Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The solvothermal reaction of zinc(II) acetate with 1,3,5-benzene­tri­carboxyl­ic acid and 4,4'-bi­pyridine in 1-butanol and acetic acid solution gives the title complex, [Zn3(C9H3O6)2(C10H8N2)(H2O)2]n. There are two different coordination environments for the Zn atom, namely ZnNO2(H2O) and ZnO4; in the latter case, the Zn atom lies on a twofold symmetry axis. Carboxyl­ate-bridged Zn3(O2C)6 clusters are connected through 1,3,5-benzene­tri­carboxyl­ate and 4,4'-bi­pyridine ligands (which lie about inversion centers), yielding a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103014252/sq1022sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014252/sq1022Isup2.hkl
Contains datablock I

CCDC reference: 219558

Comment top

In recent years, studies of the synthesis of metal–organic frameworks from transition metals and organic ligands have been extensively developed for their crystallographic diversity and potential applications in catalysis, non-linear optics, magnetism and molecular recognition (Eddaoudi et al., 2001; Evans & Lin, 2002; Zaworotko, 2001). Ligands with pyridyl or carboxylate groups are the most often employed to design and synthesize novel metal–organic frameworks. For instance, 1,3,5-benzenetricarboxylic acid (H3btc) and 4,4'-bipyridine (4,4'-bipy) have been widely applied to the construction of frameworks (Livage et al., 2001; Chui et al., 1999; Yaghi et al., 1997). Recent efforts in this field have largely focused on the combination of pyridyl and carboxylate ligands (Karanovic et al., 2002; Suresh et al., 2001). Lee et al. reported a one-dimensional metal–organic framework with a formula of Cu(H2btc)2(4,4'-bipy) synthesized by a hydrothermal reaction, which is the only example of mixed ligands of H3btc and 4,4'-bipy (Huh et al., 2002). We report here the solvothermal synthesis and crystal structure of a three-dimentional zinc(II)-based metal–organic framework solid, [Zn3(H2O)2(btc)2(4,4'-bipy)]n, (I).

The asymmetric unit and the labeling scheme are shown in Fig. 1. There are two different coordination environments for the Zn atoms, namely Zn1 and Zn2, both having tetrahedral geometry. Atom Zn1 is coordinated to two carboxylate O atoms of two btc ligands, one N atom of a 4,4'-bipy ligand and one coordinated water O atom. In the environment of atom Zn2 (which lies on a twofold axis), four O atoms from four different carboxylate groups occupy the coordinated positions. Three btc carboxylate groups have two different coordination modes, viz. as a monodentate ligand with atoms Zn1 or Zn2, and as a bidentate ligand with atoms Zn1 and Zn2. In the structure of (I), two Zn1 and one Zn2 centers linked by six carboxylate groups from six separate btc ligands produce a trinuclear Zn3(O2C–)6 secondary building unit, which forms an `S' helical configuration. The 4,4'-bipy ligand lies about an inversion centre and these ligands link the `S' units into one-dimensional zigzag chains, which lie on the (204) Miller planes, as shown in Fig. 2. Each btc ligand links three zigzag chains through its three carboxyl groups, thus yielding a three-dimensional framework (Fig. 3).

Experimental top

In a typical synthetic procedure, Zn(CH3COO)2.2H2O (0.220 g), H3btc (0.105 g), 4,4'-bipy.2H2O (0.096 g), 1-butanol (2 ml) and acetic acid (3 ml) were mixed, sealed in a Teflon-lined steel autoclave and allowed to crystallize at 433 K for 120 h. Colourless product crystals were washed with deionized water, filtered and dried in air at room temperature.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXP97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing displacement ellipsoids at the 50% probability level. Symmetry codes: (i) x − 1/2, −y + 1/2, z − 1/2; (ii) x, −y, z − 1/2; (iii) −x, −y, −z + 2; (iv) −x, y, −z + 3/2; (v) −x + 1, −y, −z + 1.
[Figure 2] Fig. 2. A view of the one-dimensional zigzag chain constructed from 4,4'-bipy ligands (open lines) linking the Zn3(O2C)6 secondary building unit (filled lines). Symmetry codes: (i) −x, y, 3/2 − z.
[Figure 3] Fig. 3. A view of the three-dimensional structure of (I) alone the c axis (open lines denote btc and filled lines denote 4,4'-bipy).
(I) top
Crystal data top
[Zn3(C9H4O6)2(C10H8N2)(H2O)2]F(000) = 1608
Mr = 802.55Dx = 1.860 Mg m3
Monoclinic, C2/cMelting point: not measured K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 10.3816 (3) ÅCell parameters from 4171 reflections
b = 18.6749 (6) Åθ = 2.2–30.0°
c = 14.8264 (4) ŵ = 2.57 mm1
β = 94.517 (2)°T = 293 K
V = 2865.55 (15) Å3Block, colourless
Z = 40.29 × 0.22 × 0.14 mm
Data collection top
CCD area detector
diffractometer
4171 independent reflections
Radiation source: fine-focus sealed tube2817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: Bruker SMART CCD area-detector pixels mm-1θmax = 30.0°, θmin = 2.2°
ϕ and ω scansh = 149
Absorption correction: empirical (using intensity measurements)
SADABS; Sheldrick, (1996)
k = 2226
Tmin = 0.478, Tmax = 0.695l = 2019
11594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
4171 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn3(C9H4O6)2(C10H8N2)(H2O)2]V = 2865.55 (15) Å3
Mr = 802.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.3816 (3) ŵ = 2.57 mm1
b = 18.6749 (6) ÅT = 293 K
c = 14.8264 (4) Å0.29 × 0.22 × 0.14 mm
β = 94.517 (2)°
Data collection top
CCD area detector
diffractometer
4171 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS; Sheldrick, (1996)
2817 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.695Rint = 0.027
11594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.44 e Å3
4171 reflectionsΔρmin = 0.36 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.19754 (3)0.191761 (14)0.669521 (16)0.03369 (8)
Zn20.00000.020299 (18)0.75000.02657 (9)
O10.23244 (15)0.15940 (9)0.79357 (9)0.0413 (4)
O20.0912 (2)0.08090 (10)0.84212 (11)0.0608 (5)
O30.54131 (15)0.25649 (10)1.15223 (10)0.0462 (4)
O40.57208 (15)0.26405 (9)1.00704 (10)0.0440 (4)
O50.10314 (16)0.02738 (9)1.16640 (10)0.0434 (4)
O60.19437 (19)0.10394 (10)1.26608 (10)0.0569 (5)
O1W0.3411 (2)0.26376 (12)0.66461 (15)0.0518 (5)
N10.28291 (18)0.11320 (10)0.60416 (12)0.0355 (4)
C10.2373 (2)0.13687 (11)0.94896 (13)0.0285 (4)
C20.3446 (2)0.18083 (11)0.96519 (13)0.0283 (4)
H20.38230.20190.91690.080*
C30.39582 (19)0.19355 (11)1.05264 (13)0.0282 (4)
C40.3377 (2)0.16266 (11)1.12551 (13)0.0303 (4)
H40.37010.17251.18450.080*
C50.2322 (2)0.11755 (11)1.11003 (13)0.0304 (5)
C60.1818 (2)0.10442 (11)1.02150 (13)0.0307 (5)
H60.11120.07411.01080.080*
C70.1814 (2)0.12423 (12)0.85379 (13)0.0314 (5)
C80.5114 (2)0.24111 (11)1.06957 (14)0.0323 (5)
C90.1723 (2)0.08149 (12)1.18810 (14)0.0355 (5)
C100.3778 (3)0.07875 (17)0.65139 (16)0.0590 (8)
H100.38690.08550.71370.080*
C110.4628 (3)0.03400 (16)0.61357 (16)0.0563 (8)
H110.52690.01090.65000.080*
C120.4533 (2)0.02323 (11)0.52179 (14)0.0325 (5)
C130.3519 (3)0.05645 (14)0.47256 (16)0.0511 (7)
H130.33880.04910.41050.080*
C140.2700 (3)0.10084 (15)0.51636 (16)0.0514 (7)
H140.20250.12300.48210.080*
H1A0.324 (3)0.3003 (19)0.688 (2)0.091 (14)*
H1B0.371 (3)0.2651 (17)0.620 (2)0.070 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03618 (15)0.04109 (16)0.02371 (13)0.00914 (11)0.00186 (10)0.00237 (10)
Zn20.03236 (19)0.03134 (19)0.01593 (15)0.0000.00131 (12)0.000
O10.0389 (9)0.0628 (11)0.0220 (8)0.0009 (8)0.0011 (6)0.0092 (7)
O20.0818 (14)0.0676 (13)0.0310 (9)0.0373 (11)0.0074 (9)0.0077 (8)
O30.0419 (10)0.0667 (12)0.0304 (8)0.0233 (8)0.0054 (7)0.0104 (8)
O40.0422 (10)0.0562 (11)0.0349 (9)0.0158 (8)0.0111 (7)0.0001 (7)
O50.0562 (11)0.0428 (10)0.0329 (9)0.0197 (8)0.0150 (7)0.0046 (7)
O60.0868 (14)0.0622 (12)0.0227 (8)0.0260 (10)0.0100 (8)0.0032 (8)
O1W0.0611 (13)0.0552 (13)0.0407 (11)0.0102 (10)0.0149 (9)0.0020 (9)
N10.0399 (11)0.0379 (11)0.0286 (10)0.0087 (8)0.0017 (8)0.0013 (8)
C10.0335 (12)0.0317 (11)0.0203 (10)0.0024 (9)0.0021 (8)0.0009 (8)
C20.0321 (11)0.0297 (11)0.0235 (10)0.0011 (9)0.0052 (8)0.0001 (8)
C30.0273 (11)0.0323 (11)0.0252 (10)0.0008 (9)0.0037 (8)0.0013 (8)
C40.0337 (12)0.0348 (11)0.0224 (10)0.0019 (9)0.0014 (8)0.0021 (8)
C50.0343 (12)0.0340 (12)0.0234 (10)0.0028 (9)0.0046 (8)0.0005 (8)
C60.0329 (12)0.0324 (11)0.0270 (10)0.0042 (9)0.0030 (8)0.0016 (8)
C70.0346 (12)0.0351 (12)0.0243 (10)0.0032 (10)0.0006 (8)0.0044 (8)
C80.0289 (11)0.0355 (12)0.0328 (12)0.0003 (9)0.0039 (9)0.0047 (9)
C90.0379 (13)0.0396 (13)0.0296 (11)0.0043 (10)0.0070 (9)0.0015 (9)
C100.0623 (18)0.087 (2)0.0265 (13)0.0320 (16)0.0023 (11)0.0032 (13)
C110.0559 (17)0.084 (2)0.0282 (12)0.0365 (15)0.0043 (11)0.0030 (12)
C120.0355 (12)0.0302 (11)0.0317 (11)0.0004 (9)0.0010 (9)0.0013 (9)
C130.0663 (18)0.0563 (17)0.0290 (12)0.0260 (14)0.0068 (11)0.0070 (11)
C140.0586 (17)0.0605 (17)0.0332 (13)0.0278 (13)0.0086 (11)0.0048 (11)
Geometric parameters (Å, º) top
Zn1—O3i1.8880 (15)C1—C61.398 (3)
Zn1—O11.9428 (14)C1—C71.502 (3)
Zn1—N12.0031 (17)C2—C31.383 (3)
Zn1—O1W2.013 (2)C2—H20.9300
Zn2—O5ii1.9195 (14)C3—C41.402 (3)
Zn2—O5iii1.9195 (14)C3—C81.498 (3)
Zn2—O21.9592 (16)C4—C51.387 (3)
Zn2—O2iv1.9592 (16)C4—H40.9300
O1—C71.258 (2)C5—C61.396 (3)
O2—C71.240 (3)C5—C91.514 (3)
O3—C81.273 (2)C6—H60.9300
O3—Zn1v1.8880 (15)C10—C111.367 (3)
O4—C81.238 (2)C10—H100.9300
O5—C91.266 (3)C11—C121.371 (3)
O5—Zn2iii1.9195 (14)C11—H110.9300
O6—C91.234 (3)C12—C131.380 (3)
O1W—H1A0.79 (3)C12—C12vi1.486 (4)
O1W—H1B0.75 (3)C13—C141.386 (3)
N1—C141.319 (3)C13—H130.9300
N1—C101.329 (3)C14—H140.9300
C1—C21.390 (3)
O3i—Zn1—O1112.45 (7)C5—C4—H4119.8
O3i—Zn1—N1135.84 (8)C3—C4—H4119.8
O1—Zn1—N199.99 (7)C4—C5—C6119.67 (18)
O3i—Zn1—O1W106.49 (9)C4—C5—C9120.67 (18)
O1—Zn1—O1W99.12 (8)C6—C5—C9119.66 (19)
N1—Zn1—O1W96.58 (9)C5—C6—C1120.04 (19)
O5ii—Zn2—O5iii124.73 (10)C5—C6—H6120.0
O5ii—Zn2—O2117.04 (8)C1—C6—H6120.0
O5iii—Zn2—O294.66 (7)O2—C7—O1126.7 (2)
O5ii—Zn2—O2iv94.66 (7)O2—C7—C1117.75 (19)
O5iii—Zn2—O2iv117.04 (8)O1—C7—C1115.56 (19)
O2—Zn2—O2iv109.43 (12)O4—C8—O3122.9 (2)
C7—O1—Zn1140.94 (15)O4—C8—C3121.87 (19)
C7—O2—Zn2142.43 (16)O3—C8—C3115.26 (17)
C8—O3—Zn1v112.84 (13)O6—C9—O5124.7 (2)
C9—O5—Zn2iii122.69 (14)O6—C9—C5120.5 (2)
Zn1—O1W—H1A112 (3)O5—C9—C5114.79 (19)
Zn1—O1W—H1B114 (2)N1—C10—C11123.7 (2)
H1A—O1W—H1B118 (3)N1—C10—H10118.1
C14—N1—C10116.7 (2)C11—C10—H10118.1
C14—N1—Zn1126.25 (16)C10—C11—C12119.9 (2)
C10—N1—Zn1115.95 (16)C10—C11—H11120.0
C2—C1—C6119.77 (18)C12—C11—H11120.0
C2—C1—C7120.06 (17)C11—C12—C13116.8 (2)
C6—C1—C7120.17 (19)C11—C12—C12vi121.3 (2)
C3—C2—C1120.50 (18)C13—C12—C12vi121.9 (2)
C3—C2—H2119.8C12—C13—C14119.5 (2)
C1—C2—H2119.8C12—C13—H13120.3
C2—C3—C4119.67 (19)C14—C13—H13120.3
C2—C3—C8120.17 (18)N1—C14—C13123.3 (2)
C4—C3—C8120.15 (18)N1—C14—H14118.4
C5—C4—C3120.30 (18)C13—C14—H14118.4
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x, y, z+2; (iv) x, y, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6vii0.79 (3)1.93 (4)2.712 (3)170 (4)
O1W—H1B···O4viii0.75 (3)2.02 (3)2.766 (3)172 (3)
Symmetry codes: (vii) x+1/2, y+1/2, z+2; (viii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn3(C9H4O6)2(C10H8N2)(H2O)2]
Mr802.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.3816 (3), 18.6749 (6), 14.8264 (4)
β (°) 94.517 (2)
V3)2865.55 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.29 × 0.22 × 0.14
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS; Sheldrick, (1996)
Tmin, Tmax0.478, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
11594, 4171, 2817
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 0.91
No. of reflections4171
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXP97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Zn1—O3i1.8880 (15)Zn2—O5ii1.9195 (14)
Zn1—O11.9428 (14)Zn2—O5iii1.9195 (14)
Zn1—N12.0031 (17)Zn2—O21.9592 (16)
Zn1—O1W2.013 (2)Zn2—O2iv1.9592 (16)
O3i—Zn1—O1112.45 (7)O5iii—Zn2—O294.66 (7)
O3i—Zn1—N1135.84 (8)O5ii—Zn2—O2iv94.66 (7)
O1—Zn1—N199.99 (7)O5iii—Zn2—O2iv117.04 (8)
O3i—Zn1—O1W106.49 (9)O2—Zn2—O2iv109.43 (12)
O1—Zn1—O1W99.12 (8)C7—O1—Zn1140.94 (15)
N1—Zn1—O1W96.58 (9)C7—O2—Zn2142.43 (16)
O5ii—Zn2—O5iii124.73 (10)C8—O3—Zn1v112.84 (13)
O5ii—Zn2—O2117.04 (8)C9—O5—Zn2iii122.69 (14)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x, y, z+2; (iv) x, y, z+3/2; (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6vi0.79 (3)1.93 (4)2.712 (3)170 (4)
O1W—H1B···O4vii0.75 (3)2.02 (3)2.766 (3)172 (3)
Symmetry codes: (vi) x+1/2, y+1/2, z+2; (vii) x+1, y, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds