Download citation
Download citation
link to html
In the crystal structure of (R)-N,N-diisopropyl-3-(2-hydroxy-5-methyl­phenyl)-3-phenyl­propyl­aminium (2R,3R)-hydrogen tartrate, C22H32NO+·C4H5O6-, the hydrogen tartrate anions are linked by O-H...O hydrogen bonds to form helical chains built from R_{2}^{2}(9) rings. These chains are linked by the tolterodine molecules via N-H...O and O-H...O hydrogen bonds to form separate sheets parallel to the (101) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105001599/sq1190sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001599/sq1190Isup2.hkl
Contains datablock I

CCDC reference: 268119

Comment top

Tolterodine is the generic name for (R)-N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropylamine, which acts as a muscarinic receptor antagonist. Muscarinic receptors are the receptor sites for acethylcholine, a neurotransmitter of the parasympathetic autonomic nervous system. These receptors are located on the post-synaptic cell membranes of smooth muscle, cardiac muscle and glandular tissue at the end of parasympathetic nerve activity. Five different subtypes of muscarinic receptors, M1–M5, have been identified (Caulfield & Birdsall, 1998).

In the case of overactive bladder (OAB), antimuscarinics act by blocking the muscarinic receptors (mainly M2 and M3) on the detrusol muscle, causing relaxation and retention of more urine (Chaple, 2000; Beneton & De Parisot, 2003). As a competitive muscarinic receptor antagonist, tolterodine shows greater selectivity for the urinary bladder over other tissues containing muscarinic receptors (e.g. the salivary glands or the eyes). Unlike oxybutynin (which targets muscarinic receptors M1 and M3) and darifenacin (selective to the M3 subtype), tolterodine is non-selective with respect to the M1–M5 subtype (Nilvebrant, 2002). As a medication, tolterodine is used in the form of a hydrogen tartrate salt. After oral administration, tolterodine is metabolized in the liver by the CYP2D6 enzyme (cytochrome P450 2D6) to its major active 5-hydroxymethyl metabolite, which has similar pharmacological activity to the parent compound (Brynne et al., 1997).

Although tertiary and quaternary amines have been used in the treatment of OAB for many years, their structure–activity relationship with respect to their selectivity towards muscarinic receptors subtypes M1–M5 is still to be elucidated. To date, X-ray structural data are available only for terodiline hydrochloride (Carlstrom & Hacksell, 1983). In this paper, we present the crystal and molecular structures of tolterodinium (2R,3R)(+)-hydrogen tartrate, (I), determined from single-crystal X-ray data at 100 K.

The structure of (I) is shown in Fig. 1. The compound crystallizes in the monoclinic space group P21, with a monoprotonated tolterodinium cation and a hydrogen tartrate anion, C22H32NO+·C4H5O6, in the asymmetric unit. The main feature of the tolterodinium cation is the two phenyl rings (C2–C7 and C8–C13), which are almost planar; the maximum deviation from planarity is for atom C7 in the C2–C7 ring, of −0.0100 Å Please check rephrasing - original text appeared incomplete. The dihedral angle between these two phenyl rings is 65.91 (10)°. The C1—C14—C15—N16 aliphatic chain is maximally extended, with a torsion angle of 174.4 (2)°, as found in other diphenylpropylamines (Carlstrom & Hacksell, 1983; Carpy & Lemrabett, 1989). Both isopropyl groups and the H atom bonded to the ammonium N atom are in an eclipsed conformation with respect to the C15 H atoms and atom C14; the torsion angles C14—C15—N16—C17, C14—C15—N16—C20 and C14—C15—N16—H16 are 124.0 (3), −108.1 (3) and 13 (3)°, respectively.

The configuration of the hydrogen tartrate anion was known to be (R,R), and it thus follows that the configuration of the tolterodine chiral atom C1 is R.

The hydrogen tartrate anion in (I) adopts a normal conformation, with the two hydroxyl groups gauche and the carboxyl and carboxylate groups trans to each other, as has already been observed in numerous crystal structures involving the tartaric acid molecule or anions [Cambridge Structural Database (CSD), Version 5.25; Allen, 2002]. The values of the C23—C25—C26—C27 and O25—C25—C26—O26 torsion angles are 175.0 (2) and −76.2 (3)°, respectively.

The bond lengths and angles in the tartrate moiety clearly indicate the monoionized form, with C—O distances of 1.322 (4) and 1.212 (4) Å in the carboxyl group for C23—O23 and C23—O24, respectively, and 1.270 (4) and 1.254 (4) Å in the carboxylate group for C27—O27 and C27—O28, respectively. The O23—C23—C25—O25 torsion angle of 15.3 (3)° shows that the O25—H25 hydroxyl group is oriented on the same side of the molecule as the O23—H23 atoms of the carboxyl group with respect to the plane formed by the four C atoms. Moreover, the hydroxyl atom H25 and carboxyl atom O23 form an intraionic O25—H25···O23 hydrogen bond (Table 1). A CSD search for tartaric acid and hydrogen tartrate anions with respect to the O23—C23—C25—O25 torsion angle revealed only about 20 structures in which similar orientations to that observed in (I) of adjacent hydroxyl and carboxyl groups have been observed. Among these, the most similar conformation of hydrogen tartrate anions is that observed in the crystal structure of PUMSEV (Lacroix et al., 1998).

The crystal packing in (I) is determined mainly by intermolecular hydrogen bonds. The hydroxyl atom O26 of the hydrogen tartrate anion at (x, y, z) acts as hydrogen-bond donor to the O24 carboxyl atom at (1 − x, y + 1/2, 1 − z), producing a C(6) chain generated by the 21 screw axis along (1/2, y, 1/2). At the same time, carboxyl atom O23 at (1 − x, y + 1/2, 1 − z) acts as hydrogen-bond donor to carboxylate atom O28 at (x, y, z), producing a second C(7) chain generated by the same screw axis as before, so that the resulting chain of rings of hydrogen tartrate molecules running parallel to [010] (Fig. 2) has the descriptor C(6) C(7)[R22(9)] (Bernstein et al. 1995). Only one chain of this type runs through each unit cell.

The tolterodinium cation acts as both an O—H···O and an N—H···O hydrogen-bond donor, linking the hydrogen tartrate helices into separate sheets parallel to the (101) plane. The ammonium N—H group forms a bifurcated hydrogen bond with carboxylate atoms O27 and O28, while the O3—H3 hydroxyl group is hydrogen bonded to carboxylate atom O27(2 − x, 1/2 + y, −z) of a symmetry-related hydrogen tartrate anion belonging to other chain. In this way, the carboxylate O atoms act as double acceptors in N—H and O—H hydrogen bonds (Fig. 3). Between adjacent sheets there are only van der Waals interactions.

Experimental top

To obtain single crystals of (I), a sample of tolterodinium (2R,2R)(+)-hydrogen tartrate was dissolved in 1,2-propylene carbonate (8 ml) with heating. The resulting solution was slowly cooled down to room temperature. After 24 h, plates of (I) crystallized (m.p. 489 K).

Refinement top

The positions of H atoms on O and N atoms were determined from difference Fourier maps and their positional and Uiso parameters were refined. H atoms on C atoms were calculated in their ideal positions and refined using a riding model, with C—H distances in the range 0.93–0.98 Å and with Uiso(H) = 1.5Ueq(C). Please check added text.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2000 (Spek, 2000); software used to prepare material for publication: SHELXL97 and PARST96 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of van der Waals radii. O and N atoms are shown as octant-shaded ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I). The helices of the hydrogen tartrate anions run parallel to the crystallographic b axis. For clarity, bonds in the tolterodinuim cation are shown as solid and those in the tartrate anion are shown as open. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 − x, 1/2 + y, 1 − z) and (2 − x, 1/2 + y, −z), respectively.
(R)—N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropylammonium (2R,3R)(+)-hydrogen tartrate top
Crystal data top
C22H32NO+·C4H5O6F(000) = 512
Mr = 475.57Dx = 1.258 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 2348 reflections
a = 9.204 (1) Åθ = 4.8–65.1°
b = 10.502 (1) ŵ = 0.74 mm1
c = 13.009 (1) ÅT = 100 K
β = 93.061 (4)°Plate, colourless
V = 1255.7 (2) Å30.40 × 0.15 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
3565 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3105 reflections with I > 2σ(I)
Graded mirror monochromatorRint = 0.044
ϕ and ω scansθmax = 65.1°, θmin = 4.8°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.756, Tmax = 0.929k = 1211
3572 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.1083P)2 + 0.2134P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3429 reflectionsΔρmax = 0.25 e Å3
327 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C22H32NO+·C4H5O6V = 1255.7 (2) Å3
Mr = 475.57Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.204 (1) ŵ = 0.74 mm1
b = 10.502 (1) ÅT = 100 K
c = 13.009 (1) Å0.40 × 0.15 × 0.10 mm
β = 93.061 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
3105 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.929Rint = 0.044
3572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148Δρmax = 0.25 e Å3
S = 1.11Δρmin = 0.30 e Å3
3429 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
327 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Special details top

Experimental. PLAT027_ALERT_3_A _diffrn_reflns_theta_full (too) Low ······64.91 Deg.

KappaCCD Nonius diffractometer. 1197 frames in 13 sets of ϕ and ω scans. Rotation/frame=1°. Crystal-detector distance=40.0 mm. Measuring time=10 s/°. High angle reflections (above 65°) were not collected due to limitations in our rotating anode and KCCD goniometer geometry.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9347 (3)0.9099 (3)0.0244 (2)0.0148 (6)
H10.92041.00110.03740.018*
C21.0976 (3)0.8838 (3)0.0327 (2)0.0139 (6)
C31.1764 (3)0.9572 (3)0.1012 (2)0.0150 (6)
O31.1035 (2)1.0470 (2)0.15895 (17)0.0196 (5)
C41.3262 (3)0.9363 (3)0.1071 (2)0.0183 (7)
H41.37810.98350.15330.022*
C51.3975 (3)0.8471 (3)0.0457 (2)0.0196 (7)
H51.49740.83630.04990.024*
C61.3227 (3)0.7725 (3)0.0227 (3)0.0195 (7)
C611.3999 (3)0.6729 (4)0.0879 (3)0.0280 (8)
H61A1.50000.66870.07090.042*
H61B1.35460.59170.07520.042*
H61C1.39450.69460.15930.042*
C71.1723 (3)0.7921 (3)0.0267 (2)0.0167 (6)
H71.12040.74190.07080.020*
C80.8428 (3)0.8398 (3)0.1078 (2)0.0161 (7)
C90.8022 (3)0.9006 (4)0.2001 (2)0.0216 (7)
H90.83320.98360.21110.026*
C100.7162 (3)0.8394 (4)0.2759 (3)0.0259 (8)
H100.68960.88170.33690.031*
C110.6699 (3)0.7159 (4)0.2612 (3)0.0261 (8)
H110.61160.67520.31170.031*
C120.7115 (3)0.6527 (4)0.1700 (3)0.0248 (8)
H120.68140.56930.15980.030*
C130.7984 (3)0.7146 (3)0.0939 (2)0.0181 (7)
H130.82670.67180.03350.022*
C140.8807 (3)0.8838 (3)0.0837 (2)0.0165 (7)
H14A0.77670.89900.08300.020*
H14B0.89770.79500.10110.020*
C150.9568 (3)0.9675 (3)0.1654 (2)0.0177 (7)
H15A0.94791.05590.14460.021*
H15B1.05950.94630.17080.021*
N160.8932 (2)0.9509 (3)0.27036 (19)0.0165 (6)
C171.0122 (3)0.9126 (3)0.3530 (2)0.0228 (8)
H171.09190.97440.35190.027*
C190.9521 (4)0.9127 (4)0.4599 (3)0.0302 (8)
H19A0.91740.99640.47550.045*
H19B1.02770.88880.51000.045*
H19C0.87340.85290.46170.045*
C181.0708 (4)0.7820 (4)0.3276 (3)0.0326 (9)
H18A1.11200.78440.26140.049*
H18B0.99310.72100.32640.049*
H18C1.14450.75780.37890.049*
C200.8048 (3)1.0675 (3)0.2996 (2)0.0186 (7)
H200.75811.04700.36360.022*
C210.9008 (4)1.1832 (3)0.3208 (3)0.0270 (8)
H21A0.97681.16190.37130.040*
H21B0.84331.25140.34630.040*
H21C0.94301.20940.25830.040*
C220.6846 (3)1.0938 (4)0.2179 (3)0.0242 (8)
H22A0.62421.01970.20900.036*
H22B0.72681.11410.15410.036*
H22C0.62691.16430.23910.036*
C230.6236 (3)0.4307 (3)0.4836 (2)0.0170 (7)
O230.6176 (2)0.4507 (2)0.58359 (16)0.0207 (5)
O240.5796 (2)0.3358 (2)0.43903 (17)0.0211 (5)
C250.6888 (3)0.5422 (3)0.4280 (2)0.0171 (7)
H250.75870.50830.38080.021*
O250.7632 (2)0.6299 (2)0.49477 (18)0.0220 (5)
C260.5646 (3)0.6081 (3)0.3627 (2)0.0156 (7)
H260.53380.55010.30670.019*
O260.4425 (2)0.6318 (2)0.42165 (18)0.0199 (5)
C270.6272 (3)0.7273 (3)0.3144 (2)0.0148 (6)
O270.7348 (2)0.7120 (2)0.25846 (16)0.0184 (5)
O280.5756 (2)0.8352 (2)0.33190 (19)0.0249 (5)
H31.160 (4)1.097 (4)0.194 (3)0.032 (11)*
H16N0.829 (5)0.872 (5)0.265 (3)0.040 (12)*
H26O0.460 (4)0.698 (5)0.462 (3)0.027 (10)*
H25O0.719 (5)0.635 (5)0.549 (4)0.043 (13)*
H23O0.550 (7)0.383 (7)0.614 (5)0.085 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (12)0.0069 (16)0.0182 (17)0.0023 (12)0.0032 (10)0.0023 (13)
C20.0189 (13)0.0049 (15)0.0180 (16)0.0000 (11)0.0019 (11)0.0027 (12)
C30.0209 (12)0.0080 (16)0.0159 (16)0.0012 (12)0.0004 (10)0.0032 (13)
O30.0217 (9)0.0138 (13)0.0235 (12)0.0009 (9)0.0037 (9)0.0062 (10)
C40.0209 (12)0.0119 (18)0.0224 (17)0.0052 (13)0.0048 (11)0.0028 (14)
C50.0161 (12)0.0168 (19)0.0260 (18)0.0008 (13)0.0012 (11)0.0056 (15)
C60.0210 (13)0.0093 (18)0.0277 (18)0.0026 (13)0.0019 (12)0.0036 (14)
C610.0241 (14)0.019 (2)0.040 (2)0.0034 (14)0.0046 (13)0.0062 (17)
C70.0215 (13)0.0086 (16)0.0203 (16)0.0011 (12)0.0052 (11)0.0038 (14)
C80.0149 (11)0.0146 (17)0.0190 (16)0.0013 (12)0.0022 (10)0.0022 (14)
C90.0215 (12)0.021 (2)0.0228 (18)0.0022 (13)0.0045 (11)0.0012 (14)
C100.0230 (13)0.034 (2)0.0205 (18)0.0010 (15)0.0004 (12)0.0049 (17)
C110.0182 (12)0.035 (2)0.0257 (19)0.0021 (15)0.0018 (12)0.0136 (17)
C120.0221 (13)0.018 (2)0.035 (2)0.0009 (14)0.0029 (13)0.0113 (16)
C130.0199 (12)0.0116 (19)0.0226 (17)0.0031 (13)0.0000 (11)0.0020 (14)
C140.0174 (12)0.0135 (17)0.0189 (17)0.0011 (12)0.0034 (11)0.0016 (13)
C150.0189 (11)0.0142 (17)0.0202 (17)0.0013 (12)0.0030 (10)0.0004 (13)
N160.0199 (10)0.0123 (15)0.0171 (14)0.0003 (11)0.0011 (9)0.0013 (11)
C170.0262 (13)0.0171 (19)0.0237 (19)0.0051 (14)0.0110 (12)0.0002 (15)
C190.0429 (17)0.021 (2)0.0253 (19)0.0101 (17)0.0097 (13)0.0074 (16)
C180.0322 (16)0.021 (2)0.043 (2)0.0019 (16)0.0162 (15)0.0021 (18)
C200.0265 (14)0.0117 (18)0.0181 (17)0.0029 (13)0.0055 (12)0.0016 (13)
C210.0365 (16)0.014 (2)0.031 (2)0.0001 (15)0.0078 (14)0.0031 (15)
C220.0254 (13)0.019 (2)0.0290 (19)0.0054 (14)0.0046 (12)0.0056 (15)
C230.0194 (12)0.0130 (19)0.0189 (17)0.0025 (13)0.0023 (10)0.0020 (14)
O230.0285 (9)0.0172 (14)0.0167 (12)0.0078 (9)0.0040 (8)0.0015 (10)
O240.0303 (10)0.0120 (13)0.0211 (12)0.0037 (10)0.0022 (8)0.0004 (10)
C250.0202 (12)0.0129 (18)0.0185 (16)0.0034 (12)0.0028 (11)0.0006 (13)
O250.0259 (10)0.0200 (14)0.0198 (13)0.0092 (10)0.0007 (9)0.0024 (10)
C260.0191 (11)0.0121 (17)0.0160 (16)0.0016 (12)0.0050 (11)0.0021 (13)
O260.0212 (9)0.0152 (13)0.0239 (13)0.0009 (9)0.0086 (8)0.0032 (11)
C270.0222 (12)0.0094 (17)0.0127 (16)0.0000 (13)0.0002 (11)0.0046 (13)
O270.0222 (9)0.0143 (13)0.0191 (12)0.0002 (9)0.0053 (8)0.0007 (9)
O280.0320 (11)0.0116 (13)0.0325 (14)0.0037 (10)0.0130 (9)0.0016 (11)
Geometric parameters (Å, º) top
C1—C81.529 (4)N16—C201.530 (4)
C1—C21.533 (3)N16—C171.547 (4)
C1—C141.540 (4)N16—H16N1.02 (5)
C1—H10.9800C17—C181.517 (5)
C2—C71.394 (5)C17—C191.524 (5)
C2—C31.408 (4)C17—H170.9800
C3—O31.360 (4)C19—H19A0.9600
C3—C41.403 (4)C19—H19B0.9600
O3—H30.88 (4)C19—H19C0.9600
C4—C51.375 (5)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.395 (5)C18—H18C0.9600
C5—H50.9300C20—C221.517 (4)
C6—C71.403 (4)C20—C211.519 (5)
C6—C611.501 (5)C20—H200.9800
C61—H61A0.9600C21—H21A0.9600
C61—H61B0.9600C21—H21B0.9600
C61—H61C0.9600C21—H21C0.9600
C7—H70.9300C22—H22A0.9600
C8—C131.391 (5)C22—H22B0.9600
C8—C91.393 (5)C22—H22C0.9600
C9—C101.390 (5)C23—O241.212 (4)
C9—H90.9300C23—O231.322 (4)
C10—C111.382 (6)C23—C251.517 (4)
C10—H100.9300O23—H23O1.03 (7)
C11—C121.394 (5)C25—O251.417 (4)
C11—H110.9300C25—C261.551 (4)
C12—C131.400 (5)C25—H250.9800
C12—H120.9300O25—H25O0.83 (5)
C13—H130.9300C26—O261.416 (3)
C14—C151.522 (4)C26—C271.527 (4)
C14—H14A0.9700C26—H260.9800
C14—H14B0.9700O26—H26O0.88 (5)
C15—N161.524 (4)C27—O281.254 (4)
C15—H15A0.9700C27—O271.270 (3)
C15—H15B0.9700
C8—C1—C2111.7 (2)C15—N16—C17111.1 (2)
C8—C1—C14111.7 (2)C20—N16—C17113.7 (2)
C2—C1—C14113.4 (2)C15—N16—H16N106 (2)
C8—C1—H1106.5C20—N16—H16N111 (2)
C2—C1—H1106.5C17—N16—H16N103 (2)
C14—C1—H1106.5C18—C17—C19110.5 (3)
C7—C2—C3118.3 (2)C18—C17—N16109.3 (3)
C7—C2—C1122.7 (3)C19—C17—N16110.8 (2)
C3—C2—C1119.0 (3)C18—C17—H17108.7
O3—C3—C4122.3 (3)C19—C17—H17108.7
O3—C3—C2118.3 (2)N16—C17—H17108.7
C4—C3—C2119.4 (3)C17—C19—H19A109.5
C3—O3—H3114 (3)C17—C19—H19B109.5
C5—C4—C3120.9 (3)H19A—C19—H19B109.5
C5—C4—H4119.5C17—C19—H19C109.5
C3—C4—H4119.5H19A—C19—H19C109.5
C4—C5—C6121.1 (3)H19B—C19—H19C109.5
C4—C5—H5119.4C17—C18—H18A109.5
C6—C5—H5119.4C17—C18—H18B109.5
C5—C6—C7117.6 (3)H18A—C18—H18B109.5
C5—C6—C61121.1 (3)C17—C18—H18C109.5
C7—C6—C61121.3 (3)H18A—C18—H18C109.5
C6—C61—H61A109.5H18B—C18—H18C109.5
C6—C61—H61B109.5C22—C20—C21112.1 (3)
H61A—C61—H61B109.5C22—C20—N16110.4 (3)
C6—C61—H61C109.5C21—C20—N16111.9 (2)
H61A—C61—H61C109.5C22—C20—H20107.4
H61B—C61—H61C109.5C21—C20—H20107.4
C2—C7—C6122.7 (3)N16—C20—H20107.4
C2—C7—H7118.7C20—C21—H21A109.5
C6—C7—H7118.7C20—C21—H21B109.5
C13—C8—C9118.6 (3)H21A—C21—H21B109.5
C13—C8—C1121.2 (3)C20—C21—H21C109.5
C9—C8—C1120.2 (3)H21A—C21—H21C109.5
C10—C9—C8121.1 (3)H21B—C21—H21C109.5
C10—C9—H9119.5C20—C22—H22A109.5
C8—C9—H9119.5C20—C22—H22B109.5
C11—C10—C9120.2 (3)H22A—C22—H22B109.5
C11—C10—H10119.9C20—C22—H22C109.5
C9—C10—H10119.9H22A—C22—H22C109.5
C10—C11—C12119.5 (3)H22B—C22—H22C109.5
C10—C11—H11120.2O24—C23—O23124.8 (3)
C12—C11—H11120.2O24—C23—C25122.5 (3)
C11—C12—C13120.1 (3)O23—C23—C25112.6 (3)
C11—C12—H12120.0C23—O23—H23O109 (3)
C13—C12—H12120.0O25—C25—C23113.6 (3)
C8—C13—C12120.5 (3)O25—C25—C26111.4 (3)
C8—C13—H13119.8C23—C25—C26107.9 (2)
C12—C13—H13119.8O25—C25—H25107.9
C15—C14—C1112.1 (2)C23—C25—H25107.9
C15—C14—H14A109.2C26—C25—H25107.9
C1—C14—H14A109.2C25—O25—H25O109 (3)
C15—C14—H14B109.2O26—C26—C27114.0 (3)
C1—C14—H14B109.2O26—C26—C25111.4 (2)
H14A—C14—H14B107.9C27—C26—C25107.9 (2)
C14—C15—N16112.0 (2)O26—C26—H26107.8
C14—C15—H15A109.2C27—C26—H26107.8
N16—C15—H15A109.2C25—C26—H26107.8
C14—C15—H15B109.2C26—O26—H26O109 (2)
N16—C15—H15B109.2O28—C27—O27122.2 (3)
H15A—C15—H15B107.9O28—C27—C26120.7 (2)
C15—N16—C20111.5 (2)O27—C27—C26117.1 (3)
C8—C1—C2—C797.3 (3)C1—C8—C13—C12178.5 (3)
C14—C1—C2—C729.9 (4)C11—C12—C13—C80.7 (4)
C8—C1—C2—C384.3 (4)C8—C1—C14—C15171.8 (2)
C14—C1—C2—C3148.5 (3)C2—C1—C14—C1561.0 (3)
C7—C2—C3—O3179.8 (3)C1—C14—C15—N16174.4 (2)
C1—C2—C3—O31.3 (4)C14—C15—N16—C20108.1 (3)
C7—C2—C3—C40.2 (5)C14—C15—N16—C17124.0 (3)
C1—C2—C3—C4178.3 (3)C15—N16—C17—C1865.2 (3)
O3—C3—C4—C5178.3 (3)C20—N16—C17—C18168.0 (3)
C2—C3—C4—C51.3 (5)C15—N16—C17—C19172.8 (3)
C3—C4—C5—C61.5 (5)C20—N16—C17—C1946.0 (4)
C4—C5—C6—C70.2 (5)C15—N16—C20—C2257.0 (3)
C4—C5—C6—C61178.5 (3)C17—N16—C20—C22176.5 (3)
C3—C2—C7—C61.6 (5)C15—N16—C20—C2168.7 (3)
C1—C2—C7—C6176.9 (3)C17—N16—C20—C2157.8 (3)
C5—C6—C7—C21.4 (5)O24—C23—C25—O25166.3 (3)
C61—C6—C7—C2179.9 (3)O23—C23—C25—O2515.3 (3)
C2—C1—C8—C1386.0 (3)O24—C23—C25—C2669.7 (3)
C14—C1—C8—C1342.2 (4)O23—C23—C25—C26108.7 (3)
C2—C1—C8—C993.8 (3)O25—C25—C26—O2676.2 (3)
C14—C1—C8—C9138.1 (3)C23—C25—C26—O2649.1 (3)
C13—C8—C9—C101.6 (4)O25—C25—C26—C2749.7 (3)
C1—C8—C9—C10178.6 (2)C23—C25—C26—C27175.0 (2)
C8—C9—C10—C110.4 (4)O26—C26—C27—O283.3 (4)
C9—C10—C11—C120.6 (4)C25—C26—C27—O28121.0 (3)
C10—C11—C12—C130.5 (4)O26—C26—C27—O27178.3 (2)
C9—C8—C13—C121.7 (4)C25—C26—C27—O2757.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16N···O271.02 (5)1.89 (5)2.902 (3)172 (4)
N16—H16N···O281.02 (4)2.57 (4)3.303 (3)129 (3)
O3—H3···O27i0.88 (4)1.78 (4)2.665 (3)174 (4)
O25—H25O···O230.83 (5)2.20 (5)2.614 (3)110 (4)
O23—H23O···O28ii1.03 (7)1.48 (6)2.460 (3)158 (6)
O26—H26O···O24iii0.88 (5)1.98 (5)2.821 (3)157 (6)
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H32NO+·C4H5O6
Mr475.57
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.204 (1), 10.502 (1), 13.009 (1)
β (°) 93.061 (4)
V3)1255.7 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.40 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.756, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3572, 3565, 3105
Rint0.044
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.148, 1.11
No. of reflections3429
No. of parameters327
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON2000 (Spek, 2000), SHELXL97 and PARST96 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16N···O271.02 (5)1.89 (5)2.902 (3)172 (4)
N16—H16N···O281.02 (4)2.57 (4)3.303 (3)129 (3)
O3—H3···O27i0.88 (4)1.78 (4)2.665 (3)174 (4)
O25—H25O···O230.83 (5)2.20 (5)2.614 (3)110 (4)
O23—H23O···O28ii1.03 (7)1.48 (6)2.460 (3)158 (6)
O26—H26O···O24iii0.88 (5)1.98 (5)2.821 (3)157 (6)
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds