Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of 2,4,6-tri­amino-1,3,5-triazin-1-ium levulinate (4-oxo­pentanoate) monohydrate, C3H7N6+·C5H7O3-·H2O, are formed via self-assembled hydrogen bonding by cocrystallization of mel­amine and levulinic acid. Two N-H...N hydrogen bonds and four N-H...O hydrogen bonds connect two melaminium entities such that each of two pairs of N-H...O bonds bridges two H atoms belonging to the amine groups of two different melaminium cations via the carbonyl O atom of one levulinate mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104005207/sq1149sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104005207/sq1149Isup2.hkl
Contains datablock I

CCDC reference: 213724

Comment top

One of the primary objectives of crystal engineering is the construction of self-assembled hydrogen-bonded molecular materials (Desiraju, 1996; Philip & Stoddart, 1996). Currently, many research groups are involved in synthesizing one-, two- and three-dimensional clustered self-assembled hydrogen-bonding superlattice structures of? molecular materials (Whitesides, et al., 1991; Mathias, et al., 1994; Zerkowski, et al., 1990; Ghadiri, et al., 1993; Kimizuka, et al., 1995; Lange, et al., 1997). In addition, others are synthesizing metal-ion-incorporated systems (Goddgame, et al., 1999; Zhang, et al., 1999). Various studies have been carried out using melamine and its derivatives as versatile components, because the presence of amino groups in these compounds means that they can easily form several types of self-organized superlattices with suitable hydrogen-bonding donor and acceptor molecules (Janczak & Perpétuo, 2001a, 2001b, 2001c, 201 d; Perpétuo & Janczak, 2002). The combination of levulinic acid with melamine leads to the formation of a 1:1 adduct of 2,4,6-triamino-1,3,5-triazin-1-ium levulinate monohydrate, C3H7N6+·C5H7O3·H2O, (I), the crystal structure of which is reported here.

The asymmetric unit of (I) consists of two oppositely charged ions, viz. a protonated melaminium and a levulinate ion, and one water molecule (Fig. 1). Two melaminium entities are directly connected to one another via hydrogen bonding. In this unit, two N6—H···N3 hydrogen bonds, two N5—H···O3 hydrogen bonds and two N6—H···O3 hydrogen bonds bridge two H atoms of each amine group from two melaminium entities via the carbonyl O atom on one levulinate ion. In addition, there are also two N4—H···O1W and two O1W—H···O1 hydrogen bonds. A bridging water molecule and a bridging carbonyl O atom between melaminium and levulinate entities form large pores (0L and 0R in Fig. 1). On the other hand, two water molecules, O1wii and O1wiii in Fig. 1, are used to bridge melaminium and levulinate entities in the next row along the b axis.

The six-membered aromatic ring of the melaminium ion exhibits slight distortions from the ideal hexagonal form (Janczak & Perpétuo, 2001c) and from the structure of neutral melamine (Hughes, 1941). The C2—N2—C1 angle (Table 1) at the protonated N atom of the melaminium entity is 4° larger than the C1—N1—C3 angle at the non-protonated N atom. Also, the N1—C3—N3 angle involving the non-protonated ring N atoms is about 5° larger than the N3—C2—N2 angle, involving protonated and non-protonated N atoms. The contraction of the C1—N1—C3 and C2—N3—C3 angles from 120 to about 115° appears to be correlated with expansion of the N1—C3—N3 angle to about 127°, while the N1—C1—N2 and N3—C2—N2 angles are both close to ideal, as is the C2—N2—C1 angle. On the other hand, the C2—N2—C1 and C1—N1—C3 angles are 3° higher than the equivalent angle (116°) of the neutral melamine (Hughes, 1941). The N1—C3—N3 and N3—C2—N2 angles are similar to those of neutral melamine.

Experimental top

An aqueous solution (50 ml) of levulinic acid (0.22 g, 2 mmol) was added to melamine (0.26 g, 2 mmol) dissolved in hot water (100 ml). The resulting solution was cooled slowly to ambient temperature and filtered. Colorless crystals of the melamine–levulinic acid adduct, (I), appeared after the solution had been left to stand for several days in the presence of air at room temperature.

Refinement top

H atoms on atoms N2 and O1W were located in a difference map and their parameters were refined isotropically. All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with Uiso(H) values of 1.2 Ueq(C,N) (CH2 and NH2) or 1.5 Ueq(C) (CH3).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and unit-cell contents of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. Pores formed by hydrogen bonds between melaminium cations and levulinate anions are designated 0L and 0R. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, −1/2 + y, 1/2 − z; (iii) x, 1/2 − y, 1/2 + z.]
(I) top
Crystal data top
C3H7N6+·C5H7O3·H2OF(000) = 552
Mr = 260.27Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23 reflections
a = 10.538 (2) Åθ = 11.3–13.9°
b = 16.214 (3) ŵ = 0.11 mm1
c = 7.1988 (14) ÅT = 293 K
β = 95.85 (3)°Block, colorless
V = 1223.6 (4) Å30.46 × 0.43 × 0.36 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 27.5°, θmin = 2.3°
Non–profiled ω/2θ scansh = 1313
5931 measured reflectionsk = 2121
2806 independent reflectionsl = 09
1899 reflections with I > 2σ(I)3 standard reflections every 400 reflections
Rint = 0.030 intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.3261P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.28 e Å3
2806 reflectionsΔρmin = 0.19 e Å3
175 parameters
Crystal data top
C3H7N6+·C5H7O3·H2OV = 1223.6 (4) Å3
Mr = 260.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.538 (2) ŵ = 0.11 mm1
b = 16.214 (3) ÅT = 293 K
c = 7.1988 (14) Å0.46 × 0.43 × 0.36 mm
β = 95.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
5931 measured reflections3 standard reflections every 400 reflections
2806 independent reflections intensity decay: 1%
1899 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
2806 reflectionsΔρmin = 0.19 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08998 (12)0.85856 (8)0.2432 (2)0.0446 (4)
O20.21430 (13)0.96730 (9)0.2963 (3)0.0629 (5)
O30.54437 (13)0.75146 (9)0.4039 (3)0.0652 (5)
N10.21102 (14)0.58793 (10)0.3006 (2)0.0420 (4)
N20.10962 (14)0.46023 (10)0.3375 (2)0.0383 (4)
H20.044 (2)0.4266 (14)0.312 (3)0.054 (6)*
N30.32997 (14)0.46890 (9)0.4192 (2)0.0393 (4)
N40.00394 (15)0.57231 (10)0.2184 (3)0.0498 (5)
H4NA0.00960.62320.18470.06*
H4NB0.07080.54160.20880.06*
N50.22286 (15)0.34767 (10)0.4542 (3)0.0491 (5)
H5NA0.29330.32420.49550.059*
H5NB0.15290.320.44490.059*
N60.42457 (15)0.59376 (11)0.3864 (3)0.0493 (5)
H6NA0.42260.64490.35490.059*
H6NB0.49550.57130.42950.059*
C10.10664 (16)0.54157 (11)0.2846 (3)0.0371 (4)
C20.22207 (16)0.42632 (11)0.4048 (3)0.0364 (4)
C30.31790 (16)0.54923 (12)0.3685 (3)0.0383 (4)
C40.19804 (17)0.89259 (11)0.2881 (3)0.0380 (4)
C50.31025 (17)0.83492 (12)0.3312 (3)0.0451 (5)
H5A0.2910.79690.42860.054*
H5B0.32160.80270.22060.054*
C60.43350 (17)0.87891 (12)0.3933 (3)0.0408 (5)
H6A0.4520.91680.29540.049*
H6B0.42110.91150.5030.049*
C70.54735 (17)0.82440 (11)0.4384 (3)0.0397 (5)
C80.66599 (19)0.86456 (13)0.5261 (3)0.0528 (6)
H8A0.73180.82380.54960.079*
H8B0.64930.88980.64180.079*
H8C0.69320.90590.44350.079*
O1W0.00947 (14)0.73341 (10)0.0286 (3)0.0490 (4)
H1W0.044 (3)0.7687 (18)0.081 (4)0.076 (9)*
H2W0.025 (3)0.7124 (19)0.062 (5)0.084 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0296 (7)0.0375 (7)0.0647 (9)0.0007 (5)0.0051 (6)0.0016 (7)
O20.0366 (8)0.0325 (8)0.1163 (15)0.0012 (6)0.0087 (9)0.0025 (8)
O30.0367 (7)0.0356 (8)0.1187 (15)0.0026 (6)0.0143 (9)0.0072 (9)
N10.0329 (8)0.0350 (8)0.0567 (11)0.0048 (6)0.0017 (7)0.0028 (7)
N20.0254 (7)0.0334 (8)0.0546 (10)0.0045 (6)0.0030 (7)0.0015 (7)
N30.0266 (7)0.0369 (8)0.0535 (10)0.0039 (6)0.0008 (7)0.0014 (7)
N40.0322 (8)0.0359 (9)0.0784 (13)0.0024 (6)0.0081 (8)0.0102 (9)
N50.0274 (8)0.0345 (8)0.0827 (13)0.0014 (6)0.0076 (8)0.0066 (9)
N60.0334 (8)0.0406 (9)0.0719 (13)0.0113 (7)0.0046 (8)0.0054 (8)
C10.0315 (9)0.0344 (9)0.0443 (11)0.0017 (7)0.0014 (8)0.0000 (8)
C20.0287 (8)0.0342 (9)0.0456 (11)0.0014 (7)0.0001 (8)0.0029 (8)
C30.0306 (9)0.0392 (10)0.0446 (11)0.0059 (7)0.0020 (8)0.0035 (8)
C40.0306 (9)0.0340 (10)0.0487 (12)0.0016 (7)0.0001 (8)0.0028 (8)
C50.0302 (9)0.0340 (10)0.0692 (14)0.0019 (7)0.0040 (9)0.0021 (9)
C60.0336 (9)0.0360 (10)0.0511 (12)0.0032 (7)0.0034 (8)0.0014 (9)
C70.0297 (9)0.0352 (10)0.0530 (13)0.0011 (7)0.0019 (8)0.0018 (9)
C80.0380 (11)0.0482 (12)0.0691 (15)0.0040 (9)0.0104 (10)0.0005 (11)
O1W0.0401 (8)0.0422 (9)0.0637 (11)0.0027 (6)0.0002 (7)0.0095 (7)
Geometric parameters (Å, º) top
O1—C41.277 (2)N6—C31.331 (2)
O2—C41.224 (2)N6—H6NA0.86
O3—C71.208 (2)N6—H6NB0.86
N1—C11.328 (2)C4—C51.515 (2)
N1—C31.337 (2)C5—C61.509 (3)
N2—C21.351 (2)C5—H5A0.97
N2—C11.372 (2)C5—H5B0.97
N2—H20.89 (2)C6—C71.499 (3)
N3—C21.325 (2)C6—H6A0.97
N3—C31.355 (2)C6—H6B0.97
N4—C11.312 (2)C7—C81.492 (3)
N4—H4NA0.86C8—H8A0.96
N4—H4NB0.86C8—H8B0.96
N5—C21.324 (2)C8—H8C0.96
N5—H5NA0.86O1W—H1W0.86 (3)
N5—H5NB0.86O1W—H2W0.85 (3)
C1—N1—C3115.18 (16)O2—C4—C5119.90 (16)
C2—N2—C1119.03 (15)O1—C4—C5116.27 (16)
C2—N2—H2117.6 (15)C6—C5—C4113.53 (16)
C1—N2—H2122.6 (15)C6—C5—H5A108.9
C2—N3—C3115.05 (15)C4—C5—H5A108.9
C1—N4—H4NA120C6—C5—H5B108.9
C1—N4—H4NB120C4—C5—H5B108.9
H4NA—N4—H4NB120H5A—C5—H5B107.7
C2—N5—H5NA120C7—C6—C5115.54 (16)
C2—N5—H5NB120C7—C6—H6A108.4
H5NA—N5—H5NB120C5—C6—H6A108.4
C3—N6—H6NA120C7—C6—H6B108.4
C3—N6—H6NB120C5—C6—H6B108.4
H6NA—N6—H6NB120H6A—C6—H6B107.5
N4—C1—N1120.93 (17)O3—C7—C8121.16 (17)
N4—C1—N2117.41 (16)O3—C7—C6121.95 (16)
N1—C1—N2121.66 (16)C8—C7—C6116.88 (17)
N5—C2—N3119.94 (16)C7—C8—H8A109.5
N5—C2—N2118.02 (16)C7—C8—H8B109.5
N3—C2—N2122.03 (17)H8A—C8—H8B109.5
N6—C3—N1116.90 (17)C7—C8—H8C109.5
N6—C3—N3116.09 (17)H8A—C8—H8C109.5
N1—C3—N3127.00 (16)H8B—C8—H8C109.5
O2—C4—O1123.83 (17)H1W—O1W—H2W107 (3)
C3—N1—C1—N4179.5 (2)C1—N1—C3—N30.8 (3)
C3—N1—C1—N21.0 (3)C2—N3—C3—N6178.32 (18)
C2—N2—C1—N4179.46 (18)C2—N3—C3—N12.5 (3)
C2—N2—C1—N11.0 (3)O2—C4—C5—C63.6 (3)
C3—N3—C2—N5178.75 (19)O1—C4—C5—C6176.85 (19)
C3—N3—C2—N22.5 (3)C4—C5—C6—C7179.74 (19)
C1—N2—C2—N5179.69 (19)C5—C6—C7—O39.4 (3)
C1—N2—C2—N30.9 (3)C5—C6—C7—C8171.4 (2)
C1—N1—C3—N6179.95 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (2)1.80 (2)2.689 (2)179 (2)
O1W—H1W···O10.86 (3)1.90 (3)2.697 (2)154 (3)
O1W—H2W···O1ii0.85 (3)1.99 (3)2.825 (2)168 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC3H7N6+·C5H7O3·H2O
Mr260.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.538 (2), 16.214 (3), 7.1988 (14)
β (°) 95.85 (3)
V3)1223.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.46 × 0.43 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5931, 2806, 1899
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.02
No. of reflections2806
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C41.277 (2)N2—C11.372 (2)
O2—C41.224 (2)N3—C21.325 (2)
O3—C71.208 (2)N3—C31.355 (2)
N1—C11.328 (2)N4—C11.312 (2)
N1—C31.337 (2)C4—C51.515 (2)
N2—C21.351 (2)
C1—N1—C3115.18 (16)N1—C3—N3127.00 (16)
C2—N2—C1119.03 (15)O2—C4—O1123.83 (17)
C2—N3—C3115.05 (15)O2—C4—C5119.90 (16)
N1—C1—N2121.66 (16)O1—C4—C5116.27 (16)
N3—C2—N2122.03 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (2)1.80 (2)2.689 (2)179 (2)
O1W—H1W···O10.86 (3)1.90 (3)2.697 (2)154 (3)
O1W—H2W···O1ii0.85 (3)1.99 (3)2.825 (2)168 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds