Download citation
Download citation
link to html
In the title compound, hexa-[mu]-chloro-di­chloro­tetrakis(N-tri­methyl­ammonio-p-toluene­sulfonamidate-[kappa]2N,O)­tetramer­cury(II), [Hg{Me3N(+)N(-)SO2C6H4CH3-p}Cl2]4 or [Hg4Cl8(C10H16N2O2S)4], four nearly linear and parallel Cl-Hg-Cl units associate through pairwise Hg...Cl interactions of 3.1-3.2 Å. Each Hg atom is also coordinated through N and O atoms to a yl­ide mol­ecule. The available structural data indicate that coordination of a sulfonyl-stabilized nitro­gen yl­ide to a metal atom (Hg or Ag) has no detectable effect on its geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103028464/sq1143sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103028464/sq1143IIsup2.hkl
Contains datablock II

CCDC reference: 233108

Comment top

We have recently shown that trimethylammonio-stabilized nitrogen ylides, such as (Ia) or (Ib), can act as ligands, donating to silver(I) and mercury(II) through their negatively charged N atoms and sometimes also through an O atom (Morris et al., 2003). In an extension of this work, we now report the structure of the title complex, (II), a 1:1 adduct of the sulfonyl-stabilized ylide (Ia) with mercury(II) chloride. \sch

The asymmetric unit of (II) contains two HgCl2L moieties [Fig. 1; L is (Ia)]. The discrete centrosymmetric tetrameric molecule shown in Fig. 2 is formed from two such asymmetric units. Each metal atom is strongly bonded to two Cl atoms [Hg—Cl 2.325 (1)–2.340 (1) Å; Table 1] and is thereby incorporated into a nearly linear Cl—Hg—Cl unit: the Cl11—Hg1—Cl12 and Cl21—Hg2—Cl22 angles are 167.6 (1) and 160.8 (1)°, respectively. The tetrameric molecule contains four such Cl—Hg—Cl units which are roughly parallel to one another, and they associate through pairs of weak Hg···Cl interactions [3.07–3.22 Å]. Each metal atom is also chelated by the N and O atoms of an ylide ligand, and the Hg—N and Hg—O distances [2.507 (2) and 2.831 (2) Å, respectively, for Hg1, and 2.492 (2) and 2.757 (2) Å, respectively, for Hg2] indicate that the stronger interaction is through the N atom. It is broadly true that, at each Hg atom, the Hg—N and Hg—O bonds are normal to the strong Hg—Cl bonds and coplanar with the weaker Hg···Cl interactions. Atom Hg1 has a distorted octahedral coordination formed by strong bonds to atoms Cl11 and Cl12, and weaker bonds to atoms Cl11i and Cl22 and to the N and O atoms of the ylide [symmetry code: (i) Please provide missing information]. In contrast, Hg2 adopts a distorted square-pyramidal coordination, with atom N21 apical. The Hg2 coordination can be compared with that of Hg1 when the Hg1···Cl11i interaction is ignored. The average difference between corresponding angles subtended at Hg1 and Hg2 is then only 5°.

The structure of (II) contrasts with that of the apparently analogous species, (III), [HgCl2L], where L is (Ib) (Morris et al., 2003). In (III), linear Hg coordination is defined by strong Hg—N and Hg—Cl bonds of 2.154 (5) and 2.371 (2) Å, which are roughly normal to weak Hg—Cl bonds [2.596 (1) Å] and extremely weak Hg—O interactions [2.847 (4) Å]. The weaker Hg—Cl bond associates further with the corresponding bonds in adjacent units so that a chain coordination polymer is produced. Each metal atom has the same [2,2,2] distorted-octahedral coordination. Although the variable and as yet unpredictable nature of mercury(II) coordination polyhedra is well known (House et al., 1994), the difference of 0.35 Å between the Hg—N(ylide) bonds in (II) and (III) is particularly striking.

Bond lengths in the L = (Ia) ligands of (II) and of (IV), [AgNO3L2] (Morris et al., 2003), agree well with those in the monohydrate of (Ia) (Cameron et al., 1976), where the ylide N(-) atom is hydrogen-bonded to a water molecule. These species all contain single N—N and S—C bonds [1.464 (3)–1.481 (6) and 1.761 (7)–1.782 (2) Å, respectively], whereas the S—N distances [1.592 (2)–1.616 (5) Å] imply some multiple-bond character. The S—O distances [1.434 (4)–1.452 (2) Å] do not appear to lengthen when the O atom is coordinated to Hg or Ag. Indeed, it is hard to find evidence that attachment of the ylide to Hg or Ag requires even a conformational change. The (Ia) sulfonyl-ylide ligands in (II), in (IV) and in the monohydrate of (Ia) all adopt the conformation (V). i.e. a roughly planar H3C—N(+)-N(-)-S—Oa zigzag chain with torsion angles of 156–173° across the N—N and N—S bonds. The N—S—Oa angles [103.0 (3)–104.1 (1)°] are invariably more acute than the N—S—Ob angles [113.0 (3)–115.4 (1)°]. In (II) and (IV), this could be ascribed to chelate ring formation. In the monohydrate of (Ia), hydrogen bonding is a complicating factor. However, in n-C16H33SO2N(-)N(+)Me3 (Morris & Muir, 2004), the same ylide conformation [N—N and N—S torsion angles 167 and 160°, respectively, N—S—Oa 103.3 (3) and N—S—Ob 114.5 (3)°] is found. This appears to be the stable conformation of an Me3NNSO2 ylide and we believe the near-eclipse implied by N—N—S—Ob torsion angles of 28–41° is responsible for the obtuseness of the N—S—Ob bond angles.

Experimental top

The methods of Morris et al. (2003) were used for the preparation of the ylide ligand and its complexation to mercury(II) chloride. Crystals of the title compound, (II), were obtained from aqueous solution.

Refinement top

H-atom positions were initially obtained from difference syntheses. Subsequently, all H atoms rode on their parent C atoms: for methyl H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), while for phenyl H atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The final difference synthesis is indicative of some inadequacy in the absorption correction: all regions with |Δρ| > 1.5 e Å−3 are within 1 Å of an Hg atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The tetrameric molecule of (II). H atoms have been omitted for clarity.
(II) top
Crystal data top
[Hg4Cl8(C10H16N2O2S)4]F(000) = 1888
Mr = 1999.2Dx = 2.223 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12596 reflections
a = 7.9948 (1) Åθ = 1.0–35.0°
b = 21.6336 (2) ŵ = 10.8 mm1
c = 17.2957 (1) ÅT = 100 K
β = 93.3241 (3)°Needle, colourless
V = 2986.37 (5) Å30.35 × 0.15 × 0.15 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
11417 reflections with I > 2σ(I)
CCD; rotation images; thick slice scansRint = 0.058
Absorption correction: gaussian
quadrature algorithm in WinGX KappaCCD processing package (Farrugia, 1999)
θmax = 35.0°, θmin = 1.9°
Tmin = 0.119, Tmax = 0.479h = 1212
59772 measured reflectionsk = 034
12956 independent reflectionsl = 027
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.037P)2 + 2.14P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.068Δρmax = 1.54 e Å3
S = 1.04Δρmin = 3.59 e Å3
12956 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
326 parametersExtinction coefficient: 0.00064 (5)
0 restraints
Crystal data top
[Hg4Cl8(C10H16N2O2S)4]V = 2986.37 (5) Å3
Mr = 1999.2Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9948 (1) ŵ = 10.8 mm1
b = 21.6336 (2) ÅT = 100 K
c = 17.2957 (1) Å0.35 × 0.15 × 0.15 mm
β = 93.3241 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
12956 independent reflections
Absorption correction: gaussian
quadrature algorithm in WinGX KappaCCD processing package (Farrugia, 1999)
11417 reflections with I > 2σ(I)
Tmin = 0.119, Tmax = 0.479Rint = 0.058
59772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.54 e Å3
12956 reflectionsΔρmin = 3.59 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.053972 (10)0.078464 (4)0.053427 (5)0.01396 (3)
Cl110.20129 (7)0.04476 (3)0.00995 (3)0.01696 (10)
Cl120.32910 (7)0.11122 (3)0.06866 (4)0.01868 (10)
S110.05506 (7)0.05908 (3)0.24103 (3)0.01312 (9)
O110.2128 (2)0.04745 (8)0.28384 (11)0.0187 (3)
O120.0139 (2)0.00961 (8)0.19247 (11)0.0197 (3)
N110.0537 (2)0.11703 (9)0.18367 (12)0.0134 (3)
N120.1674 (2)0.16889 (9)0.20102 (12)0.0140 (3)
C110.1693 (3)0.19161 (12)0.28368 (16)0.0196 (4)
H11A0.05530.20290.29630.029*
H11B0.24230.22790.28960.029*
H11C0.21160.15880.31870.029*
C120.0999 (3)0.21963 (11)0.14939 (17)0.0206 (5)
H12A0.10270.20660.09520.031*
H12B0.16880.25680.15780.031*
H12C0.01580.22870.16130.031*
C130.3415 (3)0.15286 (11)0.17939 (17)0.0191 (4)
H13A0.38470.11850.21170.029*
H13B0.41460.18890.18760.029*
H13C0.33890.14070.12480.029*
C140.0963 (3)0.07157 (10)0.31052 (14)0.0144 (4)
C150.0893 (3)0.03578 (11)0.37765 (15)0.0184 (4)
H150.00270.00880.38890.022*
C160.2182 (3)0.03986 (12)0.42805 (16)0.0216 (5)
H160.21440.01510.47350.026*
C170.3538 (3)0.08007 (12)0.41274 (17)0.0198 (5)
C180.3545 (3)0.11691 (12)0.34666 (16)0.0194 (4)
H180.44370.14530.33660.023*
C190.2282 (3)0.11308 (11)0.29516 (15)0.0167 (4)
H190.23120.13830.25010.02*
C1100.4995 (4)0.08288 (13)0.46474 (19)0.0271 (6)
H11D0.59440.05970.44090.041*
H11E0.53230.12610.47180.041*
H11F0.4660.06470.51520.041*
Hg20.337715 (10)0.200763 (4)0.068872 (5)0.01582 (3)
Cl210.59800 (7)0.23835 (3)0.03790 (4)0.02143 (11)
Cl220.04783 (7)0.18898 (3)0.07074 (4)0.02211 (11)
S210.42431 (7)0.18537 (2)0.25504 (3)0.01276 (9)
O210.3598 (2)0.24227 (8)0.21985 (11)0.0197 (3)
O220.5840 (2)0.18913 (9)0.29925 (11)0.0189 (3)
N210.4193 (2)0.13698 (9)0.18496 (11)0.0124 (3)
N220.5321 (2)0.08358 (9)0.19065 (12)0.0137 (3)
C210.7061 (3)0.10244 (12)0.17127 (15)0.0191 (4)
H21A0.70180.12190.120.029*
H21B0.77820.06580.1710.029*
H21C0.75150.13180.21020.029*
C220.5347 (3)0.05037 (11)0.26715 (15)0.0183 (4)
H22A0.57680.07830.30850.027*
H22B0.60810.01420.26550.027*
H22C0.42090.0370.27730.027*
C230.4604 (3)0.04021 (12)0.12978 (16)0.0206 (5)
H23A0.3460.02890.14160.031*
H23B0.52980.00290.12880.031*
H23C0.45850.06050.07910.031*
C240.2734 (3)0.16300 (10)0.32070 (14)0.0138 (4)
C250.1299 (3)0.13094 (11)0.29354 (14)0.0166 (4)
H250.11850.11650.24160.02*
C260.0039 (3)0.12073 (12)0.34452 (16)0.0192 (4)
H260.09410.09890.32680.023*
C270.0181 (3)0.14160 (12)0.42067 (16)0.0188 (4)
C280.1650 (3)0.17182 (12)0.44649 (16)0.0214 (5)
H280.17820.18510.49880.026*
C290.2928 (3)0.18283 (12)0.39688 (15)0.0182 (4)
H290.39210.20370.4150.022*
C2100.1231 (4)0.13362 (15)0.47276 (19)0.0285 (6)
H21D0.13380.17090.50430.043*
H21E0.10060.0980.50680.043*
H21F0.22760.12670.44140.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01245 (4)0.01628 (4)0.01326 (4)0.00107 (2)0.00162 (3)0.00070 (3)
Cl110.0144 (2)0.0205 (2)0.0162 (2)0.00174 (17)0.00284 (18)0.00021 (19)
Cl120.0134 (2)0.0239 (3)0.0189 (3)0.00273 (18)0.00272 (18)0.0004 (2)
S110.0132 (2)0.0127 (2)0.0137 (2)0.00011 (16)0.00232 (17)0.00067 (18)
O110.0155 (7)0.0190 (8)0.0217 (9)0.0045 (6)0.0016 (6)0.0050 (7)
O120.0265 (9)0.0148 (7)0.0182 (9)0.0060 (6)0.0044 (7)0.0043 (6)
N110.0158 (8)0.0123 (8)0.0120 (8)0.0048 (6)0.0013 (6)0.0005 (6)
N120.0121 (7)0.0145 (8)0.0154 (9)0.0014 (6)0.0006 (6)0.0008 (7)
C110.0232 (11)0.0180 (10)0.0177 (11)0.0042 (8)0.0022 (9)0.0071 (8)
C120.0210 (10)0.0150 (10)0.0252 (13)0.0017 (8)0.0032 (9)0.0038 (9)
C130.0133 (9)0.0172 (10)0.0270 (13)0.0020 (7)0.0041 (8)0.0016 (9)
C140.0140 (9)0.0141 (9)0.0153 (10)0.0009 (7)0.0027 (7)0.0007 (7)
C150.0205 (10)0.0169 (10)0.0180 (11)0.0037 (8)0.0032 (8)0.0022 (8)
C160.0278 (12)0.0214 (11)0.0163 (11)0.0026 (9)0.0079 (9)0.0053 (9)
C170.0192 (10)0.0190 (11)0.0221 (12)0.0012 (8)0.0096 (9)0.0009 (9)
C180.0171 (10)0.0189 (10)0.0224 (12)0.0030 (8)0.0040 (8)0.0014 (9)
C190.0158 (9)0.0169 (10)0.0175 (11)0.0026 (7)0.0019 (8)0.0034 (8)
C1100.0293 (13)0.0244 (13)0.0291 (15)0.0002 (10)0.0158 (12)0.0016 (11)
Hg20.01339 (4)0.01853 (5)0.01546 (5)0.00137 (3)0.00012 (3)0.00290 (3)
Cl210.0155 (2)0.0249 (3)0.0238 (3)0.00426 (19)0.0010 (2)0.0069 (2)
Cl220.0137 (2)0.0290 (3)0.0236 (3)0.0011 (2)0.0013 (2)0.0014 (2)
S210.0133 (2)0.0121 (2)0.0130 (2)0.00197 (16)0.00280 (17)0.00141 (18)
O210.0276 (9)0.0126 (7)0.0194 (9)0.0016 (6)0.0054 (7)0.0012 (6)
O220.0159 (7)0.0230 (8)0.0179 (9)0.0065 (6)0.0020 (6)0.0066 (7)
N210.0144 (7)0.0125 (8)0.0103 (8)0.0018 (6)0.0002 (6)0.0008 (6)
N220.0143 (8)0.0121 (8)0.0144 (9)0.0018 (6)0.0003 (7)0.0001 (6)
C210.0164 (10)0.0239 (11)0.0173 (11)0.0033 (8)0.0027 (8)0.0002 (9)
C220.0231 (10)0.0164 (10)0.0153 (11)0.0015 (8)0.0007 (8)0.0042 (8)
C230.0258 (11)0.0171 (10)0.0185 (11)0.0037 (8)0.0010 (9)0.0053 (9)
C240.0133 (8)0.0137 (9)0.0146 (10)0.0008 (7)0.0019 (7)0.0018 (7)
C250.0152 (9)0.0205 (10)0.0141 (10)0.0032 (7)0.0007 (7)0.0013 (8)
C260.0149 (9)0.0229 (11)0.0198 (12)0.0023 (8)0.0004 (8)0.0043 (9)
C270.0177 (10)0.0178 (10)0.0215 (12)0.0035 (8)0.0072 (8)0.0042 (9)
C280.0294 (12)0.0205 (11)0.0149 (11)0.0022 (9)0.0069 (9)0.0051 (9)
C290.0206 (10)0.0192 (10)0.0151 (11)0.0033 (8)0.0032 (8)0.0040 (8)
C2100.0258 (12)0.0307 (14)0.0306 (15)0.0046 (10)0.0155 (11)0.0071 (12)
Geometric parameters (Å, º) top
Hg1—Cl112.3323 (5)C110—H11F0.98
Hg1—Cl122.3403 (5)Hg2—Cl212.3254 (6)
Hg1—N112.507 (2)Hg2—Cl222.3336 (6)
Hg1—O122.831 (2)Hg2—N212.492 (2)
Hg1—Cl11i3.0896 (6)Hg2—O212.757 (2)
Hg1—Cl223.2160 (7)Hg2—S213.2711 (6)
Hg1—Hg1i3.9838 (2)S21—O221.452 (2)
Cl12—Hg23.0654 (6)S21—O211.454 (2)
S11—O111.447 (2)S21—N211.600 (2)
S11—O121.450 (2)S21—C241.771 (2)
S11—N111.598 (2)N21—N221.465 (3)
S11—C141.775 (2)N22—C231.499 (3)
N11—N121.464 (3)N22—C221.505 (3)
N12—C121.496 (3)N22—C211.506 (3)
N12—C131.503 (3)C21—H21A0.98
N12—C111.511 (3)C21—H21B0.98
C11—H11A0.98C21—H21C0.98
C11—H11B0.98C22—H22A0.98
C11—H11C0.98C22—H22B0.98
C12—H12A0.98C22—H22C0.98
C12—H12B0.98C23—H23A0.98
C12—H12C0.98C23—H23B0.98
C13—H13A0.98C23—H23C0.98
C13—H13B0.98C24—C291.386 (3)
C13—H13C0.98C24—C251.399 (3)
C14—C151.394 (4)C25—C261.394 (3)
C14—C191.398 (3)C25—H250.95
C15—C161.390 (4)C26—C271.391 (4)
C15—H150.95C26—H260.95
C16—C171.403 (4)C27—C281.395 (4)
C16—H160.95C27—C2101.495 (4)
C17—C181.393 (4)C28—C291.392 (4)
C17—C1101.513 (4)C28—H280.95
C18—C191.387 (3)C29—H290.95
C18—H180.95C210—H21D0.98
C19—H190.95C210—H21E0.98
C110—H11D0.98C210—H21F0.98
C110—H11E0.98
Cl11—Hg1—Cl12167.59 (2)H11E—C110—H11F109.5
Cl11—Hg1—N1197.60 (5)Cl21—Hg2—Cl22160.75 (2)
Cl12—Hg1—N1194.26 (5)Cl21—Hg2—N21100.56 (5)
Cl11—Hg1—O1292.94 (4)Cl22—Hg2—N2198.17 (5)
Cl12—Hg1—O1297.16 (4)Cl21—Hg2—O2195.47 (4)
N11—Hg1—O1252.83 (6)Cl22—Hg2—O2191.81 (4)
Cl11—Hg1—Cl11i86.479 (18)N21—Hg2—O2154.40 (6)
Cl12—Hg1—Cl11i87.692 (18)Cl21—Hg2—Cl1291.28 (2)
N11—Hg1—Cl11i135.22 (4)Cl22—Hg2—Cl1287.94 (2)
O12—Hg1—Cl11i82.50 (4)N21—Hg2—Cl12105.57 (4)
Cl11—Hg1—Cl2288.257 (18)O21—Hg2—Cl12159.72 (4)
Cl12—Hg1—Cl2284.313 (19)Cl21—Hg2—S2196.963 (19)
N11—Hg1—Cl22109.56 (4)Cl22—Hg2—S2197.41 (2)
O12—Hg1—Cl22162.36 (4)N21—Hg2—S2128.34 (4)
Cl11i—Hg1—Cl22115.138 (16)O21—Hg2—S2126.18 (4)
Cl11—Hg1—Hg1i50.722 (14)Cl12—Hg2—S21133.905 (15)
Cl12—Hg1—Hg1i122.720 (16)Hg2—Cl22—Hg191.05 (2)
N11—Hg1—Hg1i128.90 (4)O22—S21—O21116.91 (11)
O12—Hg1—Hg1i85.92 (4)O22—S21—N21114.72 (10)
Cl11i—Hg1—Hg1i35.757 (10)O21—S21—N21104.12 (11)
Cl22—Hg1—Hg1i108.158 (13)O22—S21—C24106.76 (11)
Hg1—Cl11—Hg1i93.521 (18)O21—S21—C24105.15 (11)
Hg1—Cl12—Hg294.76 (2)N21—S21—C24108.59 (10)
O11—S11—O12117.32 (11)O22—S21—Hg2129.96 (8)
O11—S11—N11115.36 (10)O21—S21—Hg256.78 (8)
O12—S11—N11103.34 (11)N21—S21—Hg247.66 (7)
O11—S11—C14106.75 (11)C24—S21—Hg2123.07 (8)
O12—S11—C14104.68 (11)S21—O21—Hg297.03 (9)
N11—S11—C14108.71 (11)N22—N21—S21118.46 (15)
S11—O12—Hg197.14 (9)N22—N21—Hg2128.47 (14)
N12—N11—S11119.48 (15)S21—N21—Hg2104.00 (9)
N12—N11—Hg1128.02 (14)N21—N22—C23103.74 (17)
S11—N11—Hg1106.64 (9)N21—N22—C22114.37 (18)
N11—N12—C12104.01 (17)C23—N22—C22107.68 (19)
N11—N12—C13110.18 (18)N21—N22—C21110.14 (17)
C12—N12—C13109.1 (2)C23—N22—C21109.5 (2)
N11—N12—C11114.54 (18)C22—N22—C21111.06 (18)
C12—N12—C11108.04 (19)N22—C21—H21A109.5
C13—N12—C11110.60 (19)N22—C21—H21B109.5
N12—C11—H11A109.5H21A—C21—H21B109.5
N12—C11—H11B109.5N22—C21—H21C109.5
H11A—C11—H11B109.5H21A—C21—H21C109.5
N12—C11—H11C109.5H21B—C21—H21C109.5
H11A—C11—H11C109.5N22—C22—H22A109.5
H11B—C11—H11C109.5N22—C22—H22B109.5
N12—C12—H12A109.5H22A—C22—H22B109.5
N12—C12—H12B109.5N22—C22—H22C109.5
H12A—C12—H12B109.5H22A—C22—H22C109.5
N12—C12—H12C109.5H22B—C22—H22C109.5
H12A—C12—H12C109.5N22—C23—H23A109.5
H12B—C12—H12C109.5N22—C23—H23B109.5
N12—C13—H13A109.5H23A—C23—H23B109.5
N12—C13—H13B109.5N22—C23—H23C109.5
H13A—C13—H13B109.5H23A—C23—H23C109.5
N12—C13—H13C109.5H23B—C23—H23C109.5
H13A—C13—H13C109.5C29—C24—C25121.2 (2)
H13B—C13—H13C109.5C29—C24—S21118.82 (17)
C15—C14—C19120.6 (2)C25—C24—S21119.75 (18)
C15—C14—S11118.91 (18)C26—C25—C24118.3 (2)
C19—C14—S11120.34 (19)C26—C25—H25120.8
C16—C15—C14119.4 (2)C24—C25—H25120.8
C16—C15—H15120.3C27—C26—C25121.7 (2)
C14—C15—H15120.3C27—C26—H26119.1
C15—C16—C17120.9 (2)C25—C26—H26119.1
C15—C16—H16119.5C26—C27—C28118.4 (2)
C17—C16—H16119.5C26—C27—C210120.7 (2)
C18—C17—C16118.4 (2)C28—C27—C210120.8 (3)
C18—C17—C110119.9 (2)C29—C28—C27121.2 (2)
C16—C17—C110121.7 (3)C29—C28—H28119.4
C19—C18—C17121.6 (2)C27—C28—H28119.4
C19—C18—H18119.2C24—C29—C28119.2 (2)
C17—C18—H18119.2C24—C29—H29120.4
C18—C19—C14119.0 (2)C28—C29—H29120.4
C18—C19—H19120.5C27—C210—H21D109.5
C14—C19—H19120.5C27—C210—H21E109.5
C17—C110—H11D109.5H21D—C210—H21E109.5
C17—C110—H11E109.5C27—C210—H21F109.5
H11D—C110—H11E109.5H21D—C210—H21F109.5
C17—C110—H11F109.5H21E—C210—H21F109.5
H11D—C110—H11F109.5
Cl12—Hg1—Cl11—Hg1i62.14 (10)Cl12—Hg1—Cl22—Hg211.92 (2)
N11—Hg1—Cl11—Hg1i135.17 (4)N11—Hg1—Cl22—Hg2104.42 (5)
O12—Hg1—Cl11—Hg1i82.29 (4)O12—Hg1—Cl22—Hg2107.65 (13)
Cl11i—Hg1—Cl11—Hg1i0Cl11i—Hg1—Cl22—Hg272.84 (2)
Cl22—Hg1—Cl11—Hg1i115.320 (17)Hg1i—Hg1—Cl22—Hg2110.700 (16)
Cl11—Hg1—Cl12—Hg244.45 (10)Cl21—Hg2—S21—O2210.81 (10)
N11—Hg1—Cl12—Hg2118.34 (4)Cl22—Hg2—S21—O22177.96 (10)
O12—Hg1—Cl12—Hg2171.39 (4)N21—Hg2—S21—O2288.54 (14)
Cl11i—Hg1—Cl12—Hg2106.473 (17)O21—Hg2—S21—O2299.04 (14)
Cl22—Hg1—Cl12—Hg29.074 (17)Cl12—Hg2—S21—O2287.74 (10)
Hg1i—Hg1—Cl12—Hg298.881 (16)Cl21—Hg2—S21—O2188.23 (9)
O11—S11—O12—Hg1126.27 (10)Cl22—Hg2—S21—O2178.92 (9)
N11—S11—O12—Hg11.89 (10)N21—Hg2—S21—O21172.42 (13)
C14—S11—O12—Hg1115.65 (9)Cl12—Hg2—S21—O21173.21 (9)
Cl11—Hg1—O12—S1195.84 (8)Cl21—Hg2—S21—N2199.35 (9)
Cl12—Hg1—O12—S1191.40 (8)Cl22—Hg2—S21—N2193.49 (9)
N11—Hg1—O12—S111.47 (8)O21—Hg2—S21—N21172.42 (13)
Cl11i—Hg1—O12—S11178.10 (9)Cl12—Hg2—S21—N210.80 (9)
Cl22—Hg1—O12—S112.3 (2)Cl21—Hg2—S21—C24175.16 (9)
Hg1i—Hg1—O12—S11146.11 (9)Cl22—Hg2—S21—C248.01 (9)
O11—S11—N11—N1228.0 (2)N21—Hg2—S21—C2485.49 (13)
O12—S11—N11—N12157.36 (17)O21—Hg2—S21—C2486.93 (13)
C14—S11—N11—N1291.83 (18)Cl12—Hg2—S21—C2486.28 (9)
O11—S11—N11—Hg1127.16 (10)O22—S21—O21—Hg2121.91 (10)
O12—S11—N11—Hg12.21 (12)N21—S21—O21—Hg25.77 (10)
C14—S11—N11—Hg1113.02 (10)C24—S21—O21—Hg2119.90 (9)
Cl11—Hg1—N11—N1265.80 (17)Cl21—Hg2—O21—S2194.67 (8)
Cl12—Hg1—N11—N12110.52 (17)Cl22—Hg2—O21—S21103.18 (8)
O12—Hg1—N11—N12153.7 (2)N21—Hg2—O21—S214.42 (8)
Cl11i—Hg1—N11—N12158.46 (13)Cl12—Hg2—O21—S2114.22 (19)
Cl22—Hg1—N11—N1225.06 (18)O22—S21—N21—N2227.3 (2)
Hg1i—Hg1—N11—N12110.32 (16)O21—S21—N21—N22156.35 (16)
Cl11—Hg1—N11—S1186.54 (9)C24—S21—N21—N2292.00 (17)
Cl12—Hg1—N11—S1197.14 (9)Hg2—S21—N21—N22149.8 (2)
O12—Hg1—N11—S111.38 (7)O22—S21—N21—Hg2122.48 (10)
Cl11i—Hg1—N11—S116.13 (14)O21—S21—N21—Hg26.54 (11)
Cl22—Hg1—N11—S11177.39 (8)C24—S21—N21—Hg2118.19 (10)
Hg1i—Hg1—N11—S1142.02 (12)Cl21—Hg2—N21—N2260.55 (16)
S11—N11—N12—C12165.10 (17)Cl22—Hg2—N21—N22123.91 (16)
Hg1—N11—N12—C1245.6 (2)O21—Hg2—N21—N22149.73 (19)
S11—N11—N12—C1378.0 (2)Cl12—Hg2—N21—N2233.78 (17)
Hg1—N11—N12—C1371.2 (2)S21—Hg2—N21—N22145.6 (2)
S11—N11—N12—C1147.4 (2)Cl21—Hg2—N21—S2185.07 (8)
Hg1—N11—N12—C11163.34 (16)Cl22—Hg2—N21—S2190.46 (8)
O11—S11—C14—C1538.7 (2)O21—Hg2—N21—S214.11 (7)
O12—S11—C14—C1586.3 (2)Cl12—Hg2—N21—S21179.40 (7)
N11—S11—C14—C15163.77 (19)S21—N21—N22—C23163.75 (17)
O11—S11—C14—C19146.38 (19)Hg2—N21—N22—C2354.8 (2)
O12—S11—C14—C1988.6 (2)S21—N21—N22—C2246.8 (2)
N11—S11—C14—C1921.3 (2)Hg2—N21—N22—C22171.79 (15)
C19—C14—C15—C162.5 (4)S21—N21—N22—C2179.1 (2)
S11—C14—C15—C16172.4 (2)Hg2—N21—N22—C2162.3 (2)
C14—C15—C16—C170.9 (4)O22—S21—C24—C2933.0 (2)
C15—C16—C17—C181.4 (4)O21—S21—C24—C2991.9 (2)
C15—C16—C17—C110176.9 (3)N21—S21—C24—C29157.19 (19)
C16—C17—C18—C192.2 (4)Hg2—S21—C24—C29151.79 (16)
C110—C17—C18—C19176.2 (3)O22—S21—C24—C25153.03 (19)
C17—C18—C19—C140.6 (4)O21—S21—C24—C2582.1 (2)
C15—C14—C19—C181.8 (4)N21—S21—C24—C2528.8 (2)
S11—C14—C19—C18173.02 (19)Hg2—S21—C24—C2522.2 (2)
Hg1—Cl12—Hg2—Cl21173.25 (2)C29—C24—C25—C261.7 (4)
Hg1—Cl12—Hg2—Cl2212.50 (2)S21—C24—C25—C26172.16 (18)
Hg1—Cl12—Hg2—N2185.41 (5)C24—C25—C26—C270.1 (4)
Hg1—Cl12—Hg2—O2177.16 (12)C25—C26—C27—C282.0 (4)
Hg1—Cl12—Hg2—S2185.81 (2)C25—C26—C27—C210176.1 (2)
Cl21—Hg2—Cl22—Hg197.01 (7)C26—C27—C28—C292.1 (4)
N21—Hg2—Cl22—Hg196.40 (5)C210—C27—C28—C29175.9 (2)
O21—Hg2—Cl22—Hg1150.68 (4)C25—C24—C29—C281.5 (4)
Cl12—Hg2—Cl22—Hg19.031 (17)S21—C24—C29—C28172.3 (2)
S21—Hg2—Cl22—Hg1125.002 (15)C27—C28—C29—C240.4 (4)
Cl11—Hg1—Cl22—Hg2158.12 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Hg4Cl8(C10H16N2O2S)4]
Mr1999.2
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9948 (1), 21.6336 (2), 17.2957 (1)
β (°) 93.3241 (3)
V3)2986.37 (5)
Z2
Radiation typeMo Kα
µ (mm1)10.8
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
quadrature algorithm in WinGX KappaCCD processing package (Farrugia, 1999)
Tmin, Tmax0.119, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
59772, 12956, 11417
Rint0.058
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.04
No. of reflections12956
No. of parameters326
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.54, 3.59

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and WinGX (Farrugia, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—Cl112.3323 (5)N11—N121.464 (3)
Hg1—Cl122.3403 (5)Hg2—Cl212.3254 (6)
Hg1—N112.507 (2)Hg2—Cl222.3336 (6)
Hg1—O122.831 (2)Hg2—N212.492 (2)
Hg1—Cl11i3.0896 (6)Hg2—O212.757 (2)
Hg1—Cl223.2160 (7)S21—O221.452 (2)
Cl12—Hg23.0654 (6)S21—O211.454 (2)
S11—O111.447 (2)S21—N211.600 (2)
S11—O121.450 (2)S21—C241.771 (2)
S11—N111.598 (2)N21—N221.465 (3)
S11—C141.775 (2)
Cl11—Hg1—Cl12167.59 (2)Cl21—Hg2—Cl22160.75 (2)
N11—Hg1—Cl11i135.22 (4)O21—Hg2—Cl12159.72 (4)
O12—Hg1—Cl22162.36 (4)O22—S21—N21114.72 (10)
O11—S11—N11115.36 (10)O21—S21—N21104.12 (11)
O12—S11—N11103.34 (11)N22—N21—S21118.46 (15)
N12—N11—S11119.48 (15)
O11—S11—N11—N1228.0 (2)O22—S21—N21—N2227.3 (2)
O12—S11—N11—N12157.36 (17)O21—S21—N21—N22156.35 (16)
O12—S11—N11—Hg12.21 (12)O21—S21—N21—Hg26.54 (11)
S11—N11—N12—C12165.10 (17)S21—N21—N22—C23163.75 (17)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds