Download citation
Download citation
link to html
Dilanthanum triniobium di­sulfide octaoxide, La2Nb3S2O8, crystallizes in the orthorhombic space group Pnnm and is isostructural with the Ln2Ta3X2O8 (Ln = La, Ce, Pr and Nd, and X = S and Se) family of tantalum compounds. Nb4+ and Nb5+ ions co-exist in the structure and occupy different crystallographic sites. While the Nb4+ ions are found in mixed oxy­gen and sulfur octahedra, the Nb5+ ions are found in oxy­gen-only octahedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009570/sq1017sup1.cif
Contains datablocks pnnm, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009570/sq1017Isup2.hkl
Contains datablock I

Comment top

Oxychalcogenides containing electropositive elements, like rare earth or alkaline earth metals, combined with transition metals often exhibit a lamellar structure, with a segregation in the oxide and sulfide layers. The Ln2Ti2S2O5 (Ln = La, Ce, Sm and Pr) family of compounds (Boyer, 1999; Goga, 1999) is a good example of such intergrowth structures, with [Ln2S2] rock-salt-type layers alternating regularly with [Ti2O5] perovskite-type layers. The structure of the (Srn+1MnO3n-1)(Cu2S2) (M = Sc, Fe, Ni and Cu) family of compounds (Zhu, 1997; Otzschi, 1999) can also be described as an intergrowth of perovskite- and fluorite-type layers. Recently, a niobium oxysulfide, namely La10.8Nb5S10O20, was reported to have an intergrowth structure in which [Ln2S2] rock-salt-type layers alternate with a complex mixed lanthanum and niobium oxysulfide layer (Boyer-Candalen, 2000). In a quest for a much simpler intergrowth structure in the La/Nb/S/O system, we have found the title compound, La2Nb3S2O8, as a by-product. A black needle-shaped crystal was mounted on a Nonius CCD diffractometer for data collection. The observed systematic conditions (k+l = 2n for 0kl and h + l= 2n for h0l) led to only two possible space groups, viz. Pnn2 (No. 34) and Pnnm (No. 58), and the intensity statistics indicated a centrosymmetric space group. Subsequently, we realised that La2Nb3S2O8 was isostructural with the Ln2Ta3X2O8 (Ln = La, Ce, Pr and Nd, and X = S and Se) family of tantalum compounds (Brennan, 1991; Brennan, 1992). Using the reported atomic parameters and space group Pnnm, the refinement led to a reliability factor, R, of 2.58% for the observed reflections and 80 parameters. At this stage, examination of the Fourier difference map revealed a residual peak (+4.52 e−3) of Nb1 at 0.63 Å. We then refined atom Nb11 on this site, constraining the sum of the site-occupancy factors of atoms Nb1 and Nb11 to be constant and the atomic displacement parameters of the two atoms to be identical. The refinement led to a better reliability factor (R=2.47%) for the observed reflections and 81 parameters. The atomic coordinates and isotropic or equivalent atomic displacement parameters corresponding to this last refinement are listed in Table 1. The projection of the structure of La2Nb3S2O8 is shown Fig. 1. La atoms are located in tricapped-trigonal prismatic sites consisting of seven O and two S atoms. Atoms Nb2 are located in distorted octahedral environments consisting only of O atoms, while atoms Nb1 and Nb11 are located in a distorted octahedral environment containing mixed anions (two O and four S atoms). As shown in Fig. 2, atoms Nb1 are shifted from the center of the octahedra along the c axis. Consequently, two consecutive Nb1 atoms form, along this direction, either a short contact [3.368 (2) Å] or an elongated contact [4.301 (2) Å]. Atoms Nb11 behave in a similar manner, but these atoms are shifted along the c axis in the opposite direction to atom Nb1 (Fig. 2). We observed a superstructure that led to the doubling of the c parameter from 3.83 Å to 7.66 Å. In the structure, the doubling of the c axis is only a result of the displacement of atoms Nb1 or Nb11 from the center of the surrounding octahedron. Atoms Nb1 and Nb11 displaced along the c direction in opposite directions from the center of the octahedron by c/2. Therefore, we believe that the Nb11-atom position corresponds to stacking faults. The shortest Nb1···Nb1 distance (3.368 Å) is comparable to the Nb2···Nb2 distance (3.328 Å) and is longer than the distance expected for a Peierls-like pair (around 3 Å). Using the bond-valence method (Brown, 1981; Brese, 1991) and the refined Nb—O and Nb—S distances, we found bond-valence sums of 4.04 and 5.01 for atoms Nb1 and Nb2, respectively. These values are in excellent agreement with the charge equilibrium, (La+3)2(Nb+4)1(Nb+5)2(S−2)2(O−2)8, and clearly attest that La2Nb3S2O8 is a mixed-valent compound with Nb+4 and Nb+5 ions in distinct crystallographic sites.

Experimental top

La2Nb3S2O8 was obtained as a by-product during an exploration of the La—Nb—S—O system. Powdered La2S3, Nb2O5 and La2O3, weighted in a ratio of 4:3:2, were finely mixed and pressed into a pellet. The pellet was sealed in an evacuated silica tube and heated at 1273 K for 120 h. The intermediate reaction product was ground, mixed with a small amount of iodine to favor crystallization, and reheated in a temperature gradient furnace at 1273 K for 240 h. Small black needle-shaped crystals of the title compound were found at the cool end of the tube. Chemical analyses performed on these crystals using an EDS-equipped scanning electron microscope revealed an La/Nb/S ratio close to 2:3:2.

Computing details top

Data collection: Collect (Nonius BV, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: not used (isotypic); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Diamond (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. A view of the structure of La2Nb3S2O8 along the c axis. Displacement ellipsoids are shown at the 80% probability level.
[Figure 2] Fig. 2. A view of the Nb1- or Nb11-atom chain running along the c axis. Displacement ellipsoids are shown at the 80% probability level.
(I) top
Crystal data top
La2Nb3S2O8Dx = 5.571 Mg m3
Mr = 748.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 12094 reflections
a = 9.8698 (2) Åθ = 2.9–35.0°
b = 11.7941 (3) ŵ = 13.58 mm1
c = 7.6686 (1) ÅT = 293 K
V = 892.7 (2) Å3Needle, black
Z = 40.07 × 0.03 × 0.03 mm
F(000) = 1332
Data collection top
Nonius KappaCCD
diffractometer
2070 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.064
Detector resolution: 9 pixels mm-1θmax = 35.0°, θmin = 3.2°
CCD scansh = 1515
Absorption correction: gaussian
(Jana2000; Petricek and Dusek, 2000)
k = 1819
Tmin = 0.511, Tmax = 0.747l = 1212
20315 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0145P)2 + 3.1635P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.052Δρmax = 1.38 e Å3
S = 1.08Δρmin = 1.38 e Å3
2070 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
81 parametersExtinction coefficient: 0.00085 (8)
0 restraints
Crystal data top
La2Nb3S2O8V = 892.7 (2) Å3
Mr = 748.67Z = 4
Orthorhombic, PnnmMo Kα radiation
a = 9.8698 (2) ŵ = 13.58 mm1
b = 11.7941 (3) ÅT = 293 K
c = 7.6686 (1) Å0.07 × 0.03 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
2070 independent reflections
Absorption correction: gaussian
(Jana2000; Petricek and Dusek, 2000)
1811 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.747Rint = 0.064
20315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02581 parameters
wR(F2) = 0.0520 restraints
S = 1.08Δρmax = 1.38 e Å3
2070 reflectionsΔρmin = 1.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.20706 (2)0.33944 (2)0.00000.00785 (6)
La20.22535 (2)0.34680 (2)0.50000.00781 (6)
Nb10.00000.00000.2804 (2)0.01026 (19)0.951 (7)
Nb110.00000.00000.222 (4)0.01026 (19)0.049 (7)
Nb20.13612 (2)0.58326 (2)0.25019 (3)0.00590 (7)
S10.01977 (11)0.13626 (10)0.00000.01103 (19)
S20.51757 (11)0.34708 (9)0.00000.01086 (19)
O10.2864 (2)0.2231 (2)0.2507 (3)0.0098 (4)
O20.1348 (3)0.5537 (3)0.00000.0096 (5)
O30.3026 (2)0.4744 (2)0.2377 (3)0.0081 (4)
O40.0552 (2)0.6044 (2)0.2551 (2)0.0084 (4)
O50.1487 (3)0.5510 (3)0.50000.0088 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00918 (10)0.00841 (11)0.00597 (11)0.00073 (8)0.0000.000
La20.00894 (10)0.00833 (11)0.00615 (11)0.00096 (8)0.0000.000
Nb10.00571 (16)0.01073 (19)0.0143 (6)0.00048 (13)0.0000.000
Nb110.00571 (16)0.01073 (19)0.0143 (6)0.00048 (13)0.0000.000
Nb20.00596 (11)0.00642 (12)0.00531 (13)0.00045 (8)0.00005 (8)0.00007 (8)
S10.0086 (4)0.0118 (5)0.0128 (5)0.0016 (3)0.0000.000
S20.0090 (4)0.0111 (5)0.0125 (5)0.0015 (3)0.0000.000
O10.0112 (10)0.0081 (10)0.0102 (10)0.0029 (7)0.0002 (7)0.0002 (7)
O20.0111 (13)0.0120 (14)0.0056 (13)0.0005 (11)0.0000.000
O30.0066 (9)0.0094 (10)0.0082 (10)0.0008 (7)0.0001 (7)0.0002 (7)
O40.0061 (8)0.0107 (10)0.0083 (10)0.0001 (7)0.0003 (7)0.0001 (7)
O50.0116 (13)0.0094 (13)0.0055 (13)0.0009 (11)0.0000.000
Geometric parameters (Å, º) top
La1—O12.488 (2)Nb11—S1xii2.35 (2)
La1—O1i2.488 (2)Nb11—S12.35 (2)
La1—O4ii2.552 (2)Nb11—S2xi2.80 (2)
La1—O4iii2.552 (2)Nb11—S2ix2.80 (2)
La1—O32.597 (2)Nb11—La2xiii3.675 (13)
La1—O3i2.597 (2)Nb11—La2xi3.675 (13)
La1—O22.625 (3)Nb2—O1xiv1.818 (2)
La1—S13.0265 (12)Nb2—O41.905 (2)
La1—S23.0659 (11)Nb2—O21.9501 (6)
La1—Nb2i3.5271 (7)Nb2—O51.9570 (7)
La1—Nb23.5271 (7)Nb2—O3i2.088 (2)
La2—O12.479 (2)Nb2—O4ii2.353 (2)
La2—O1iv2.479 (2)Nb2—Nb2ii3.3282 (6)
La2—O52.524 (3)S1—Nb11xii2.35 (2)
La2—O4v2.585 (2)S1—Nb1xii2.6918 (16)
La2—O4ii2.585 (2)S1—La2xi2.9127 (11)
La2—O3i2.626 (2)S2—Nb1xv2.4734 (15)
La2—O3vi2.626 (2)S2—Nb1vii2.4734 (15)
La2—S1vii2.9127 (11)S2—Nb11xv2.80 (2)
La2—S2viii3.0716 (12)S2—Nb11vii2.80 (2)
La2—Nb2iv3.4960 (6)S2—La2xvi3.0716 (12)
La2—Nb23.4961 (6)O1—Nb2xiii1.818 (2)
La2—Nb11vii3.675 (13)O2—Nb2i1.9502 (6)
Nb1—O3ix1.976 (2)O3—Nb1xv1.976 (2)
Nb1—O3x1.976 (2)O3—Nb11xv1.996 (5)
Nb1—S2xi2.4734 (15)O3—Nb2i2.088 (2)
Nb1—S2ix2.4734 (15)O3—La2xvii2.626 (2)
Nb1—S1xii2.6917 (16)O4—Nb2ii2.353 (2)
Nb1—S12.6918 (16)O4—La1iii2.552 (2)
Nb11—O3ix1.996 (5)O4—La2v2.585 (2)
Nb11—O3x1.996 (5)O5—Nb2iv1.9570 (7)
O1—La1—O1i101.19 (10)O3ix—Nb1—S2xi95.17 (8)
O1—La1—O4ii74.68 (7)O3x—Nb1—S2xi90.32 (8)
O1i—La1—O4ii156.96 (8)O3ix—Nb1—S2ix90.32 (8)
O1—La1—O4iii156.96 (8)O3x—Nb1—S2ix95.17 (8)
O1i—La1—O4iii74.68 (7)S2xi—Nb1—S2ix94.20 (7)
O4ii—La1—O4iii100.07 (9)O3ix—Nb1—S1xii85.65 (8)
O1—La1—O3139.98 (7)O3x—Nb1—S1xii87.91 (8)
O1i—La1—O371.42 (8)S2xi—Nb1—S1xii169.83 (6)
O4ii—La1—O3126.31 (7)S2ix—Nb1—S1xii95.94 (3)
O4iii—La1—O361.08 (7)O3ix—Nb1—S187.91 (8)
O1—La1—O3i71.42 (8)O3x—Nb1—S185.65 (8)
O1i—La1—O3i139.98 (7)S2xi—Nb1—S195.94 (3)
O4ii—La1—O3i61.08 (7)S2ix—Nb1—S1169.83 (6)
O4iii—La1—O3i126.31 (7)S1xii—Nb1—S173.94 (6)
O3—La1—O3i89.14 (9)O3ix—Nb11—O3x162.1 (16)
O1—La1—O2128.03 (5)O3ix—Nb11—S1xii95.2 (5)
O1i—La1—O2128.03 (5)O3x—Nb11—S1xii97.8 (5)
O4ii—La1—O265.83 (6)O3ix—Nb11—S197.8 (5)
O4iii—La1—O265.83 (6)O3x—Nb11—S195.2 (5)
O3—La1—O260.58 (6)S1xii—Nb11—S187.2 (10)
O3i—La1—O260.58 (6)O3ix—Nb11—S2xi85.3 (7)
O1—La1—S175.86 (6)O3x—Nb11—S2xi81.0 (6)
O1i—La1—S175.86 (6)S1xii—Nb11—S2xi176.6 (8)
O4ii—La1—S181.18 (5)S1—Nb11—S2xi96.09 (11)
O4iii—La1—S181.18 (5)O3ix—Nb11—S2ix81.0 (6)
O3—La1—S1135.00 (5)O3x—Nb11—S2ix85.3 (7)
O3i—La1—S1135.00 (5)S1xii—Nb11—S2ix96.09 (11)
O2—La1—S1126.58 (7)S1—Nb11—S2ix176.6 (8)
O1—La1—S272.64 (5)S2xi—Nb11—S2ix80.7 (8)
O1i—La1—S272.64 (5)O3ix—Nb11—La2xiii43.8 (4)
O4ii—La1—S2125.42 (5)O3x—Nb11—La2xiii150.0 (8)
O4iii—La1—S2125.42 (5)S1xii—Nb11—La2xiii52.4 (3)
O3—La1—S267.60 (5)S1—Nb11—La2xiii86.6 (6)
O3i—La1—S267.60 (5)S2xi—Nb11—La2xiii128.6 (3)
O2—La1—S2104.08 (7)S2ix—Nb11—La2xiii94.69 (9)
S1—La1—S2129.33 (3)O3ix—Nb11—La2xi150.0 (8)
O1—La1—Nb2i158.79 (5)O3x—Nb11—La2xi43.8 (4)
O1i—La1—Nb2i95.26 (5)S1xii—Nb11—La2xi86.6 (6)
O4ii—La1—Nb2i95.09 (5)S1—Nb11—La2xi52.4 (3)
O4iii—La1—Nb2i41.83 (5)S2xi—Nb11—La2xi94.69 (9)
O3—La1—Nb2i35.97 (5)S2ix—Nb11—La2xi128.6 (3)
O3i—La1—Nb2i87.37 (5)La2xiii—Nb11—La2xi124.9 (8)
O2—La1—Nb2i33.013 (8)O1xiv—Nb2—O4107.34 (10)
S1—La1—Nb2i121.62 (2)O1xiv—Nb2—O299.29 (12)
S2—La1—Nb2i100.046 (19)O4—Nb2—O292.06 (11)
O1—La1—Nb295.26 (5)O1xiv—Nb2—O598.83 (11)
O1i—La1—Nb2158.79 (5)O4—Nb2—O593.96 (11)
O4ii—La1—Nb241.83 (5)O2—Nb2—O5158.23 (15)
O4iii—La1—Nb295.09 (5)O1xiv—Nb2—O3i103.11 (10)
O3—La1—Nb287.37 (5)O4—Nb2—O3i149.51 (9)
O3i—La1—Nb235.97 (5)O2—Nb2—O3i81.38 (11)
O2—La1—Nb233.012 (8)O5—Nb2—O3i82.85 (10)
S1—La1—Nb2121.62 (2)O1xiv—Nb2—O4ii174.94 (9)
S2—La1—Nb2100.047 (19)O4—Nb2—O4ii77.66 (10)
Nb2i—La1—Nb265.908 (16)O2—Nb2—O4ii81.08 (11)
O1—La1—La239.29 (5)O5—Nb2—O4ii79.82 (10)
O1i—La1—La2140.29 (5)O3i—Nb2—O4ii71.92 (8)
O4ii—La1—La241.95 (5)O1xiv—Nb2—Nb2ii151.03 (7)
O4iii—La1—La2141.92 (5)O4—Nb2—Nb2ii43.70 (7)
O3—La1—La2132.06 (5)O2—Nb2—Nb2ii83.62 (9)
O3i—La1—La242.97 (5)O5—Nb2—Nb2ii86.36 (9)
O2—La1—La289.484 (6)O3i—Nb2—Nb2ii105.82 (6)
S1—La1—La292.672 (5)O4ii—Nb2—Nb2ii34.00 (5)
S2—La1—La287.270 (5)O1xiv—Nb2—La2128.31 (7)
Nb2i—La1—La2122.284 (10)O4—Nb2—La2110.09 (7)
Nb2—La1—La256.473 (8)O2—Nb2—La2113.45 (10)
O1—La2—O1iv100.91 (10)O5—Nb2—La244.98 (9)
O1—La2—O5129.36 (5)O3i—Nb2—La248.42 (6)
O1iv—La2—O5129.37 (5)O4ii—Nb2—La247.67 (5)
O1—La2—O4v148.15 (7)Nb2ii—Nb2—La274.495 (13)
O1iv—La2—O4v74.25 (7)O1xiv—Nb2—La1130.85 (7)
O5—La2—O4v65.97 (7)O4—Nb2—La1108.31 (7)
O1—La2—O4ii74.25 (7)O2—Nb2—La147.18 (10)
O1iv—La2—O4ii148.15 (7)O5—Nb2—La1111.19 (9)
O5—La2—O4ii65.97 (7)O3i—Nb2—La146.95 (6)
O4v—La2—O4ii93.22 (9)O4ii—Nb2—La146.31 (5)
O1—La2—O3i71.08 (8)Nb2ii—Nb2—La171.289 (13)
O1iv—La2—O3i149.04 (7)La2—Nb2—La166.279 (13)
O5—La2—O3i62.63 (6)Nb11xii—S1—Nb1192.8 (10)
O4v—La2—O3i128.17 (7)Nb11xii—S1—Nb199.4 (5)
O4ii—La2—O3i60.29 (7)Nb11—S1—Nb16.6 (5)
O1—La2—O3vi149.04 (7)Nb11xii—S1—Nb1xii6.6 (5)
O1iv—La2—O3vi71.08 (8)Nb11—S1—Nb1xii99.4 (5)
O5—La2—O3vi62.63 (6)Nb1—S1—Nb1xii106.06 (6)
O4v—La2—O3vi60.29 (7)Nb11xii—S1—La2xi87.94 (3)
O4ii—La2—O3vi128.17 (7)Nb11—S1—La2xi87.94 (3)
O3i—La2—O3vi100.03 (9)Nb1—S1—La2xi88.20 (3)
O1—La2—S1vii78.33 (5)Nb1xii—S1—La2xi88.20 (3)
O1iv—La2—S1vii78.33 (5)Nb11xii—S1—La1126.3 (4)
O5—La2—S1vii103.51 (7)Nb11—S1—La1126.3 (4)
O4v—La2—S1vii129.28 (5)Nb1—S1—La1121.13 (3)
O4ii—La2—S1vii129.28 (5)Nb1xii—S1—La1121.13 (3)
O3i—La2—S1vii70.78 (5)La2xi—S1—La1123.71 (4)
O3vi—La2—S1vii70.78 (5)Nb1xv—S2—Nb1vii85.80 (7)
O1—La2—S2viii73.99 (6)Nb1xv—S2—Nb11xv6.8 (3)
O1iv—La2—S2viii73.99 (6)Nb1vii—S2—Nb11xv92.6 (4)
O5—La2—S2viii120.68 (7)Nb1xv—S2—Nb11vii92.6 (4)
O4v—La2—S2viii74.45 (5)Nb1vii—S2—Nb11vii6.8 (3)
O4ii—La2—S2viii74.45 (5)Nb11xv—S2—Nb11vii99.3 (8)
O3i—La2—S2viii128.36 (5)Nb1xv—S2—La187.21 (3)
O3vi—La2—S2viii128.36 (5)Nb1vii—S2—La187.21 (3)
S1vii—La2—S2viii135.82 (3)Nb11xv—S2—La187.54 (3)
O1—La2—Nb2iv162.40 (5)Nb11vii—S2—La187.54 (3)
O1iv—La2—Nb2iv96.21 (5)Nb1xv—S2—La2xvi126.13 (4)
O5—La2—Nb2iv33.227 (8)Nb1vii—S2—La2xvi126.13 (4)
O4v—La2—Nb2iv42.31 (5)Nb11xv—S2—La2xvi121.4 (3)
O4ii—La2—Nb2iv93.26 (5)Nb11vii—S2—La2xvi121.4 (3)
O3i—La2—Nb2iv92.05 (5)La1—S2—La2xvi130.20 (4)
O3vi—La2—Nb2iv36.50 (5)Nb2xiii—O1—La2129.73 (10)
S1vii—La2—Nb2iv101.34 (2)Nb2xiii—O1—La1129.01 (10)
S2viii—La2—Nb2iv115.19 (2)La2—O1—La1101.24 (8)
O1—La2—Nb296.21 (5)Nb2—O2—Nb2i159.36 (19)
O1iv—La2—Nb2162.40 (5)Nb2—O2—La199.81 (10)
O5—La2—Nb233.227 (7)Nb2i—O2—La199.81 (10)
O4v—La2—Nb293.26 (5)Nb1xv—O3—Nb11xv13.0 (8)
O4ii—La2—Nb242.31 (5)Nb1xv—O3—Nb2i133.26 (12)
O3i—La2—Nb236.50 (5)Nb11xv—O3—Nb2i131.9 (2)
O3vi—La2—Nb292.05 (5)Nb1xv—O3—La1113.72 (10)
S1vii—La2—Nb2101.34 (2)Nb11xv—O3—La1123.8 (6)
S2viii—La2—Nb2115.19 (2)Nb2i—O3—La197.09 (8)
Nb2iv—La2—Nb266.454 (15)Nb1xv—O3—La2xvii115.32 (10)
O1—La2—Nb11vii75.7 (3)Nb11xv—O3—La2xvii104.5 (7)
O1iv—La2—Nb11vii117.8 (3)Nb2i—O3—La2xvii95.08 (8)
O5—La2—Nb11vii75.64 (8)La1—O3—La2xvii94.64 (7)
O4v—La2—Nb11vii134.9 (3)Nb2—O4—Nb2ii102.30 (10)
O4ii—La2—Nb11vii91.9 (3)Nb2—O4—La1iii126.96 (9)
O3i—La2—Nb11vii31.7 (3)Nb2ii—O4—La1iii91.86 (7)
O3vi—La2—Nb11vii81.9 (4)Nb2—O4—La2v133.44 (9)
S1vii—La2—Nb11vii39.7 (2)Nb2ii—O4—La2v90.01 (7)
S2viii—La2—Nb11vii149.1 (3)La1iii—O4—La2v96.74 (7)
Nb2iv—La2—Nb11vii92.7 (2)Nb2iv—O5—Nb2156.41 (18)
Nb2—La2—Nb11vii62.61 (17)Nb2iv—O5—La2101.79 (9)
O3ix—Nb1—O3x171.94 (15)Nb2—O5—La2101.79 (9)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y, z1; (v) x, y+1, z1; (vi) x, y, z1; (vii) x+1/2, y+1/2, z1/2; (viii) x1/2, y+1/2, z1/2; (ix) x+1/2, y1/2, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x1/2, y+1/2, z+1/2; (xii) x, y, z; (xiii) x+1/2, y1/2, z1/2; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaLa2Nb3S2O8
Mr748.67
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)293
a, b, c (Å)9.8698 (2), 11.7941 (3), 7.6686 (1)
V3)892.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)13.58
Crystal size (mm)0.07 × 0.03 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Jana2000; Petricek and Dusek, 2000)
Tmin, Tmax0.511, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
20315, 2070, 1811
Rint0.064
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.052, 1.08
No. of reflections2070
No. of parameters81
Δρmax, Δρmin (e Å3)1.38, 1.38

Computer programs: Collect (Nonius BV, 1997–2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), not used (isotypic), SHELXL97 (Sheldrick, 1997), Diamond (Brandenburg, 2001), SHELXTL (Bruker, 1998).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds