Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zn(C8H5O4)2(C10H8N2)2], was obtained by the hydro­thermal reaction of ZnSO4·7H2O with phthalic acid (H2pht) and 4,4'-bi­pyridine (4,4'-bipy). Crystallographic analysis shows that it has a one-dimensional double-chain structure via hydrogen-bonding interactions. Each ZnII atom, adopting a distorted tetrahedral geometry, is coordinated by two N atoms from two 4,4'-bipy ligands, with Zn-N distances of 2.054 (4) and 2.104 (4) Å, and by two O atoms from symmetry-related Hpht- ligands, with Zn-O distances of 1.921 (4) and 2.019 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104017184/sq1166sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104017184/sq1166Isup2.hkl
Contains datablock I

CCDC reference: 251288

Comment top

The design and construction of novel coordination polymers based on covalent interactions (Fujita et al., 1994) or supramolecular contacts, such as hydrogen bonds and/or ππ stacking interactions (Desiraju, 1995), is a rapidly developing research area, which is not only due to their fascinating structures (Blake et al., 1999; Batten & Robson, 1998) but also to their unexpected properties for potential applications (Matsumoto et al., 1999; Chui et al., 1999). The design of coordination polymers is greatly influenced by factors such as the coordination nature of the metal ion, the structural characteristics of the polydentate organic ligand, the metal-ligand ratio, and the possible counterion. Here, we report the title novel metal-organic coordination polymer, (I), obtained by the hydrothermal reaction of 4,4'-bipy, H2pht and ZnSO4·7H2O. \sch

The present X-ray single-crystal diffraction study reveals that compound (I) consists of one ZnII atom, two Hpht ligands and two 4,4'-bipy ligands. As shown in Fig.1, each ZnII atom is a four-coordinated tetrahedrally, by two O atoms from two Hpht ligands, with Zn—O bond lengths of 1.921 (4) and 2.019 (4) Å, and two N atoms of two 4,4'-bipy ligands, with Zn—N bond distances of 2.054 (4) and 2.104 (4) Å. However, the Zn—O4 distance of 2.496 (4) Å suggests a non-negligible interaction with the uncoordinated O atom, which may be described as a semi-chelating coordination mode (Guilera & Steed, 1999). Hence, the ZnII atom may also be regarded as having a trigonal-bipyramidal geometry. The aforementioned bond lengths agree with those observed in similar Zn complexes (Wu et al., 2002). Each 4,4'-bipy ligand acts as a terminal ligand to link to one ZnII atom. Within each 4,4'-bipy molecule, the two pyridine rings are twisted by 33.61 and 44.88° relative to each other.

As each Hpht and 4,4'-bipy ligand acts as a terminal ligand, the uncoordinated carboxylic acid groups from the Hpht ligands link to the uncoordinated N atoms from the 4,4'-bipy ligands via hydrogen bonding. The O1···N3 and O8···N4 distances are 2.643 (5) and 2.665 (6) Å, respectively, indicating strong hydrogen bonds. The two CO bonds, viz. C15—O2 and C8—O7, are 1.191 (6) and 1.218 (7) Å, respectively; these are much shorter than the other C—O bonds. It is interesting to note that two ZnII atoms, two 4,4'-bipy molecules and two Hpht anions produce a 30-membered grid, with a Zn···Zn distance of 14.024 (7) Å, via coordination covalent bonds and hydrogen bonds. These grids, by sharing ZnII atoms, extend to form double zigzag chains propagating along the c axis (Fig. 2). In contrast with other metal-organic frameworks constructed with 4,4'-bipy ligands and H2pht (Ma et al., 2003; Lightfoot et al., 1999; Suresh et al., 2001), 4,4'-bipy acts as a terminal ligand in (I) instead of as a µ2 bridging ligand and this results in a different structural topology. This also suggests that the combination of coordination covalent bonds and hydrogen bonds is an important tool for the construction of supramolecular architectures.

Experimental top

A mixture of ZnSO4·7H2O (0.144 g, 0.5 mmol), 4,4'-bipy (0.080 g, 0.5 mmol) and H2pht (0.166 g, 0.5 mmol) in EtOH-H2O (1:8 v/v, 18 ml) was sealed in a Teflon-lined stainless steel vessel and heated to 438 K for 36 h under autogeneous pressure. A large quantity of colourless crystals of (I) (yield 56%) was obtained after the solution had cooled to room temperature.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. H atoms bonded to O atoms were located from difference maps and refined isotropically, with O—H distances fixed at constrained to? 0.83 Å. Please clarify, as Uiso(H) for these atoms have no s.u. but the xyz values do.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL (Siemens, 1994); molecular graphics: SHELXTL (Bruker, 2???); software used to prepare material for publication: SHELXTL (Bruekr, 2???).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The double zigzag chains formed along the c axis of the crystal of (I), with hydrogen bonds shown as dotted lines.
Bis(4,4'-bipyridine-κN)bis(hydrogen phthlato)-κ2O,O';κO-zinc(II) top
Crystal data top
[Zn(C8H5O4)2(C10H8N2)2]Z = 2
Mr = 708.00F(000) = 728
Triclinic, P1Dx = 1.507 Mg m3
a = 7.5100 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0003 (4) ÅCell parameters from 3960 reflections
c = 22.0821 (6) Åθ = 0.9–25.0°
α = 84.307 (1)°µ = 0.85 mm1
β = 88.084 (1)°T = 293 K
γ = 71.02°Block, colourless
V = 1560.52 (10) Å30.56 × 0.26 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5502 independent reflections
Radiation source: fine-focus sealed tube4273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 0.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 58
Tmin = 0.767, Tmax = 0.858k = 1111
8036 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0795P)2 + 3.685P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max < 0.001
448 parametersΔρmax = 0.75 e Å3
2 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Zn(C8H5O4)2(C10H8N2)2]γ = 71.02°
Mr = 708.00V = 1560.52 (10) Å3
Triclinic, P1Z = 2
a = 7.5100 (3) ÅMo Kα radiation
b = 10.0003 (4) ŵ = 0.85 mm1
c = 22.0821 (6) ÅT = 293 K
α = 84.307 (1)°0.56 × 0.26 × 0.18 mm
β = 88.084 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5502 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4273 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.858Rint = 0.029
8036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0632 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.75 e Å3
5390 reflectionsΔρmin = 0.64 e Å3
448 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.03938 (8)0.02585 (6)0.24332 (3)0.0370 (2)
O10.3487 (5)0.2747 (4)0.04990 (18)0.0531 (10)
H1O0.252 (6)0.256 (7)0.029 (3)0.080*
O20.2576 (6)0.4372 (4)0.0898 (2)0.0628 (11)
O30.2063 (5)0.1770 (4)0.18365 (18)0.0527 (10)
O40.3228 (6)0.2180 (5)0.27532 (19)0.0704 (13)
O50.1663 (7)0.1117 (5)0.2627 (2)0.0776 (14)
O60.1031 (6)0.2595 (5)0.2995 (2)0.0719 (13)
O70.1530 (7)0.4698 (5)0.4371 (3)0.0869 (17)
O80.0226 (6)0.2435 (4)0.4306 (2)0.0579 (11)
H8O0.063 (7)0.235 (8)0.451 (3)0.087*
N10.1197 (5)0.0692 (4)0.30784 (18)0.0380 (9)
N20.1847 (5)0.0401 (4)0.18159 (18)0.0360 (9)
N31.0287 (6)0.2187 (5)0.01152 (19)0.0439 (10)
N40.7700 (6)0.1941 (5)0.5006 (2)0.0471 (11)
C10.1755 (6)0.3210 (5)0.3194 (2)0.0359 (11)
C20.3189 (8)0.3402 (6)0.2875 (3)0.0501 (14)
H2A0.35300.29100.24950.060*
C30.4119 (8)0.4315 (6)0.3114 (3)0.0559 (15)
H3B0.50740.44420.28930.067*
C40.3639 (8)0.5043 (6)0.3682 (3)0.0556 (15)
H4B0.42710.56590.38420.067*
C50.2221 (7)0.4854 (6)0.4009 (3)0.0461 (13)
H5A0.18910.53440.43910.055*
C60.1282 (6)0.3929 (5)0.3767 (2)0.0363 (11)
C70.0692 (8)0.2228 (6)0.2924 (2)0.0485 (13)
C80.0191 (7)0.3727 (6)0.4157 (3)0.0448 (12)
C90.5308 (6)0.3906 (5)0.1296 (2)0.0345 (11)
C100.7072 (7)0.4714 (5)0.1054 (2)0.0427 (12)
H10A0.71780.50520.06450.051*
C110.8652 (8)0.5013 (6)0.1419 (3)0.0548 (15)
H11A0.98190.55460.12530.066*
C120.8514 (8)0.4529 (6)0.2025 (3)0.0539 (15)
H12A0.95820.47330.22700.065*
C130.6774 (8)0.3734 (6)0.2269 (3)0.0485 (13)
H13A0.66850.34220.26810.058*
C140.5157 (7)0.3391 (5)0.1912 (2)0.0365 (11)
C150.3610 (6)0.3690 (5)0.0885 (2)0.0372 (11)
C160.3358 (7)0.2394 (6)0.2194 (2)0.0432 (12)
C170.5858 (8)0.2496 (6)0.5103 (3)0.0532 (14)
H17A0.54610.30650.54220.064*
C180.4508 (7)0.2272 (6)0.4756 (2)0.0455 (13)
H18A0.32370.26740.48440.055*
C190.5071 (7)0.1442 (5)0.4276 (2)0.0343 (10)
C200.6991 (7)0.0864 (6)0.4171 (2)0.0415 (12)
H20A0.74290.02980.38530.050*
C210.8233 (7)0.1141 (6)0.4543 (2)0.0432 (12)
H21A0.95150.07480.44680.052*
C220.2865 (7)0.0299 (6)0.3229 (3)0.0490 (14)
H22A0.31750.11660.30650.059*
C230.4125 (7)0.0091 (6)0.3614 (3)0.0466 (13)
H23A0.52650.08020.37020.056*
C240.3686 (7)0.1185 (5)0.3869 (2)0.0366 (11)
C250.1957 (7)0.2197 (5)0.3728 (2)0.0400 (11)
H25A0.15980.30580.38990.048*
C260.0778 (7)0.1918 (5)0.3332 (2)0.0392 (11)
H26A0.03680.26160.32360.047*
C270.9891 (7)0.1216 (6)0.0519 (2)0.0416 (12)
H27A1.07820.07810.05840.050*
C280.8236 (7)0.0829 (6)0.0842 (2)0.0421 (12)
H28A0.80200.01540.11210.051*
C290.6884 (7)0.1467 (5)0.0746 (2)0.0349 (11)
C300.7283 (7)0.2469 (5)0.0325 (2)0.0410 (12)
H30A0.64190.29180.02480.049*
C310.8999 (8)0.2785 (6)0.0023 (2)0.0451 (13)
H31A0.92560.34540.02600.054*
C320.2494 (8)0.0605 (6)0.1542 (3)0.0482 (13)
H32A0.18260.15500.15910.058*
C330.4096 (7)0.0309 (5)0.1193 (2)0.0438 (12)
H33A0.45070.10430.10180.053*
C340.5102 (7)0.1091 (5)0.1101 (2)0.0365 (11)
C350.4399 (7)0.2137 (5)0.1366 (2)0.0394 (11)
H35A0.50000.30850.13050.047*
C360.2796 (6)0.1751 (5)0.1723 (2)0.0370 (11)
H36A0.23570.24620.19070.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0303 (3)0.0421 (4)0.0388 (3)0.0113 (2)0.0027 (2)0.0049 (2)
O10.044 (2)0.068 (3)0.055 (2)0.024 (2)0.0167 (18)0.025 (2)
O20.054 (2)0.058 (2)0.088 (3)0.033 (2)0.023 (2)0.018 (2)
O30.039 (2)0.051 (2)0.056 (2)0.0016 (18)0.0045 (18)0.0002 (18)
O40.063 (3)0.091 (3)0.048 (3)0.013 (2)0.016 (2)0.003 (2)
O50.067 (3)0.070 (3)0.100 (4)0.036 (3)0.011 (3)0.023 (3)
O60.045 (3)0.093 (3)0.085 (3)0.037 (2)0.004 (2)0.005 (3)
O70.071 (3)0.055 (3)0.124 (4)0.000 (2)0.051 (3)0.015 (3)
O80.051 (2)0.047 (2)0.074 (3)0.0064 (19)0.026 (2)0.020 (2)
N10.030 (2)0.040 (2)0.041 (2)0.0066 (18)0.0020 (17)0.0068 (18)
N20.033 (2)0.038 (2)0.037 (2)0.0115 (18)0.0013 (17)0.0046 (18)
N30.039 (2)0.055 (3)0.038 (2)0.015 (2)0.0047 (19)0.004 (2)
N40.046 (3)0.051 (3)0.048 (3)0.021 (2)0.010 (2)0.004 (2)
C10.027 (2)0.035 (3)0.043 (3)0.005 (2)0.003 (2)0.009 (2)
C20.044 (3)0.052 (3)0.049 (3)0.009 (3)0.012 (2)0.002 (3)
C30.037 (3)0.054 (3)0.082 (4)0.018 (3)0.008 (3)0.021 (3)
C40.047 (3)0.039 (3)0.087 (5)0.022 (3)0.005 (3)0.007 (3)
C50.043 (3)0.043 (3)0.054 (3)0.018 (2)0.004 (2)0.002 (2)
C60.030 (2)0.034 (3)0.046 (3)0.008 (2)0.001 (2)0.012 (2)
C70.053 (4)0.052 (3)0.041 (3)0.018 (3)0.004 (3)0.000 (3)
C80.036 (3)0.045 (3)0.053 (3)0.011 (2)0.003 (2)0.010 (3)
C90.028 (2)0.029 (2)0.047 (3)0.009 (2)0.000 (2)0.007 (2)
C100.035 (3)0.039 (3)0.048 (3)0.005 (2)0.004 (2)0.001 (2)
C110.035 (3)0.044 (3)0.078 (4)0.002 (2)0.007 (3)0.007 (3)
C120.033 (3)0.052 (3)0.075 (4)0.010 (3)0.015 (3)0.022 (3)
C130.047 (3)0.055 (3)0.044 (3)0.016 (3)0.005 (2)0.009 (3)
C140.030 (2)0.038 (3)0.043 (3)0.012 (2)0.001 (2)0.008 (2)
C150.026 (2)0.035 (3)0.050 (3)0.011 (2)0.004 (2)0.001 (2)
C160.040 (3)0.043 (3)0.050 (3)0.017 (2)0.008 (2)0.003 (2)
C170.051 (3)0.058 (4)0.051 (3)0.013 (3)0.002 (3)0.023 (3)
C180.034 (3)0.052 (3)0.049 (3)0.008 (2)0.000 (2)0.018 (3)
C190.036 (3)0.032 (2)0.035 (3)0.011 (2)0.001 (2)0.001 (2)
C200.038 (3)0.050 (3)0.037 (3)0.015 (2)0.000 (2)0.011 (2)
C210.034 (3)0.052 (3)0.045 (3)0.016 (2)0.001 (2)0.002 (2)
C220.040 (3)0.043 (3)0.062 (4)0.005 (2)0.013 (3)0.020 (3)
C230.035 (3)0.041 (3)0.059 (3)0.002 (2)0.011 (2)0.013 (3)
C240.032 (3)0.042 (3)0.038 (3)0.016 (2)0.000 (2)0.003 (2)
C250.032 (3)0.039 (3)0.047 (3)0.007 (2)0.001 (2)0.012 (2)
C260.028 (2)0.041 (3)0.044 (3)0.005 (2)0.000 (2)0.006 (2)
C270.038 (3)0.052 (3)0.039 (3)0.022 (2)0.001 (2)0.002 (2)
C280.045 (3)0.048 (3)0.036 (3)0.018 (2)0.002 (2)0.009 (2)
C290.033 (3)0.037 (3)0.034 (2)0.010 (2)0.002 (2)0.002 (2)
C300.036 (3)0.041 (3)0.047 (3)0.012 (2)0.002 (2)0.010 (2)
C310.047 (3)0.042 (3)0.042 (3)0.009 (2)0.005 (2)0.011 (2)
C320.046 (3)0.037 (3)0.058 (3)0.007 (2)0.009 (3)0.015 (2)
C330.044 (3)0.035 (3)0.054 (3)0.015 (2)0.010 (2)0.006 (2)
C340.034 (3)0.039 (3)0.034 (3)0.009 (2)0.003 (2)0.003 (2)
C350.036 (3)0.033 (3)0.046 (3)0.005 (2)0.002 (2)0.008 (2)
C360.031 (2)0.034 (3)0.046 (3)0.012 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
Zn—O51.921 (4)C11—C121.373 (9)
Zn—O32.019 (4)C11—H11A0.9300
Zn—N12.054 (4)C12—C131.384 (8)
Zn—N22.104 (4)C12—H12A0.9300
Zn—O42.496 (5)C13—C141.390 (7)
Zn—C162.561 (5)C13—H13A0.9300
O1—C151.313 (6)C14—C161.505 (7)
O1—H1O0.83 (6)C17—C181.377 (7)
O2—C151.191 (6)C17—H17A0.9300
O3—C161.269 (6)C18—C191.381 (7)
O4—C161.234 (6)C18—H18A0.9300
O5—C71.248 (7)C19—C201.389 (7)
O6—C71.236 (7)C19—C241.496 (7)
O7—C81.218 (7)C20—C211.373 (7)
O8—C81.301 (6)C20—H20A0.9300
O8—H8O0.83 (6)C21—H21A0.9300
N1—C261.337 (6)C22—C231.369 (7)
N1—C221.348 (6)C22—H22A0.9300
N2—C361.338 (6)C23—C241.383 (7)
N2—C321.339 (7)C23—H23A0.9300
N3—C311.323 (7)C24—C251.385 (7)
N3—C271.339 (7)C25—C261.373 (7)
N4—C211.331 (7)C25—H25A0.9300
N4—C171.331 (7)C26—H26A0.9300
C1—C21.380 (7)C27—C281.374 (7)
C1—C61.388 (7)C27—H27A0.9300
C1—C71.523 (7)C28—C291.395 (7)
C2—C31.376 (8)C28—H28A0.9300
C2—H2A0.9300C29—C301.388 (7)
C3—C41.382 (9)C29—C341.486 (6)
C3—H3B0.9300C30—C311.387 (7)
C4—C51.380 (8)C30—H30A0.9300
C4—H4B0.9300C31—H31A0.9300
C5—C61.393 (7)C32—C331.371 (7)
C5—H5A0.9300C32—H32A0.9300
C6—C81.500 (7)C33—C341.390 (7)
C9—C141.399 (7)C33—H33A0.9300
C9—C101.399 (7)C34—C351.390 (7)
C9—C151.510 (6)C35—C361.383 (7)
C10—C111.377 (8)C35—H35A0.9300
C10—H10A0.9300C36—H36A0.9300
O5—Zn—O3106.29 (19)O2—C15—O1124.9 (5)
O5—Zn—N1120.43 (19)O2—C15—C9122.3 (5)
O3—Zn—N1123.09 (16)O1—C15—C9112.6 (4)
O5—Zn—N2113.3 (2)O4—C16—O3123.1 (5)
O3—Zn—N294.71 (15)O4—C16—C14119.4 (5)
N1—Zn—N294.83 (16)O3—C16—C14117.4 (5)
O5—Zn—O490.3 (2)O4—C16—Zn73.0 (3)
O3—Zn—O457.19 (14)O3—C16—Zn51.0 (2)
N1—Zn—O490.31 (15)C14—C16—Zn163.3 (4)
N2—Zn—O4148.40 (16)N4—C17—C18123.5 (5)
O5—Zn—C1696.55 (19)N4—C17—H17A118.2
O3—Zn—C1629.22 (16)C18—C17—H17A118.2
N1—Zn—C16110.22 (16)C17—C18—C19119.1 (5)
N2—Zn—C16123.44 (17)C17—C18—H18A120.5
O4—Zn—C1628.22 (15)C19—C18—H18A120.5
C15—O1—H1O114 (5)C18—C19—C20117.7 (5)
C16—O3—Zn99.8 (3)C18—C19—C24122.1 (4)
C16—O4—Zn78.8 (3)C20—C19—C24120.2 (4)
C7—O5—Zn114.3 (4)C21—C20—C19119.1 (5)
C8—O8—H8O111 (5)C21—C20—H20A120.4
C26—N1—C22116.9 (4)C19—C20—H20A120.4
C26—N1—Zn125.4 (3)N4—C21—C20123.5 (5)
C22—N1—Zn117.5 (3)N4—C21—H21A118.3
C36—N2—C32117.4 (4)C20—C21—H21A118.3
C36—N2—Zn125.4 (3)N1—C22—C23123.2 (5)
C32—N2—Zn116.9 (3)N1—C22—H22A118.4
C31—N3—C27117.7 (4)C23—C22—H22A118.4
C21—N4—C17117.1 (4)C22—C23—C24119.4 (5)
C2—C1—C6119.1 (5)C22—C23—H23A120.3
C2—C1—C7120.8 (5)C24—C23—H23A120.3
C6—C1—C7120.0 (4)C23—C24—C25117.7 (4)
C3—C2—C1120.8 (5)C23—C24—C19120.0 (4)
C3—C2—H2A119.6C25—C24—C19122.2 (4)
C1—C2—H2A119.6C26—C25—C24119.5 (5)
C2—C3—C4120.3 (5)C26—C25—H25A120.3
C2—C3—H3B119.9C24—C25—H25A120.3
C4—C3—H3B119.9N1—C26—C25123.2 (4)
C5—C4—C3119.8 (5)N1—C26—H26A118.4
C5—C4—H4B120.1C25—C26—H26A118.4
C3—C4—H4B120.1N3—C27—C28123.3 (5)
C4—C5—C6119.9 (5)N3—C27—H27A118.3
C4—C5—H5A120.1C28—C27—H27A118.3
C6—C5—H5A120.1C27—C28—C29118.9 (5)
C1—C6—C5120.2 (5)C27—C28—H28A120.6
C1—C6—C8122.7 (5)C29—C28—H28A120.6
C5—C6—C8117.2 (5)C30—C29—C28118.0 (4)
O6—C7—O5125.3 (6)C30—C29—C34122.1 (4)
O6—C7—C1119.0 (5)C28—C29—C34119.8 (4)
O5—C7—C1115.7 (5)C31—C30—C29118.6 (5)
O7—C8—O8122.8 (5)C31—C30—H30A120.7
O7—C8—C6123.7 (5)C29—C30—H30A120.7
O8—C8—C6113.0 (4)N3—C31—C30123.5 (5)
C14—C9—C10119.6 (4)N3—C31—H31A118.3
C14—C9—C15122.3 (4)C30—C31—H31A118.3
C10—C9—C15118.0 (4)N2—C32—C33123.2 (5)
C11—C10—C9120.5 (5)N2—C32—H32A118.4
C11—C10—H10A119.8C33—C32—H32A118.4
C9—C10—H10A119.8C32—C33—C34119.7 (5)
C12—C11—C10120.4 (5)C32—C33—H33A120.2
C12—C11—H11A119.8C34—C33—H33A120.2
C10—C11—H11A119.8C35—C34—C33117.4 (4)
C11—C12—C13119.6 (5)C35—C34—C29121.0 (4)
C11—C12—H12A120.2C33—C34—C29121.6 (4)
C13—C12—H12A120.2C36—C35—C34119.3 (4)
C12—C13—C14121.5 (5)C36—C35—H35A120.4
C12—C13—H13A119.2C34—C35—H35A120.4
C14—C13—H13A119.2N2—C36—C35123.0 (5)
C13—C14—C9118.5 (5)N2—C36—H36A118.5
C13—C14—C16118.4 (5)C35—C36—H36A118.5
C9—C14—C16123.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N3i0.83 (6)1.82 (6)2.643 (5)175 (7)
O8—H8O···N4ii0.83 (6)1.84 (6)2.665 (6)172 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H5O4)2(C10H8N2)2]
Mr708.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5100 (3), 10.0003 (4), 22.0821 (6)
α, β, γ (°)84.307 (1), 88.084 (1), 71.02
V3)1560.52 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.56 × 0.26 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.767, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
8036, 5502, 4273
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.177, 1.07
No. of reflections5390
No. of parameters448
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.64

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL (Bruker, 2???), SHELXTL (Bruekr, 2???).

Selected geometric parameters (Å, º) top
Zn—O51.921 (4)Zn—N22.104 (4)
Zn—O32.019 (4)Zn—O42.496 (5)
Zn—N12.054 (4)
O5—Zn—O3106.29 (19)N1—Zn—N294.83 (16)
O5—Zn—N1120.43 (19)O5—Zn—O490.3 (2)
O3—Zn—N1123.09 (16)O3—Zn—O457.19 (14)
O5—Zn—N2113.3 (2)N1—Zn—O490.31 (15)
O3—Zn—N294.71 (15)N2—Zn—O4148.40 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N3i0.83 (6)1.82 (6)2.643 (5)175 (7)
O8—H8O···N4ii0.83 (6)1.84 (6)2.665 (6)172 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds