.5
N11—Hf1—Cl293.72 (11)C131—C133—H13F109.5
N23—Hf1—Cl293.40 (10)H13D—C133—H13F109.5
N21—Hf1—Cl2154.01 (10)H13E—C133—H13F109.5
Cl1—Hf1—Cl295.31 (4)C22—N21—C211123.4 (4)
N13—Hf1—C1230.87 (15)C22—N21—Hf193.4 (3)
N11—Hf1—C1229.93 (15)C211—N21—Hf1142.8 (3)
N23—Hf1—C12129.43 (16)N21—C211—C213111.2 (4)
N21—Hf1—C1297.87 (18)N21—C211—C212109.2 (4)
Cl1—Hf1—C12123.14 (12)C213—C211—C212111.3 (4)
Cl2—Hf1—C1297.92 (16)N21—C211—H211108.4
N13—Hf1—C22129.09 (15)C213—C211—H211108.4
N11—Hf1—C2298.22 (14)C212—C211—H211108.4
N23—Hf1—C2230.54 (13)C211—C212—H21A109.5
N21—Hf1—C2230.30 (13)C211—C212—H21B109.5
Cl1—Hf1—C2297.84 (10)H21A—C212—H21B109.5
Cl2—Hf1—C22123.89 (10)C211—C212—H21C109.5
C12—Hf1—C22118.45 (17)H21A—C212—H21C109.5
C12—N11—C111124.7 (4)H21B—C212—H21C109.5
C12—N11—Hf193.2 (3)C211—C213—H21D109.5
C111—N11—Hf1141.7 (3)C211—C213—H21E109.5
N11—C111—C112110.1 (4)H21D—C213—H21E109.5
N11—C111—C113110.7 (4)C211—C213—H21F109.5
C112—C111—C113111.4 (4)H21D—C213—H21F109.5
N11—C111—H111108.2H21E—C213—H21F109.5
C112—C111—H111108.2N21—C22—N23111.9 (4)
C113—C111—H111108.2N21—C22—C221123.3 (4)
C111—C112—H11A109.5N23—C22—C221124.7 (4)
C111—C112—H11B109.5N21—C22—Hf156.3 (2)
H11A—C112—H11B109.5N23—C22—Hf156.1 (2)
C111—C112—H11C109.5C221—C22—Hf1176.6 (3)
H11A—C112—H11C109.5C22—C221—C222109.7 (4)
H11B—C112—H11C109.5C22—C221—H22A109.7
C111—C113—H11D109.5C222—C221—H22A109.7
C111—C113—H11E109.5C22—C221—H22B109.7
H11D—C113—H11E109.5C222—C221—H22B109.7
C111—C113—H11F109.5H22A—C221—H22B108.2
H11D—C113—H11F109.5C223—C222—C221113.4 (4)
H11E—C113—H11F109.5C223—C222—H22C108.9
N11—C12—N13112.7 (5)C221—C222—H22C108.9
N11—C12—C121123.5 (5)C223—C222—H22D108.9
N13—C12—C121123.3 (5)C221—C222—H22D108.9
N11—C12—Hf156.8 (3)H22C—C222—H22D107.7
N13—C12—Hf156.4 (3)C224—C223—C222113.0 (4)
C121—C12—Hf1167.2 (5)C224—C223—H22E109.0
C121—C122—C123108.6 (6)C222—C223—H22E109.0
C121—C122—H12A110.0C224—C223—H22F109.0
C123—C122—H12A110.0C222—C223—H22F109.0
C121—C122—H12B110.0H22E—C223—H22F107.8
C123—C122—H12B110.0C223—C224—H22G109.5
H12A—C122—H12B108.3C223—C224—H22H109.5
C122—C121—C12103.3 (5)H22G—C224—H22H109.5
C122—C121—H12C111.1C223—C224—H22I109.5
C12—C121—H12C111.1H22G—C224—H22I109.5
C122—C121—H12D111.1H22H—C224—H22I109.5
C12—C121—H12D111.1C22—N23—C231122.5 (4)
H12C—C121—H12D109.1C22—N23—Hf193.4 (3)
C124—C123—C122116.0 (6)C231—N23—Hf1143.1 (3)
C124—C123—H12E108.3N23—C231—C232110.5 (4)
C122—C123—H12E108.3N23—C231—C233111.3 (4)
C124—C123—H12F108.3C232—C231—C233110.9 (5)
C122—C123—H12F108.3N23—C231—H231108.0
H12E—C123—H12F107.4C232—C231—H231108.0
C123—C124—H12G109.5C233—C231—H231108.0
C123—C124—H12H109.5C231—C232—H23A109.5
H12G—C124—H12H109.5C231—C232—H23B109.5
C123—C124—H12I109.5H23A—C232—H23B109.5
H12G—C124—H12I109.5C231—C232—H23C109.5
H12H—C124—H12I109.5H23A—C232—H23C109.5
C12—N13—C131123.5 (4)H23B—C232—H23C109.5
C12—N13—Hf192.7 (3)C231—C233—H23D109.5
C131—N13—Hf1142.2 (3)C231—C233—H23E109.5
N13—C131—C133110.0 (5)H23D—C233—H23E109.5
N13—C131—C132110.5 (4)C231—C233—H23F109.5
C133—C131—C132110.9 (5)H23D—C233—H23F109.5
N13—C131—H131108.5H23E—C233—H23F109.5
N13—Hf1—N11—C125.0 (4)N13—Hf1—N21—C22167.0 (3)
N23—Hf1—N11—C12166.4 (4)N11—Hf1—N21—C22106.9 (3)
N21—Hf1—N11—C12106.3 (4)N23—Hf1—N21—C224.6 (2)
Cl1—Hf1—N11—C129.9 (5)Cl1—Hf1—N21—C22100.1 (3)
Cl2—Hf1—N11—C1299.4 (4)Cl2—Hf1—N21—C228.8 (4)
C22—Hf1—N11—C12135.5 (4)C12—Hf1—N21—C22135.8 (3)
N13—Hf1—N11—C111177.6 (6)N13—Hf1—N21—C21119.8 (5)
N23—Hf1—N11—C11121.0 (5)N11—Hf1—N21—C21179.9 (5)
N21—Hf1—N11—C11181.1 (5)N23—Hf1—N21—C211177.9 (5)
Cl1—Hf1—N11—C111177.6 (4)Cl1—Hf1—N21—C21173.1 (5)
Cl2—Hf1—N11—C11173.2 (5)Cl2—Hf1—N21—C211177.9 (4)
C12—Hf1—N11—C111172.6 (7)C12—Hf1—N21—C21151.0 (5)
C22—Hf1—N11—C11151.9 (5)C22—Hf1—N21—C211173.3 (7)
C12—N11—C111—C112135.9 (6)C22—N21—C211—C213104.3 (5)
Hf1—N11—C111—C11253.1 (7)Hf1—N21—C211—C21367.6 (6)
C12—N11—C111—C113100.5 (6)C22—N21—C211—C212132.5 (5)
Hf1—N11—C111—C11370.5 (6)Hf1—N21—C211—C21255.6 (6)
C111—N11—C12—N13177.9 (5)C211—N21—C22—N23177.7 (4)
Hf1—N11—C12—N137.7 (6)Hf1—N21—C22—N237.2 (4)
C111—N11—C12—C1219.7 (9)C211—N21—C22—C2210.8 (7)
Hf1—N11—C12—C121164.7 (6)Hf1—N21—C22—C221175.9 (4)
C111—N11—C12—Hf1174.4 (5)C211—N21—C22—Hf1175.1 (5)
N13—Hf1—C12—N11171.4 (6)N13—Hf1—C22—N2116.6 (3)
N23—Hf1—C12—N1117.4 (5)N11—Hf1—C22—N2175.2 (3)
N21—Hf1—C12—N1175.6 (4)N23—Hf1—C22—N21172.0 (4)
Cl1—Hf1—C12—N11174.6 (3)Cl1—Hf1—C22—N2182.8 (3)
Cl2—Hf1—C12—N1183.7 (3)Cl2—Hf1—C22—N21175.3 (2)
C22—Hf1—C12—N1152.0 (4)C12—Hf1—C22—N2151.8 (3)
N11—Hf1—C12—N13171.4 (6)N13—Hf1—C22—N23155.4 (2)
N23—Hf1—C12—N13154.1 (3)N11—Hf1—C22—N2396.8 (3)
N21—Hf1—C12—N1395.8 (3)N21—Hf1—C22—N23172.0 (4)
Cl1—Hf1—C12—N133.2 (4)Cl1—Hf1—C22—N23105.2 (3)
Cl2—Hf1—C12—N13104.9 (3)Cl2—Hf1—C22—N233.3 (3)
C22—Hf1—C12—N13119.4 (3)C12—Hf1—C22—N23120.2 (3)
N13—Hf1—C12—C12193.0 (18)N13—Hf1—C22—C221100 (5)
N11—Hf1—C12—C12195.6 (18)N11—Hf1—C22—C221158 (5)
N23—Hf1—C12—C121113.0 (18)N23—Hf1—C22—C221105 (5)
N21—Hf1—C12—C121171.2 (18)N21—Hf1—C22—C22183 (5)
Cl1—Hf1—C12—C12189.8 (18)Cl1—Hf1—C22—C2210 (5)
Cl2—Hf1—C12—C12111.9 (18)Cl2—Hf1—C22—C221101 (5)
C22—Hf1—C12—C121147.6 (18)C12—Hf1—C22—C221135 (5)
C123—C122—C121—C12171.9 (5)N21—C22—C221—C22288.4 (5)
N11—C12—C121—C12298.5 (7)N23—C22—C221—C22288.2 (5)
N13—C12—C121—C12289.9 (8)Hf1—C22—C221—C222169 (5)
Hf1—C12—C121—C122174.4 (16)C22—C221—C222—C223172.1 (4)
C121—C122—C123—C12475.2 (10)C221—C222—C223—C22468.7 (6)
N11—C12—N13—C131176.4 (5)N21—C22—N23—C231177.9 (4)
C121—C12—N13—C1314.0 (9)C221—C22—N23—C2315.2 (7)
Hf1—C12—N13—C131168.7 (6)Hf1—C22—N23—C231170.7 (5)
N11—C12—N13—Hf17.8 (6)N21—C22—N23—Hf17.2 (4)
C121—C12—N13—Hf1164.7 (6)C221—C22—N23—Hf1175.9 (4)
N11—Hf1—N13—C124.9 (3)N13—Hf1—N23—C2248.4 (4)
N23—Hf1—N13—C1251.3 (5)N11—Hf1—N23—C2288.4 (3)
N21—Hf1—N13—C1289.1 (4)N21—Hf1—N23—C224.6 (2)
Cl1—Hf1—N13—C12177.3 (4)Cl1—Hf1—N23—C2280.8 (3)
Cl2—Hf1—N13—C1281.2 (4)Cl2—Hf1—N23—C22177.2 (2)
C22—Hf1—N13—C1280.6 (4)C12—Hf1—N23—C2279.6 (3)
N11—Hf1—N13—C131169.4 (6)N13—Hf1—N23—C231144.7 (5)
N23—Hf1—N13—C131144.2 (5)N11—Hf1—N23—C231104.8 (5)
N21—Hf1—N13—C131106.5 (6)N21—Hf1—N23—C231171.5 (6)
Cl1—Hf1—N13—C13112.8 (6)Cl1—Hf1—N23—C23186.0 (5)
Cl2—Hf1—N13—C13183.2 (6)Cl2—Hf1—N23—C23110.3 (5)
C12—Hf1—N13—C131164.5 (8)C12—Hf1—N23—C231113.5 (5)
C22—Hf1—N13—C131114.9 (5)C22—Hf1—N23—C231166.9 (7)
C12—N13—C131—C133112.3 (6)C22—N23—C231—C232100.5 (6)
Hf1—N13—C131—C13349.0 (7)Hf1—N23—C231—C23263.9 (7)
C12—N13—C131—C132124.9 (6)C22—N23—C231—C233135.7 (5)
Hf1—N13—C131—C13273.8 (7)Hf1—N23—C231—C23359.8 (7)

Experimental details

Crystal data
Chemical formula[Hf(C11H23N2)2Cl2]
Mr616.02
Crystal system, space groupTriclinic, P1
Temperature (K)105
a, b, c (Å)8.4969 (7), 12.6309 (9), 13.5716 (9)
α, β, γ (°)76.537 (6), 76.106 (7), 82.191 (6)
V3)1370.14 (17)
Z2
Radiation typeMo Kα
µ (mm1)4.02
Crystal size (mm)0.38 × 0.23 × 0.13
Data collection
DiffractometerOxford Diffraction Sapphire2 CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.335, 0.588
No. of measured, independent and
observed [I > 2σ(I)] reflections
25779, 6267, 5602
Rint0.063
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.02
No. of reflections6267
No. of parameters272
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.44, 2.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2000), CrysAlis RED (Oxford Diffraction, 2000), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Bruker, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Hf1—N132.175 (4)Hf1—Cl22.4121 (12)
Hf1—N112.186 (4)N11—C1111.460 (5)
Hf1—N232.187 (4)N13—C1311.465 (6)
Hf1—N212.191 (3)N21—C2111.456 (5)
Hf1—Cl12.4116 (11)N23—C2311.462 (6)
N13—Hf1—N1160.61 (14)N11—Hf1—Cl1152.84 (10)
N13—Hf1—N23154.36 (14)N23—Hf1—Cl1104.43 (10)
N11—Hf1—N23100.53 (14)N13—Hf1—Cl2104.40 (12)
N13—Hf1—N2199.74 (14)N21—Hf1—Cl2154.01 (10)
N11—Hf1—N2189.77 (14)Cl1—Hf1—Cl295.31 (4)
N23—Hf1—N2160.68 (13)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds