Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of 3,5-bis­[4-(diethyl­amino)­benzyl­idene]-1-methyl-4-piperidone, C28H37N3O, (I), and 3,5-bis­[4-(diethyl­amino)­cinnamyl­idene]-1-methyl-4-piperidone, C32H41N3O, (II), have been characterized. Because of conjugation between donor and acceptor parts, the central heterocycles (including the carbonyl group) in (I) and (II) are flattened and exhibit a `sofa' conformation, with a deviation of the N atom from the planar fragment. The dihedral angles between the planar part of the heterocycle and the two almost flat fragments that include a phenyl ring and bridging atoms are 23.2 (1) and 11.2 (1)° in (I), and 11.8 (1) and 8.7 (2)° in (II). One- and two-photon absorption of light and the fluorescence of (I) and (II) have also been characterized.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103020237/sq1020sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020237/sq1020Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020237/sq1020IIsup3.hkl
Contains datablock II

CCDC references: 226117; 226118

Comment top

In the course of an investigation of non-linear optical organic compounds, in particular, those with two-photon absorption (TPA) properties, several compounds with the general structure D—π—A—π—D were synthesized. The structure, TPA properties and fluorescence activities of two of these compounds have been characterized. Comparison of these structures with analogous compounds found in the literature has shown that their molecules are very similar to the thoroughly investigated group of compounds used as anticancer agents (Jia et al., 1988; Jia et al., 1989; Dimmock et al., 1992a; Dimmock et al., 1992b; Dimmock et al., 1994a; Dimmock et al., 1994b; Dimmock et al., 2001). The combination of these two remarkable features suggests the prospect of their application as agents for localization of cancer cells with two-photon exited fluorescence and as potential agents for photodynamic treatment of cancer.

We describe here the synthesis, structure and properties of 3,5-bis(4'-diethylaminophenylidene)-1-methyl-4-piperidone, (I) (Fig. 1), and 3,5-bis(4'-diethylaminocinnamylidene)-1-methyl-4-piperidone, (II) (Fig. 2), which contain two diethylaminophenyl donor groups connected to a central acceptor 1-methylpiperidone ring via conjugated bridges of different lengths.

In both compounds, the central heterocycle adopts a `sofa' conformation (one atom deviates from the plane, which includes five other atoms). The mean deviation of atoms C2–C6 from the mean-square plane of these five atoms in (I) is 0.030 (1) Å, while the deviation of atom N1 from this plane is −0.724 (1) Å. In (II), the corresponding deviations are 0.015 (2) Å (C2–C6) and 0.681 (2) Å (N1). The positions of atoms C2–C6 in flattened fragments in (I) and (II) are a result of conjugation in the dienone fragments with donor groups. Atom N1 in the piperidone ring has a pyramidal coordination, with the sum of the bond angles equal to 331.1 (2)° for (I) and 330.8 (2)° for (II). In both compounds, the methyl group on atom N1 occupies an equatorial position. The bond-length distribution in the π-conjugated bridges definitely shows an alternation of single C—C and double CC bond lengths (Tables 1 and 2) with standard values (Allen et al., 1987).

Both (I) and (II) can be formally divided into three almost planar fragments (see Scheme); the first includes the planar part of acceptor heterocycle A, while the second, B, and third, C, include almost planar fragments that consist of a Ph ring and bridging atoms. In (I), the dihedral angles between rings A and B, and between rings A and C, are 23.2 (1) and 11.2 (1)° respectively. The corresponding angles in (II) are 11.8 (1) (for A/B) and 8.7 (2)° (for A/C). Thus the molecule of (I) is slightly less planar than that of (II). This might be related to the presence in (I) of short intramolecular H2A···H24A and H6B···H13A contacts, with distances of 2.10 and 2.20 Å, respectively, that are somewhat shorter than the sum of the van der Waals radii of the H atoms (Rowlend & Taylor, 1996).

In both compounds, one of the diethylamine substituents is disordered. In the molecule of (I), only one ethyl branch of this substituent is disordered, and occupancy refinement suggests a 2:1 ratio of atoms C25/C25A to C26/C26A. In (II), two branches of one diethylamine substituent are disordered, with a relative occupancy of 1:1 for atoms C29–C32 and C29A–C32A. According to the literature, such an effect is common for many molecules bearing a diethylamine group (Suchod & Baldeck, 1995; Kliegel et al., 1998).

Molecules in the crystal of (I) are organized in layers normal to the (1 0 − 4) direction, and within each layer, molecules are packed in a parquet-like manner (Fig. 3). In (II), all long molecular axes are parallel to the crystallographic c axis (Fig. 4). On the other hand, the relative orientations of the mean molecular planes are different; in the environment of a reference molecule, three neighboring molecules are approximately parallel and four molecules are approximately perpendicular to the reference molecule (Fig. 5).

Compound (I) demonstrated a relatively strong fluorescence, which is yellow in color, while being pumped with IR radiation. The coefficient of the two-photon absorption and the molecular cross section of TPA are 3.9 (1) cm GW_1 and 1490 (50) x 10−50 cm4 s photon−1 molecule−1. Compound (II) produced a weaker fluorescence. The TPA coefficient for (II) is 6.6 (2) cm GW−1 and the TPA cross section is 2550 (70) x 10−50 cm4 s photon−1 molecule−1. For both synthesized compounds, the TPA cross sections are one order of magnitude greater than those of Rhodamine B (Xu & Webb, 1996), the conventional dye used as a benchmark in evaluation of the efficiency of TPA absorbers. Detailed results of spectral properties and the structure–properties relations of these compounds will be published elsewhere. The present results indicate that the synthesized compounds can be potentially used as optical limiters and two-photon fluorescent labels in microscopy and bioresearch.

Experimental top

Compounds (I) and (II) were obtained according to literature procedures (Dimmock et al., 1992a). The precipitates were isolated and recrystallized from tetrahydrofurane [m.p. 472 K and yield 76% for (I), and m.p. 449 K and yield 71% for (II)]. Crystals were obtained by isothermic evaporation of ethanol solutions of (I) and (II).

Computing details top

Data collection: Enraf–Nonius CAD-4 (Enraf–Nonuis, 1989) for (I); SMART (Bruker, 1998) for (II). Cell refinement: Enraf–Nonius CAD-4 for (I); SMART for (II). Data reduction: SHELXTL-Plus (Sheldrick, 1994) for (I); SAINT (Bruker, 1998) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL-Plus for (I); SHELXTL (Bruker, 1998) for (II). Software used to prepare material for publication: SHELXL97 for (I); SHELXTL for (II).

Figures top
[Figure 1] Fig. 1. : View of the molecule of (I), with the atom-numbering scheme. Non-H atoms are shown with thermal ellipsoids drawn at the 50% probability level. For clarity, H atoms are drawn as circles of arbitrary small radii. Only one set of disordered positions is shown for each of the ethyl groups.
[Figure 2] Fig. 2. : View of the molecule of (II), with the atom-numbering scheme. Non-H atoms are shown with thermal ellipsoids drawn at the 50% probability level. For clarity, H atoms are drawn as circles of arbitrary small radii. Only one set of disordered positions is shown for each of the ethyl groups.
[Figure 3] Fig. 3. : Projection of the crystal packing of (I) along the a axis.
[Figure 4] Fig. 4. : Projection of the crystal packing of (II) along the b axis.
[Figure 5] Fig. 5. : Projection of the crystal packing of (II) along the c axis.
(I) top
Crystal data top
C28H37N3OF(000) = 936
Mr = 431.61Dx = 1.149 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2260 (18) ÅCell parameters from 24 reflections
b = 16.181 (3) Åθ = 11–12°
c = 16.862 (3) ŵ = 0.07 mm1
β = 97.55 (3)°T = 298 K
V = 2495.4 (9) Å3Prism, orange
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.8°
Graphite monochromatorh = 011
θ/2θ scansk = 020
5646 measured reflectionsl = 2121
5319 independent reflections3 standard reflections every 97 reflections
2701 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
5319 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C28H37N3OV = 2495.4 (9) Å3
Mr = 431.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2260 (18) ŵ = 0.07 mm1
b = 16.181 (3) ÅT = 298 K
c = 16.862 (3) Å0.50 × 0.40 × 0.30 mm
β = 97.55 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
5646 measured reflections3 standard reflections every 97 reflections
5319 independent reflections intensity decay: 3%
2701 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.19Δρmax = 0.14 e Å3
5319 reflectionsΔρmin = 0.20 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms, 0.97 Å for CH2 and 0.96 Å for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.83458 (15)0.50112 (9)0.41861 (10)0.0779 (5)
N10.56783 (16)0.30942 (9)0.38437 (9)0.0509 (4)
N20.00216 (18)0.66852 (11)0.24463 (10)0.0642 (5)
N31.3021 (2)0.09895 (12)0.62789 (13)0.0859 (6)
C10.4683 (2)0.23929 (13)0.37497 (14)0.0672 (6)
H1A0.39310.24940.33100.101*
H1B0.42470.23190.42310.101*
H1C0.52140.19030.36450.101*
C20.6856 (2)0.29469 (11)0.44949 (11)0.0509 (5)
H2A0.73320.24270.44060.061*
H2B0.64500.29050.49960.061*
C30.79545 (18)0.36280 (11)0.45511 (10)0.0446 (4)
C40.74725 (19)0.44494 (11)0.42398 (12)0.0503 (5)
C50.58755 (19)0.45836 (11)0.40005 (11)0.0473 (4)
C60.48998 (19)0.38474 (11)0.39977 (12)0.0530 (5)
H6A0.45390.38040.45110.064*
H6B0.40650.39160.35890.064*
C70.5445 (2)0.53478 (12)0.37740 (11)0.0507 (5)
H7A0.62020.57300.37990.061*
C80.40107 (19)0.56881 (11)0.34968 (11)0.0482 (5)
C90.3927 (2)0.64056 (12)0.30380 (12)0.0560 (5)
H9A0.47910.66690.29570.067*
C100.2622 (2)0.67437 (12)0.26982 (12)0.0575 (5)
H10A0.26260.72200.23900.069*
C110.1292 (2)0.63796 (12)0.28104 (11)0.0519 (5)
C120.1358 (2)0.56881 (12)0.33159 (11)0.0537 (5)
H12A0.04930.54500.34320.064*
C130.2663 (2)0.53563 (12)0.36418 (11)0.0520 (5)
H13A0.26600.48950.39710.062*
C140.0105 (3)0.73233 (14)0.18330 (13)0.0697 (6)
H14A0.09420.72120.14360.084*
H14B0.07640.72920.15670.084*
C150.0235 (4)0.81809 (16)0.21457 (16)0.1007 (9)
H15A0.03320.85650.17080.151*
H15B0.06240.83130.25090.151*
H15C0.10810.82160.24210.151*
C160.1404 (2)0.63388 (15)0.25995 (14)0.0712 (6)
H16A0.21370.67720.25420.085*
H16B0.13060.61460.31490.085*
C170.1928 (3)0.5636 (2)0.2055 (2)0.1145 (10)
H17A0.28980.54810.21460.172*
H17B0.12830.51730.21630.172*
H17C0.19410.58060.15090.172*
C180.93712 (18)0.35634 (11)0.48708 (11)0.0476 (4)
H18A0.99010.40510.48560.057*
C191.02165 (19)0.28738 (11)0.52331 (10)0.0458 (4)
C201.1744 (2)0.29593 (12)0.53474 (11)0.0540 (5)
H20A1.21510.34500.51930.065*
C211.2660 (2)0.23474 (12)0.56788 (13)0.0620 (5)
H21A1.36650.24340.57420.074*
C221.2120 (2)0.16009 (12)0.59223 (12)0.0587 (5)
C231.0604 (2)0.15082 (13)0.58078 (12)0.0621 (5)
H23A1.01990.10130.59520.075*
C240.9694 (2)0.21293 (12)0.54877 (11)0.0577 (5)
H24A0.86890.20470.54400.069*
C251.4573 (6)0.1180 (3)0.6607 (4)0.0789 (12)0.67
H25A1.48680.08500.70810.095*0.67
H25B1.46680.17590.67520.095*0.67
C261.5534 (10)0.0982 (5)0.5969 (5)0.126 (2)0.67
H26A1.65420.10400.61890.189*0.67
H26B1.53130.13550.55270.189*0.67
H26C1.53540.04240.57870.189*0.67
C25A1.4547 (11)0.0917 (5)0.6014 (9)0.072 (2)0.33
H25C1.47710.03450.59050.086*0.33
H25D1.46080.12420.55360.086*0.33
C26A1.5556 (18)0.1237 (7)0.6692 (11)0.125 (5)0.33
H26D1.64700.13800.65140.188*0.33
H26E1.57170.08210.71000.188*0.33
H26F1.51390.17190.69050.188*0.33
C271.2459 (3)0.01878 (15)0.64660 (16)0.0842 (8)
H27A1.15870.02690.67210.101*
H27B1.31800.00830.68510.101*
C281.2093 (4)0.03735 (18)0.5768 (2)0.1254 (12)
H28A1.16950.08800.59430.188*
H28B1.29620.04900.55310.188*
H28C1.13860.01120.53800.188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (8)0.0568 (8)0.1295 (14)0.0077 (7)0.0160 (8)0.0244 (9)
N10.0353 (8)0.0489 (9)0.0658 (10)0.0037 (7)0.0031 (7)0.0068 (8)
N20.0463 (10)0.0768 (12)0.0673 (11)0.0139 (9)0.0012 (8)0.0168 (9)
N30.0595 (12)0.0672 (12)0.1259 (17)0.0090 (10)0.0072 (11)0.0339 (12)
C10.0469 (12)0.0593 (12)0.0922 (16)0.0134 (10)0.0026 (11)0.0116 (11)
C20.0390 (10)0.0490 (11)0.0630 (11)0.0027 (8)0.0003 (9)0.0001 (9)
C30.0323 (9)0.0476 (10)0.0525 (10)0.0018 (8)0.0000 (7)0.0021 (8)
C40.0346 (10)0.0455 (11)0.0675 (12)0.0073 (9)0.0051 (9)0.0038 (9)
C50.0327 (9)0.0500 (11)0.0567 (11)0.0019 (8)0.0031 (8)0.0003 (9)
C60.0331 (10)0.0569 (12)0.0669 (12)0.0035 (9)0.0008 (8)0.0001 (10)
C70.0352 (10)0.0533 (11)0.0605 (12)0.0031 (9)0.0053 (8)0.0024 (9)
C80.0381 (10)0.0499 (11)0.0542 (11)0.0028 (8)0.0025 (8)0.0019 (9)
C90.0413 (11)0.0545 (12)0.0698 (12)0.0014 (9)0.0025 (9)0.0017 (10)
C100.0527 (12)0.0510 (11)0.0667 (13)0.0057 (9)0.0002 (10)0.0069 (10)
C110.0420 (11)0.0578 (12)0.0545 (11)0.0107 (9)0.0015 (8)0.0005 (10)
C120.0366 (10)0.0641 (12)0.0601 (12)0.0075 (9)0.0054 (9)0.0047 (10)
C130.0434 (11)0.0561 (11)0.0559 (11)0.0073 (9)0.0045 (9)0.0079 (9)
C140.0611 (14)0.0819 (16)0.0643 (13)0.0234 (12)0.0017 (10)0.0157 (12)
C150.134 (3)0.0798 (18)0.0915 (19)0.0342 (17)0.0279 (17)0.0164 (14)
C160.0410 (12)0.0890 (16)0.0814 (15)0.0163 (12)0.0001 (10)0.0125 (13)
C170.082 (2)0.126 (3)0.129 (3)0.0117 (18)0.0088 (18)0.014 (2)
C180.0381 (10)0.0444 (10)0.0582 (11)0.0014 (8)0.0009 (8)0.0015 (9)
C190.0378 (10)0.0464 (10)0.0517 (10)0.0001 (8)0.0000 (8)0.0009 (8)
C200.0411 (11)0.0497 (11)0.0685 (12)0.0017 (9)0.0027 (9)0.0057 (9)
C210.0382 (11)0.0564 (12)0.0885 (14)0.0025 (10)0.0029 (10)0.0090 (11)
C220.0530 (12)0.0549 (12)0.0660 (13)0.0081 (10)0.0003 (10)0.0116 (10)
C230.0528 (13)0.0539 (12)0.0778 (14)0.0071 (10)0.0018 (10)0.0161 (10)
C240.0409 (11)0.0617 (13)0.0688 (13)0.0032 (9)0.0005 (9)0.0102 (10)
C250.069 (3)0.078 (3)0.085 (4)0.018 (3)0.009 (3)0.017 (3)
C260.092 (4)0.139 (5)0.153 (6)0.033 (4)0.042 (5)0.045 (5)
C25A0.064 (6)0.056 (4)0.096 (8)0.015 (4)0.009 (6)0.011 (5)
C26A0.071 (7)0.099 (7)0.192 (16)0.014 (6)0.036 (10)0.014 (8)
C270.0833 (17)0.0684 (16)0.0964 (18)0.0095 (13)0.0049 (14)0.0306 (14)
C280.157 (3)0.0771 (18)0.135 (3)0.013 (2)0.008 (2)0.0026 (19)
Geometric parameters (Å, º) top
O1—C41.226 (2)C15—H15A0.9600
N1—C11.455 (2)C15—H15B0.9600
N1—C61.455 (2)C15—H15C0.9600
N1—C21.459 (2)C16—C171.501 (4)
N2—C111.376 (2)C16—H16A0.9700
N2—C161.447 (3)C16—H16B0.9700
N2—C141.456 (3)C17—H17A0.9600
N3—C221.379 (2)C17—H17B0.9600
N3—C271.447 (3)C17—H17C0.9600
N3—C251.497 (7)C18—C191.450 (2)
N3—C25A1.536 (13)C18—H18A0.9300
C1—H1A0.9600C19—C241.386 (3)
C1—H1B0.9600C19—C201.404 (3)
C1—H1C0.9600C20—C211.372 (3)
C2—C31.492 (2)C20—H20A0.9300
C2—H2A0.9700C21—C221.389 (3)
C2—H2B0.9700C21—H21A0.9300
C3—C181.351 (2)C22—C231.394 (3)
C3—C41.476 (2)C23—C241.374 (3)
C4—C51.492 (2)C23—H23A0.9300
C5—C71.339 (2)C24—H24A0.9300
C5—C61.493 (3)C25—C261.514 (9)
C6—H6A0.9700C25—H25A0.9700
C6—H6B0.9700C25—H25B0.9700
C7—C81.453 (3)C26—H26A0.9600
C7—H7A0.9300C26—H26B0.9600
C8—C91.392 (3)C26—H26C0.9600
C8—C131.405 (3)C25A—C26A1.470 (17)
C9—C101.377 (3)C25A—H25C0.9700
C9—H9A0.9300C25A—H25D0.9700
C10—C111.396 (3)C26A—H26D0.9600
C10—H10A0.9300C26A—H26E0.9600
C11—C121.403 (3)C26A—H26F0.9600
C12—C131.367 (3)C27—C281.490 (4)
C12—H12A0.9300C27—H27A0.9700
C13—H13A0.9300C27—H27B0.9700
C14—C151.495 (3)C28—H28A0.9600
C14—H14A0.9700C28—H28B0.9600
C14—H14B0.9700C28—H28C0.9600
C1—N1—C6110.69 (15)H15A—C15—H15B109.5
C1—N1—C2110.57 (15)C14—C15—H15C109.5
C6—N1—C2109.79 (14)H15A—C15—H15C109.5
C11—N2—C16121.74 (17)H15B—C15—H15C109.5
C11—N2—C14122.19 (17)N2—C16—C17113.9 (2)
C16—N2—C14115.85 (16)N2—C16—H16A108.8
C22—N3—C27121.71 (19)C17—C16—H16A108.8
C22—N3—C25120.4 (2)N2—C16—H16B108.8
C27—N3—C25117.2 (2)C17—C16—H16B108.8
C22—N3—C25A116.8 (4)H16A—C16—H16B107.7
C27—N3—C25A111.3 (3)C16—C17—H17A109.5
N1—C1—H1A109.5C16—C17—H17B109.5
N1—C1—H1B109.5H17A—C17—H17B109.5
H1A—C1—H1B109.5C16—C17—H17C109.5
N1—C1—H1C109.5H17A—C17—H17C109.5
H1A—C1—H1C109.5H17B—C17—H17C109.5
H1B—C1—H1C109.5C3—C18—C19131.79 (17)
N1—C2—C3111.08 (15)C3—C18—H18A114.1
N1—C2—H2A109.4C19—C18—H18A114.1
C3—C2—H2A109.4C24—C19—C20115.24 (17)
N1—C2—H2B109.4C24—C19—C18127.58 (17)
C3—C2—H2B109.4C20—C19—C18117.18 (16)
H2A—C2—H2B108.0C21—C20—C19122.55 (18)
C18—C3—C4116.23 (16)C21—C20—H20A118.7
C18—C3—C2125.59 (16)C19—C20—H20A118.7
C4—C3—C2118.17 (15)C20—C21—C22121.50 (19)
O1—C4—C3121.59 (16)C20—C21—H21A119.3
O1—C4—C5120.50 (16)C22—C21—H21A119.3
C3—C4—C5117.91 (15)N3—C22—C21122.27 (19)
C7—C5—C4117.20 (16)N3—C22—C23121.30 (19)
C7—C5—C6125.44 (16)C21—C22—C23116.41 (17)
C4—C5—C6117.29 (16)C24—C23—C22121.71 (18)
N1—C6—C5110.94 (15)C24—C23—H23A119.1
N1—C6—H6A109.5C22—C23—H23A119.1
C5—C6—H6A109.5C23—C24—C19122.56 (18)
N1—C6—H6B109.5C23—C24—H24A118.7
C5—C6—H6B109.5C19—C24—H24A118.7
H6A—C6—H6B108.0N3—C25—C26108.4 (8)
C5—C7—C8131.72 (18)N3—C25—H25A110.0
C5—C7—H7A114.1C26—C25—H25A110.0
C8—C7—H7A114.1N3—C25—H25B110.0
C9—C8—C13115.44 (16)C26—C25—H25B110.0
C9—C8—C7118.50 (17)H25A—C25—H25B108.4
C13—C8—C7126.06 (17)C26A—C25A—N3104.9 (16)
C10—C9—C8123.01 (18)C26A—C25A—H25C110.8
C10—C9—H9A118.5N3—C25A—H25C110.8
C8—C9—H9A118.5C26A—C25A—H25D110.8
C9—C10—C11120.79 (18)N3—C25A—H25D110.8
C9—C10—H10A119.6H25C—C25A—H25D108.8
C11—C10—H10A119.6C25A—C26A—H26D109.5
N2—C11—C10121.72 (18)C25A—C26A—H26E109.5
N2—C11—C12121.54 (18)H26D—C26A—H26E109.5
C10—C11—C12116.74 (16)C25A—C26A—H26F109.5
C13—C12—C11121.55 (18)H26D—C26A—H26F109.5
C13—C12—H12A119.2H26E—C26A—H26F109.5
C11—C12—H12A119.2N3—C27—C28115.1 (2)
C12—C13—C8122.23 (18)N3—C27—H27A108.5
C12—C13—H13A118.9C28—C27—H27A108.5
C8—C13—H13A118.9N3—C27—H27B108.5
N2—C14—C15114.02 (18)C28—C27—H27B108.5
N2—C14—H14A108.7H27A—C27—H27B107.5
C15—C14—H14A108.7C27—C28—H28A109.5
N2—C14—H14B108.7C27—C28—H28B109.5
C15—C14—H14B108.7H28A—C28—H28B109.5
H14A—C14—H14B107.6C27—C28—H28C109.5
C14—C15—H15A109.5H28A—C28—H28C109.5
C14—C15—H15B109.5H28B—C28—H28C109.5
C1—N1—C2—C3175.02 (16)C11—N2—C14—C1594.9 (3)
C6—N1—C2—C362.6 (2)C16—N2—C14—C1590.4 (3)
N1—C2—C3—C18155.29 (17)C11—N2—C16—C1788.7 (3)
N1—C2—C3—C425.2 (2)C14—N2—C16—C1786.1 (2)
C18—C3—C4—O18.6 (3)C4—C3—C18—C19179.44 (18)
C2—C3—C4—O1171.88 (18)C2—C3—C18—C190.1 (3)
C18—C3—C4—C5170.57 (16)C3—C18—C19—C2414.1 (3)
C2—C3—C4—C59.0 (3)C3—C18—C19—C20166.15 (19)
O1—C4—C5—C73.8 (3)C24—C19—C20—C210.7 (3)
C3—C4—C5—C7175.30 (17)C18—C19—C20—C21179.52 (18)
O1—C4—C5—C6173.43 (19)C19—C20—C21—C220.0 (3)
C3—C4—C5—C67.4 (2)C27—N3—C22—C21174.5 (2)
C1—N1—C6—C5173.42 (16)C25—N3—C22—C2115.6 (4)
C2—N1—C6—C564.22 (19)C25A—N3—C22—C2132.3 (6)
C7—C5—C6—N1148.72 (18)C27—N3—C22—C237.4 (3)
C4—C5—C6—N128.3 (2)C25—N3—C22—C23162.6 (3)
C4—C5—C7—C8178.84 (19)C25A—N3—C22—C23149.6 (6)
C6—C5—C7—C81.8 (3)C20—C21—C22—N3177.9 (2)
C5—C7—C8—C9157.1 (2)C20—C21—C22—C230.3 (3)
C5—C7—C8—C1322.4 (3)N3—C22—C23—C24176.9 (2)
C13—C8—C9—C104.4 (3)C21—C22—C23—C241.4 (3)
C7—C8—C9—C10175.16 (18)C22—C23—C24—C192.3 (3)
C8—C9—C10—C110.9 (3)C20—C19—C24—C231.8 (3)
C16—N2—C11—C10176.3 (2)C18—C19—C24—C23178.44 (18)
C14—N2—C11—C109.3 (3)C22—N3—C25—C2694.1 (4)
C16—N2—C11—C123.5 (3)C27—N3—C25—C2695.5 (4)
C14—N2—C11—C12170.92 (18)C25A—N3—C25—C263.3 (6)
C9—C10—C11—N2176.94 (19)C22—N3—C25A—C26A107.1 (7)
C9—C10—C11—C123.3 (3)C27—N3—C25A—C26A106.9 (6)
N2—C11—C12—C13176.27 (18)C25—N3—C25A—C26A0.5 (6)
C10—C11—C12—C134.0 (3)C22—N3—C27—C2875.6 (3)
C11—C12—C13—C80.4 (3)C25—N3—C27—C28114.1 (4)
C9—C8—C13—C123.7 (3)C25A—N3—C27—C2868.5 (6)
C7—C8—C13—C12175.80 (18)
(II) top
Crystal data top
C32H41N3ODx = 1.132 Mg m3
Mr = 483.68Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 320 reflections
a = 20.5823 (18) Åθ = 4–24°
c = 26.794 (4) ŵ = 0.07 mm1
V = 11351 (2) Å3T = 110 K
Z = 16Plate, red
F(000) = 41920.50 × 0.40 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2493 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ϕ and ω scansh = 2524
22604 measured reflectionsk = 1925
5553 independent reflectionsl = 1133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
5553 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.42 e Å3
8 restraintsΔρmin = 0.29 e Å3
Crystal data top
C32H41N3OZ = 16
Mr = 483.68Mo Kα radiation
Tetragonal, I41/aµ = 0.07 mm1
a = 20.5823 (18) ÅT = 110 K
c = 26.794 (4) Å0.50 × 0.40 × 0.15 mm
V = 11351 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2493 reflections with I > 2σ(I)
22604 measured reflectionsRint = 0.045
5553 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0688 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
5553 reflectionsΔρmin = 0.29 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All disordered C-atoms of diethylamino groups were refined anisotropically with constrained distances: C—N (1.450 Å) and C—C (1.520 Å), and with e.s.d.'s 0.007 Å. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.95 Å for aromatic H atoms, 0.99 Å for CH2 and 0.98 Å for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.35517 (10)0.30070 (10)0.62231 (6)0.0590 (6)
N10.30430 (11)0.11093 (11)0.62037 (8)0.0508 (6)
N20.34562 (11)0.19024 (10)1.00866 (7)0.0480 (6)
N30.34354 (18)0.19317 (16)0.23522 (10)0.0914 (11)
C10.27647 (16)0.04557 (15)0.62012 (11)0.0652 (9)
H1A0.29070.02210.65000.098*
H1B0.29110.02230.59030.098*
H1C0.22890.04860.61990.098*
C20.28424 (14)0.14733 (15)0.57638 (10)0.0546 (8)
H2A0.23650.15320.57700.066*
H2B0.29540.12220.54600.066*
C30.31641 (13)0.21236 (14)0.57410 (10)0.0468 (7)
C40.33092 (14)0.24548 (15)0.62171 (9)0.0469 (7)
C50.31706 (13)0.21074 (13)0.66848 (9)0.0443 (7)
C60.28442 (14)0.14547 (13)0.66528 (9)0.0486 (7)
H6A0.29590.11930.69500.058*
H6B0.23670.15140.66500.058*
C70.33456 (13)0.23820 (13)0.71192 (9)0.0451 (7)
H7A0.35570.27910.70920.054*
C80.32594 (13)0.21469 (13)0.76169 (9)0.0436 (7)
H8A0.30300.17520.76670.052*
C90.34907 (12)0.24652 (13)0.80133 (9)0.0419 (7)
H9A0.37180.28550.79380.050*
C100.34490 (12)0.23091 (12)0.85398 (9)0.0383 (6)
C110.37974 (13)0.26889 (12)0.88780 (9)0.0440 (7)
H11A0.40380.30490.87550.053*
C120.38071 (13)0.25621 (13)0.93848 (9)0.0464 (7)
H12A0.40560.28300.96010.056*
C130.34492 (13)0.20377 (12)0.95823 (9)0.0415 (7)
C140.31001 (12)0.16589 (13)0.92412 (9)0.0413 (7)
H14A0.28570.12990.93610.050*
C150.30992 (12)0.17919 (13)0.87394 (9)0.0423 (7)
H15A0.28530.15230.85220.051*
C160.38314 (15)0.23057 (14)1.04330 (10)0.0567 (8)
H16A0.42550.24141.02790.068*
H16B0.39170.20551.07410.068*
C170.34838 (16)0.29233 (16)1.05657 (11)0.0688 (9)
H17A0.37530.31781.07950.103*
H17B0.30690.28191.07260.103*
H17C0.34030.31761.02620.103*
C180.29842 (14)0.14636 (14)1.03042 (10)0.0536 (8)
H18A0.25860.14671.00970.064*
H18B0.28660.16231.06410.064*
C190.32310 (15)0.07714 (14)1.03463 (12)0.0660 (9)
H19A0.28790.04891.04620.099*
H19B0.35920.07561.05850.099*
H19C0.33820.06231.00190.099*
C200.33294 (14)0.24138 (15)0.53120 (10)0.0574 (8)
H20A0.35230.28310.53440.069*
C210.32549 (14)0.21820 (15)0.48105 (10)0.0547 (8)
H21A0.30420.17780.47580.066*
C220.34709 (18)0.25093 (16)0.44180 (11)0.0763 (11)
H22A0.36740.29120.44930.092*
C230.34446 (19)0.23455 (17)0.38917 (11)0.0734 (10)
C240.3742 (3)0.2736 (2)0.35438 (15)0.188 (3)
H24A0.39580.31170.36550.226*
C250.3742 (3)0.2599 (2)0.30441 (14)0.182 (3)
H25A0.39650.28830.28230.218*
C260.34301 (19)0.20675 (17)0.28524 (12)0.0769 (11)
C270.31253 (16)0.16920 (17)0.31937 (12)0.0744 (11)
H27A0.28940.13210.30810.089*
C280.31351 (15)0.18238 (17)0.36986 (11)0.0678 (10)
H28A0.29160.15360.39190.081*
C290.3427 (3)0.2448 (4)0.1979 (2)0.090 (3)0.50
H29A0.32420.28550.21140.109*0.50
H29B0.31810.23170.16770.109*0.50
C300.4146 (4)0.2515 (4)0.1871 (3)0.070 (3)0.50
H30A0.42150.28770.16390.105*0.50
H30B0.43080.21120.17210.105*0.50
H30C0.43800.26010.21830.105*0.50
C310.3207 (3)0.1321 (4)0.2157 (3)0.073 (3)0.50
H31A0.33710.09820.23860.087*0.50
H31B0.34360.12560.18360.087*0.50
C320.2493 (3)0.1156 (8)0.2058 (4)0.189 (8)0.50
H32A0.24260.06880.21000.284*0.50
H32B0.23790.12820.17160.284*0.50
H32C0.22170.13930.22940.284*0.50
C29A0.3958 (4)0.2210 (4)0.2023 (3)0.095 (4)0.50
H29C0.39960.19410.17180.114*0.50
H29D0.43780.21910.22010.114*0.50
C30A0.3824 (7)0.2896 (4)0.1875 (3)0.115 (4)0.50
H30D0.41310.30300.16150.172*0.50
H30E0.38720.31800.21670.172*0.50
H30F0.33790.29300.17470.172*0.50
C31A0.2880 (4)0.1667 (3)0.2108 (4)0.124 (6)0.50
H31C0.28120.18790.17810.149*0.50
H31D0.24860.17320.23140.149*0.50
C32A0.3013 (6)0.0960 (4)0.2041 (3)0.098 (3)0.50
H32D0.33620.09020.17970.146*0.50
H32E0.26190.07420.19210.146*0.50
H32F0.31440.07710.23610.146*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0762 (15)0.0624 (15)0.0383 (11)0.0079 (12)0.0021 (10)0.0011 (10)
N10.0500 (15)0.0511 (16)0.0515 (15)0.0016 (12)0.0013 (11)0.0104 (12)
N20.0643 (16)0.0453 (15)0.0345 (13)0.0121 (12)0.0002 (11)0.0043 (10)
N30.142 (3)0.093 (3)0.0388 (17)0.030 (2)0.0048 (18)0.0157 (16)
C10.068 (2)0.058 (2)0.070 (2)0.0005 (17)0.0035 (17)0.0143 (16)
C20.0492 (19)0.074 (2)0.0404 (16)0.0003 (16)0.0030 (13)0.0127 (15)
C30.0458 (18)0.0552 (19)0.0395 (16)0.0050 (15)0.0049 (13)0.0063 (13)
C40.0501 (18)0.0484 (19)0.0422 (16)0.0018 (15)0.0036 (13)0.0025 (14)
C50.0426 (17)0.0498 (18)0.0404 (16)0.0042 (14)0.0041 (12)0.0024 (13)
C60.0479 (18)0.0557 (19)0.0421 (16)0.0010 (15)0.0056 (13)0.0048 (13)
C70.0468 (18)0.0486 (18)0.0399 (16)0.0020 (14)0.0009 (13)0.0018 (13)
C80.0451 (17)0.0432 (17)0.0424 (16)0.0002 (13)0.0027 (13)0.0009 (13)
C90.0441 (17)0.0411 (16)0.0406 (16)0.0008 (13)0.0022 (12)0.0012 (12)
C100.0399 (16)0.0371 (16)0.0380 (14)0.0042 (13)0.0021 (12)0.0003 (12)
C110.0550 (19)0.0355 (16)0.0414 (16)0.0039 (14)0.0008 (13)0.0049 (12)
C120.0595 (19)0.0443 (18)0.0354 (15)0.0064 (15)0.0069 (13)0.0003 (12)
C130.0471 (17)0.0384 (17)0.0390 (15)0.0035 (13)0.0001 (12)0.0018 (12)
C140.0421 (17)0.0411 (16)0.0408 (15)0.0036 (13)0.0012 (12)0.0036 (12)
C150.0397 (16)0.0444 (17)0.0430 (16)0.0007 (13)0.0048 (13)0.0001 (13)
C160.076 (2)0.060 (2)0.0334 (15)0.0052 (17)0.0009 (15)0.0049 (14)
C170.076 (2)0.078 (2)0.0523 (19)0.0097 (19)0.0003 (16)0.0093 (17)
C180.060 (2)0.061 (2)0.0397 (16)0.0033 (16)0.0024 (13)0.0053 (14)
C190.065 (2)0.062 (2)0.071 (2)0.0041 (17)0.0024 (17)0.0194 (17)
C200.072 (2)0.060 (2)0.0401 (17)0.0080 (17)0.0082 (15)0.0069 (14)
C210.062 (2)0.060 (2)0.0424 (17)0.0083 (16)0.0056 (14)0.0081 (15)
C220.124 (3)0.064 (2)0.0407 (19)0.013 (2)0.0016 (18)0.0094 (16)
C230.113 (3)0.065 (2)0.0415 (19)0.014 (2)0.0016 (18)0.0115 (16)
C240.409 (10)0.111 (4)0.045 (2)0.141 (5)0.027 (4)0.019 (2)
C250.384 (9)0.117 (4)0.043 (2)0.133 (5)0.029 (4)0.022 (2)
C260.109 (3)0.079 (3)0.0429 (19)0.019 (2)0.0045 (18)0.0134 (17)
C270.077 (3)0.094 (3)0.051 (2)0.033 (2)0.0145 (17)0.0244 (18)
C280.068 (2)0.087 (3)0.0487 (19)0.0253 (19)0.0123 (16)0.0142 (17)
C290.085 (6)0.119 (8)0.068 (6)0.048 (6)0.044 (5)0.041 (6)
C300.126 (9)0.049 (6)0.033 (4)0.027 (5)0.014 (4)0.002 (4)
C310.077 (6)0.097 (7)0.044 (4)0.058 (6)0.029 (4)0.053 (5)
C320.083 (8)0.301 (17)0.185 (12)0.100 (9)0.058 (8)0.187 (12)
C29A0.170 (11)0.077 (7)0.039 (5)0.053 (7)0.018 (5)0.000 (4)
C30A0.213 (14)0.073 (7)0.059 (5)0.028 (8)0.007 (7)0.002 (5)
C31A0.234 (17)0.067 (7)0.072 (7)0.038 (9)0.058 (9)0.017 (5)
C32A0.169 (12)0.050 (5)0.074 (6)0.025 (6)0.004 (6)0.002 (4)
Geometric parameters (Å, º) top
O1—C41.241 (3)C18—C191.517 (4)
N1—C61.456 (3)C18—H18A0.9900
N1—C21.456 (3)C18—H18B0.9900
N1—C11.462 (4)C19—H19A0.9800
N2—C131.380 (3)C19—H19B0.9800
N2—C181.449 (3)C19—H19C0.9800
N2—C161.465 (3)C20—C211.434 (4)
N3—C261.369 (4)C20—H20A0.9500
N3—C31A1.426 (7)C21—C221.326 (4)
N3—C311.441 (6)C21—H21A0.9500
N3—C291.460 (6)C22—C231.451 (4)
N3—C29A1.504 (6)C22—H22A0.9500
C1—H1A0.9800C23—C281.352 (4)
C1—H1B0.9800C23—C241.375 (5)
C1—H1C0.9800C24—C251.368 (5)
C2—C31.495 (4)C24—H24A0.9500
C2—H2A0.9900C25—C261.369 (5)
C2—H2B0.9900C25—H25A0.9500
C3—C201.339 (4)C26—C271.352 (4)
C3—C41.477 (4)C27—C281.380 (4)
C4—C51.471 (4)C27—H27A0.9500
C5—C71.343 (3)C28—H28A0.9500
C5—C61.505 (4)C29—C301.514 (6)
C6—H6A0.9900C29—H29A0.9900
C6—H6B0.9900C29—H29B0.9900
C7—C81.430 (3)C30—H30A0.9800
C7—H7A0.9500C30—H30B0.9800
C8—C91.336 (3)C30—H30C0.9800
C8—H8A0.9500C31—C321.531 (6)
C9—C101.450 (3)C31—H31A0.9900
C9—H9A0.9500C31—H31B0.9900
C10—C151.392 (4)C32—H32A0.9800
C10—C111.395 (3)C32—H32B0.9800
C11—C121.383 (3)C32—H32C0.9800
C11—H11A0.9500C29A—C30A1.493 (6)
C12—C131.410 (3)C29A—H29C0.9900
C12—H12A0.9500C29A—H29D0.9900
C13—C141.400 (3)C30A—H30D0.9800
C14—C151.372 (3)C30A—H30E0.9800
C14—H14A0.9500C30A—H30F0.9800
C15—H15A0.9500C31A—C32A1.491 (6)
C16—C171.501 (4)C31A—H31C0.9900
C16—H16A0.9900C31A—H31D0.9900
C16—H16B0.9900C32A—H32D0.9800
C17—H17A0.9800C32A—H32E0.9800
C17—H17B0.9800C32A—H32F0.9800
C17—H17C0.9800
C6—N1—C2109.8 (2)C16—C17—H17C109.5
C6—N1—C1110.0 (2)H17A—C17—H17C109.5
C2—N1—C1111.0 (2)H17B—C17—H17C109.5
C13—N2—C18120.8 (2)N2—C18—C19113.0 (2)
C13—N2—C16120.8 (2)N2—C18—H18A109.0
C18—N2—C16116.9 (2)C19—C18—H18A109.0
C26—N3—C31A121.4 (5)N2—C18—H18B109.0
C26—N3—C31122.1 (4)C19—C18—H18B109.0
C31A—N3—C3140.3 (4)H18A—C18—H18B107.8
C26—N3—C29121.5 (4)C18—C19—H19A109.5
C31A—N3—C2987.4 (5)C18—C19—H19B109.5
C31—N3—C29112.4 (6)H19A—C19—H19B109.5
C26—N3—C29A120.1 (4)C18—C19—H19C109.5
C31A—N3—C29A116.7 (6)H19A—C19—H19C109.5
C31—N3—C29A110.6 (5)H19B—C19—H19C109.5
C29—N3—C29A47.8 (4)C3—C20—C21129.0 (3)
N1—C1—H1A109.5C3—C20—H20A115.5
N1—C1—H1B109.5C21—C20—H20A115.5
H1A—C1—H1B109.5C22—C21—C20122.6 (3)
N1—C1—H1C109.5C22—C21—H21A118.7
H1A—C1—H1C109.5C20—C21—H21A118.7
H1B—C1—H1C109.5C21—C22—C23129.8 (3)
N1—C2—C3111.6 (2)C21—C22—H22A115.1
N1—C2—H2A109.3C23—C22—H22A115.1
C3—C2—H2A109.3C28—C23—C24114.5 (3)
N1—C2—H2B109.3C28—C23—C22125.1 (3)
C3—C2—H2B109.3C24—C23—C22120.4 (3)
H2A—C2—H2B108.0C25—C24—C23122.9 (4)
C20—C3—C4119.0 (3)C25—C24—H24A118.5
C20—C3—C2123.2 (3)C23—C24—H24A118.5
C4—C3—C2117.9 (2)C24—C25—C26122.1 (4)
O1—C4—C5120.8 (2)C24—C25—H25A118.9
O1—C4—C3121.0 (3)C26—C25—H25A118.9
C5—C4—C3118.2 (3)C27—C26—C25114.9 (3)
C7—C5—C4118.8 (3)C27—C26—N3123.3 (3)
C7—C5—C6123.0 (2)C25—C26—N3121.8 (3)
C4—C5—C6118.2 (2)C26—C27—C28123.0 (3)
N1—C6—C5110.9 (2)C26—C27—H27A118.5
N1—C6—H6A109.5C28—C27—H27A118.5
C5—C6—H6A109.5C23—C28—C27122.6 (3)
N1—C6—H6B109.5C23—C28—H28A118.7
C5—C6—H6B109.5C27—C28—H28A118.7
H6A—C6—H6B108.0N3—C29—C30100.7 (6)
C5—C7—C8129.2 (3)N3—C29—H29A111.6
C5—C7—H7A115.4C30—C29—H29A111.6
C8—C7—H7A115.4N3—C29—H29B111.6
C9—C8—C7122.1 (3)C30—C29—H29B111.6
C9—C8—H8A119.0H29A—C29—H29B109.4
C7—C8—H8A119.0N3—C31—C32124.7 (10)
C8—C9—C10130.1 (3)N3—C31—H31A106.1
C8—C9—H9A115.0C32—C31—H31A106.1
C10—C9—H9A115.0N3—C31—H31B106.1
C15—C10—C11116.4 (2)C32—C31—H31B106.1
C15—C10—C9125.0 (2)H31A—C31—H31B106.3
C11—C10—C9118.5 (2)N3—C29A—C30A112.6 (8)
C12—C11—C10122.6 (2)N3—C29A—H29C109.1
C12—C11—H11A118.7C30A—C29A—H29C109.1
C10—C11—H11A118.7N3—C29A—H29D109.1
C11—C12—C13120.4 (2)C30A—C29A—H29D109.1
C11—C12—H12A119.8H29C—C29A—H29D107.8
C13—C12—H12A119.8C29A—C30A—H30D109.5
N2—C13—C14122.2 (2)C29A—C30A—H30E109.5
N2—C13—C12121.1 (2)H30D—C30A—H30E109.5
C14—C13—C12116.7 (2)C29A—C30A—H30F109.5
C15—C14—C13122.0 (2)H30D—C30A—H30F109.5
C15—C14—H14A119.0H30E—C30A—H30F109.5
C13—C14—H14A119.0N3—C31A—C32A106.3 (8)
C14—C15—C10121.9 (2)N3—C31A—H31C110.5
C14—C15—H15A119.1C32A—C31A—H31C110.5
C10—C15—H15A119.1N3—C31A—H31D110.5
N2—C16—C17112.2 (2)C32A—C31A—H31D110.5
N2—C16—H16A109.2H31C—C31A—H31D108.7
C17—C16—H16A109.2C31A—C32A—H32D109.5
N2—C16—H16B109.2C31A—C32A—H32E109.5
C17—C16—H16B109.2H32D—C32A—H32E109.5
H16A—C16—H16B107.9C31A—C32A—H32F109.5
C16—C17—H17A109.5H32D—C32A—H32F109.5
C16—C17—H17B109.5H32E—C32A—H32F109.5
H17A—C17—H17B109.5
C6—N1—C2—C362.5 (3)C4—C3—C20—C21178.2 (3)
C1—N1—C2—C3175.6 (2)C2—C3—C20—C211.3 (5)
N1—C2—C3—C20146.7 (3)C3—C20—C21—C22176.6 (3)
N1—C2—C3—C432.8 (3)C20—C21—C22—C23179.2 (3)
C20—C3—C4—O13.4 (4)C21—C22—C23—C285.4 (7)
C2—C3—C4—O1177.1 (3)C21—C22—C23—C24175.3 (5)
C20—C3—C4—C5175.3 (2)C28—C23—C24—C251.7 (9)
C2—C3—C4—C54.1 (4)C22—C23—C24—C25178.9 (6)
O1—C4—C5—C73.8 (4)C23—C24—C25—C261.4 (11)
C3—C4—C5—C7175.0 (2)C24—C25—C26—C270.1 (9)
O1—C4—C5—C6176.8 (3)C24—C25—C26—N3179.5 (6)
C3—C4—C5—C64.4 (4)C31A—N3—C26—C2737.5 (7)
C2—N1—C6—C562.4 (3)C31—N3—C26—C2710.4 (7)
C1—N1—C6—C5175.2 (2)C29—N3—C26—C27145.6 (5)
C7—C5—C6—N1146.3 (3)C29A—N3—C26—C27158.1 (5)
C4—C5—C6—N133.0 (3)C31A—N3—C26—C25143.0 (6)
C4—C5—C7—C8179.3 (2)C31—N3—C26—C25169.2 (6)
C6—C5—C7—C81.4 (5)C29—N3—C26—C2534.9 (7)
C5—C7—C8—C9176.7 (3)C29A—N3—C26—C2521.5 (7)
C7—C8—C9—C10179.5 (2)C25—C26—C27—C281.2 (6)
C8—C9—C10—C155.1 (4)N3—C26—C27—C28178.4 (4)
C8—C9—C10—C11172.9 (3)C24—C23—C28—C270.6 (6)
C15—C10—C11—C120.7 (4)C22—C23—C28—C27179.9 (4)
C9—C10—C11—C12177.5 (2)C26—C27—C28—C230.9 (6)
C10—C11—C12—C130.9 (4)C26—N3—C29—C3095.4 (6)
C18—N2—C13—C1415.1 (4)C31A—N3—C29—C30139.0 (6)
C16—N2—C13—C14179.5 (2)C31—N3—C29—C30106.6 (6)
C18—N2—C13—C12166.1 (2)C29A—N3—C29—C308.5 (6)
C16—N2—C13—C120.7 (4)C26—N3—C31—C3282.1 (12)
C11—C12—C13—N2179.7 (2)C31A—N3—C31—C3220.1 (9)
C11—C12—C13—C140.8 (4)C29—N3—C31—C3275.8 (10)
N2—C13—C14—C15179.4 (2)C29A—N3—C31—C32127.5 (10)
C12—C13—C14—C150.6 (4)C26—N3—C29A—C30A80.8 (9)
C13—C14—C15—C100.4 (4)C31A—N3—C29A—C30A84.4 (9)
C11—C10—C15—C140.5 (4)C31—N3—C29A—C30A128.1 (8)
C9—C10—C15—C14177.6 (2)C29—N3—C29A—C30A26.1 (7)
C13—N2—C16—C1780.0 (3)C26—N3—C31A—C32A102.1 (7)
C18—N2—C16—C1786.0 (3)C31—N3—C31A—C32A2.0 (6)
C13—N2—C18—C1994.8 (3)C29—N3—C31A—C32A132.1 (8)
C16—N2—C18—C1999.2 (3)C29A—N3—C31A—C32A92.9 (8)

Experimental details

(I)(II)
Crystal data
Chemical formulaC28H37N3OC32H41N3O
Mr431.61483.68
Crystal system, space groupMonoclinic, P21/cTetragonal, I41/a
Temperature (K)298110
a, b, c (Å)9.2260 (18), 16.181 (3), 16.862 (3)20.5823 (18), 20.5823 (18), 26.794 (4)
α, β, γ (°)90, 97.55 (3), 9090, 90, 90
V3)2495.4 (9)11351 (2)
Z416
Radiation typeMo KαMo Kα
µ (mm1)0.070.07
Crystal size (mm)0.50 × 0.40 × 0.300.50 × 0.40 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5646, 5319, 2701 22604, 5553, 2493
Rint0.0200.045
(sin θ/λ)max1)0.6380.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.133, 1.19 0.068, 0.191, 1.06
No. of reflections53195553
No. of parameters313368
No. of restraints08
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.200.42, 0.29

Computer programs: Enraf–Nonius CAD-4 (Enraf–Nonuis, 1989), SMART (Bruker, 1998), Enraf–Nonius CAD-4, SMART, SHELXTL-Plus (Sheldrick, 1994), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus, SHELXTL (Bruker, 1998), SHELXL97, SHELXTL.

Selected geometric parameters (Å, º) for (I) top
O1—C41.226 (2)C9—C101.377 (3)
N2—C111.376 (2)C10—C111.396 (3)
N3—C221.379 (2)C11—C121.403 (3)
C3—C181.351 (2)C12—C131.367 (3)
C3—C41.476 (2)C18—C191.450 (2)
C4—C51.492 (2)C19—C241.386 (3)
C5—C71.339 (2)C19—C201.404 (3)
C7—C81.453 (3)C20—C211.372 (3)
C8—C91.392 (3)C21—C221.389 (3)
C8—C131.405 (3)C23—C241.374 (3)
C1—N1—C6110.69 (15)C3—C4—C5117.91 (15)
C1—N1—C2110.57 (15)C7—C5—C4117.20 (16)
C6—N1—C2109.79 (14)C7—C5—C6125.44 (16)
C18—C3—C4116.23 (16)C4—C5—C6117.29 (16)
C18—C3—C2125.59 (16)C5—C7—C8131.72 (18)
C4—C3—C2118.17 (15)C13—C8—C7126.06 (17)
O1—C4—C3121.59 (16)C3—C18—C19131.79 (17)
O1—C4—C5120.50 (16)C24—C19—C18127.58 (17)
C4—C5—C7—C8178.84 (19)C4—C3—C18—C19179.44 (18)
C5—C7—C8—C9157.1 (2)C3—C18—C19—C20166.15 (19)
Selected geometric parameters (Å, º) for (II) top
O1—C41.241 (3)C12—C131.410 (3)
N2—C131.380 (3)C13—C141.400 (3)
N3—C261.369 (4)C14—C151.372 (3)
C3—C201.339 (4)C20—C211.434 (4)
C3—C41.477 (4)C21—C221.326 (4)
C4—C51.471 (4)C22—C231.451 (4)
C5—C71.343 (3)C23—C281.352 (4)
C7—C81.430 (3)C23—C241.375 (5)
C8—C91.336 (3)C24—C251.368 (5)
C9—C101.450 (3)C25—C261.369 (5)
C10—C151.392 (4)C26—C271.352 (4)
C10—C111.395 (3)C27—C281.380 (4)
C11—C121.383 (3)
C6—N1—C2109.8 (2)C7—C5—C6123.0 (2)
C6—N1—C1110.0 (2)C4—C5—C6118.2 (2)
C2—N1—C1111.0 (2)C5—C7—C8129.2 (3)
C20—C3—C4119.0 (3)C9—C8—C7122.1 (3)
C20—C3—C2123.2 (3)C8—C9—C10130.1 (3)
C4—C3—C2117.9 (2)C15—C10—C9125.0 (2)
O1—C4—C5120.8 (2)C3—C20—C21129.0 (3)
O1—C4—C3121.0 (3)C22—C21—C20122.6 (3)
C5—C4—C3118.2 (3)C21—C22—C23129.8 (3)
C7—C5—C4118.8 (3)C28—C23—C22125.1 (3)
C4—C5—C7—C8179.3 (2)C4—C3—C20—C21178.2 (3)
C5—C7—C8—C9176.7 (3)C3—C20—C21—C22176.6 (3)
C7—C8—C9—C10179.5 (2)C20—C21—C22—C23179.2 (3)
C8—C9—C10—C11172.9 (3)C21—C22—C23—C24175.3 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds