Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure determination of the title compound, rotenone [alpha]-oxime [systematic name: 1,2,12,12a-tetra­hydro-8,9-di­meth­oxy-2-(1-methyl­ethenyl)-[1]­benzo­py­rano­[3,4-b]­furo­[2,3-h][1]benzo­pyran-6(6H)-one oxime], C23H23NO6, confirms that the mol­ecule has an approximately V-shaped structure. One of the rings has a typical cyclo­hexene-like monoplanar conformation and the central ring adopts a 1,2-diplanar conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010301117X/sq1014sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010301117X/sq1014Isup2.hkl
Contains datablock I

CCDC reference: 217153

Comment top

Rotenone, a naturally occurring heterocyclic compound with inhibitory effects on oxidative phosphorylation and mitosis, is obtained from the roots of the legumes Derris elliptical and D. malaccensis in Malaysia, and D. Uruco and Lonchocarpus utilis in South America (McEwen et al., 1979; Ware, 1983). Rotenone is a widely used pesticide (Carson, 1962; Gosalvenz, 1983; Haley, 1978), and together with other botanical pesticides (e.g. pyrethrum, sabadilla, nicotine and ryania), it is a valuable alternative to the synthetic pesticides in use today. Some insects have developed resistance in response to the heavy use of synthetic pesticides. In contrast, botanical pesticides exert their action through a variety of biochemical lesions and, therefore, can control neurotoxicant resistant insects. Additionally, as naturally occurring substances, botanical pesticides appear to be metabolized to less toxic derivatives. For rotenone, these are the polar rotenolones and hydroxyrotenone (Fukami et al., 1967). It photochemically decomposes to form over 20 degradation products, including rotenoids, rotenolones and rotenonone, and their expoxides (Carson, 1962; Engstrom-Heg et al., 1979; Fukami et., 1967; Gosalvez, 1983; Haley, 1978; Newsome et al., 1980; O'Brine, 1967).

Rotenone is biochemically very active, exerting its effects mainly by blocking oxidative phosphorylation and/or mitosis in cells through apparently separate pathways (Loffler et al., 1982). Information on the mode of action and selectivity of rotenone is important so that it can be used safely and efficiently. Since the three-dimensional structure of most biologically active molecules plays a role in governing their interactions and activities, in the course of a systematic study of the relation between structure and bioactivity of rotenone, we have isolated the title compound, rotenone-α-oxime, (I), C23H23NO6, and we report here its preparation and structure.

Fig. 1 shows the molecule with the atom-numbering scheme. Except for the isopropenyl group, the non-H atoms lie close to the plane of aromatic rings I and IV, resulting in an approximately V-shaped molecule with an angle of 78.7° between the planes of rings I and IV. Ring II has a typical cyclohexene-like monoplanar conformation (Bucourt, 1974), with torsion angles, proceeding anticlockwise? (see Fig. 1) around the ring starting from the C14—C13—03—C12 angle, of −10.0 (4), −36.4 (4), −55.2 (4), 46.4 (3), 23.2 (4) and 4.3 (5)°. Ring III adopts a 1,2-diplanar conformation (Bucourt, 1974), with torsion angles, proceeding anticlockwise? (see Fig. 1) starting with the C2—C3—O1—C4 angle, of −46.4 (3), 20.6 (4), 1.4 (5), 9.9 (4), 34.7 (4), −52.6 (3)°. The torsion angles in the five-membered ring, V, proceeding anticlockwise? (see Fig. 1) from the C8—C9—C10—C11 angle, are −13.1 (3), 18.9 (3), 18.7 (3), 10.9 (4) and 1.9 (4)°, indicating an envelope conformation (Bucourt, 1974) with the isopropenyl group in an equatorial position, as proposed previously by Büchi, et al. (1961) and Carlson et al. (1973). The methoxyl groups are noncoplanar with ring I; the angles between the plane of ring I and planes C20—O5—C17 and C19—O4—C16 are 12.5 and 73.1°, respectively.

The packing of (I) is shown in a stereo diagram in Fig. 2. The molecules are able to fit together tightly, maximizing intermolecular interaction through hydrogen bonds between the hydroxyl group of the rotenone-α-oxime group and the O atom of ring V [O6—O2i = 2.997 (4) Å, O6—H20 = 0.820 Å, H20—O2i = 2.197 Å, O6—H20—O2i = 165.1°; symmetry codes: (i) −x + 3/2,-y + 1,z + 1/2].

Experimental top

Rotenone (5 g), hydroxylamine hydrochloride (5 g) and sodium acetate (6 g) in ethyl alcohol (200 cm3) were refluxed for 10 h, and then water was added until crystallization commenced. The resulting rotenone-oxime was crystallized from alcohol, and a single-crystal suitable for X-ray analysis was recrystallized from ethyl alcohol after two months.

Refinement top

The absolute structure of (I) was not determined. The initial material, rotenone, was the basis of the configuration (Rossi et al., 1988). Atoms C22 and C23 of the isopropenyl group were disordered; the occupancy factors for atoms C22 and C23 were accordingly reduced and their secondary positions, C22' and C23', were included. The occupancy factors for C22/C23 and C22'/C23' were 0.667 and 1/3, respectively. H-atom occupancy factors were consistent with those of the corresponding C atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme (Bruker, 1998). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of the molecular packing of rotenone-α-oxime, viewed along the a axis
1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)- [1]benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6H)-one oxime top
Crystal data top
C23H23NO6Dx = 1.354 Mg m3
Mr = 409.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2303 reflections
a = 9.3994 (10) Åθ = 5.1–44.3°
b = 14.4249 (15) ŵ = 0.10 mm1
c = 14.8129 (15) ÅT = 293 K
V = 2008.4 (4) Å3Block, colourless
Z = 40.58 × 0.40 × 0.36 mm
F(000) = 864
Data collection top
CCD area detector
diffractometer
4704 independent reflections
Radiation source: fine-focus sealed tube2808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
SADABS absorption based on ϕ and ω scans (Bruker, 1998)
h = 1212
Tmin = 0.865, Tmax = 1.000k = 1919
12340 measured reflectionsl = 1019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.92Calculated w = 1/[σ2(Fo2) + (0.0983P)2]
where P = (Fo2 + 2Fc2)/3
4704 reflections(Δ/σ)max = 0.006
277 parametersΔρmax = 0.45 e Å3
29 restraintsΔρmin = 0.52 e Å3
Crystal data top
C23H23NO6V = 2008.4 (4) Å3
Mr = 409.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3994 (10) ŵ = 0.10 mm1
b = 14.4249 (15) ÅT = 293 K
c = 14.8129 (15) Å0.58 × 0.40 × 0.36 mm
Data collection top
CCD area detector
diffractometer
4704 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS absorption based on ϕ and ω scans (Bruker, 1998)
2808 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 1.000Rint = 0.058
12340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06429 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.92Δρmax = 0.45 e Å3
4704 reflectionsΔρmin = 0.52 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6503 (2)0.23309 (13)0.40322 (14)0.0414 (5)
O20.4105 (3)0.42961 (16)0.20925 (16)0.0578 (7)
O30.6491 (3)0.10248 (14)0.55298 (15)0.0474 (6)
O40.4778 (3)0.36803 (18)0.79789 (15)0.0575 (7)
O50.3752 (3)0.19250 (17)0.80945 (16)0.0591 (7)
O60.9159 (4)0.4260 (3)0.6143 (3)0.1151 (13)
H6A0.95620.47230.63360.173*
N10.8257 (3)0.45078 (19)0.54257 (18)0.0504 (8)
C10.7683 (3)0.3842 (2)0.5071 (2)0.0387 (7)
C20.7814 (3)0.2848 (2)0.5396 (2)0.0400 (7)
C30.7751 (4)0.2172 (2)0.4598 (2)0.0400 (7)
C40.6219 (3)0.3223 (2)0.38031 (19)0.0350 (7)
C50.6752 (4)0.3992 (2)0.4291 (2)0.0400 (8)
C60.6347 (4)0.4882 (2)0.4015 (2)0.0525 (9)
H60.66980.53910.43290.063*
C70.5452 (4)0.5028 (2)0.3298 (2)0.0578 (10)
H70.51920.56240.31240.069*
C80.4942 (4)0.4251 (2)0.2839 (2)0.0455 (8)
C90.5322 (3)0.3365 (2)0.3080 (2)0.0398 (7)
C100.4700 (4)0.2713 (2)0.2392 (2)0.0463 (8)
H10A0.42170.21970.26790.056*
H10B0.54270.24760.19880.056*
C110.3649 (4)0.3343 (2)0.1888 (2)0.0518 (9)
C120.7646 (4)0.1198 (2)0.4931 (2)0.0441 (8)
H12A0.75570.07890.44150.053*
H12B0.85250.10420.52380.053*
C130.6131 (3)0.1715 (2)0.61266 (19)0.0363 (7)
C140.6674 (3)0.2598 (2)0.60868 (19)0.0368 (7)
C150.6176 (3)0.3242 (2)0.6713 (2)0.0402 (7)
H150.65200.38470.66900.048*
C160.5197 (4)0.3016 (2)0.7363 (2)0.0429 (8)
C170.4687 (4)0.2100 (2)0.7409 (2)0.0448 (8)
C180.5135 (4)0.1458 (2)0.6784 (2)0.0413 (7)
H180.47750.08580.67980.050*
C190.3383 (4)0.4028 (3)0.7860 (3)0.0732 (12)
H19A0.33150.43220.72800.110*
H19B0.31760.44720.83250.110*
H19C0.27130.35270.78930.110*
C200.3421 (5)0.0970 (3)0.8281 (3)0.0711 (12)
H20A0.30450.06830.77470.107*
H20B0.27280.09390.87560.107*
H20C0.42690.06510.84650.107*
C210.3621 (5)0.3226 (3)0.0903 (2)0.0650 (11)
C220.4512 (16)0.3683 (13)0.0332 (14)0.140 (7)0.67
H22A0.51490.41280.05940.080*0.67
H22B0.44840.36020.03110.080*0.67
C22'0.479 (4)0.328 (3)0.038 (3)0.140 (7)0.33
H22C0.56880.34830.06200.080*0.33
H22D0.46900.31840.02600.080*0.33
C230.2313 (13)0.2932 (11)0.0563 (9)0.206 (8)0.67
H23D0.23340.28610.00810.080*0.67
H23E0.19880.23670.08360.080*0.67
H23F0.16780.34280.07200.080*0.67
C23'0.2866 (17)0.2443 (12)0.0591 (15)0.206 (8)0.33
H23A0.29130.24240.00570.080*0.33
H23B0.32220.18710.08330.080*0.33
H23C0.18960.25270.07760.080*0.33
H20.90190.27810.56790.120*
H30.87200.22010.42260.120*
H110.27010.32990.20740.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0562 (14)0.0328 (11)0.0350 (11)0.0007 (10)0.0055 (10)0.0016 (9)
O20.0777 (17)0.0505 (14)0.0450 (14)0.0066 (13)0.0133 (13)0.0076 (11)
O30.0639 (16)0.0364 (11)0.0418 (13)0.0019 (11)0.0094 (11)0.0008 (10)
O40.0607 (16)0.0722 (16)0.0397 (13)0.0004 (13)0.0083 (12)0.0148 (11)
O50.0664 (16)0.0624 (15)0.0483 (14)0.0036 (13)0.0214 (13)0.0106 (12)
O60.145 (3)0.096 (3)0.104 (3)0.015 (2)0.003 (3)0.014 (2)
N10.066 (2)0.0467 (16)0.0386 (16)0.0062 (15)0.0174 (15)0.0058 (13)
C10.0428 (19)0.0373 (17)0.0361 (17)0.0032 (14)0.0055 (15)0.0050 (14)
C20.0397 (18)0.0419 (17)0.0383 (17)0.0002 (14)0.0035 (15)0.0010 (14)
C30.0450 (19)0.0392 (17)0.0359 (17)0.0017 (14)0.0000 (15)0.0001 (14)
C40.0429 (17)0.0342 (15)0.0280 (15)0.0007 (13)0.0073 (13)0.0018 (12)
C50.0514 (19)0.0348 (16)0.0338 (17)0.0002 (14)0.0075 (15)0.0051 (13)
C60.072 (3)0.0371 (18)0.048 (2)0.0015 (17)0.0037 (19)0.0037 (15)
C70.089 (3)0.0357 (18)0.048 (2)0.0100 (19)0.001 (2)0.0060 (16)
C80.057 (2)0.0463 (19)0.0331 (16)0.0023 (16)0.0008 (16)0.0061 (14)
C90.0472 (18)0.0384 (16)0.0336 (16)0.0022 (14)0.0077 (15)0.0005 (13)
C100.064 (2)0.0430 (18)0.0318 (16)0.0031 (16)0.0043 (16)0.0029 (14)
C110.059 (2)0.058 (2)0.0389 (18)0.0035 (18)0.0027 (17)0.0060 (16)
C120.049 (2)0.0417 (18)0.0416 (19)0.0037 (15)0.0028 (16)0.0000 (15)
C130.0426 (17)0.0377 (16)0.0287 (15)0.0018 (14)0.0023 (14)0.0041 (13)
C140.0411 (18)0.0395 (17)0.0298 (15)0.0044 (14)0.0015 (14)0.0008 (13)
C150.0454 (18)0.0426 (17)0.0326 (16)0.0003 (14)0.0031 (14)0.0001 (14)
C160.0462 (18)0.054 (2)0.0290 (15)0.0012 (16)0.0000 (15)0.0077 (14)
C170.0399 (18)0.061 (2)0.0332 (16)0.0011 (16)0.0070 (15)0.0077 (15)
C180.050 (2)0.0363 (16)0.0381 (16)0.0004 (14)0.0012 (16)0.0067 (13)
C190.061 (3)0.069 (3)0.089 (3)0.013 (2)0.001 (2)0.026 (2)
C200.078 (3)0.072 (3)0.063 (3)0.003 (2)0.013 (2)0.023 (2)
C210.083 (3)0.077 (3)0.036 (2)0.008 (2)0.009 (2)0.0046 (19)
C220.130 (8)0.252 (19)0.039 (3)0.078 (10)0.005 (6)0.018 (9)
C22'0.130 (8)0.252 (19)0.039 (3)0.078 (10)0.005 (6)0.018 (9)
C230.261 (14)0.30 (2)0.061 (4)0.091 (15)0.010 (8)0.010 (9)
C23'0.261 (14)0.30 (2)0.061 (4)0.091 (15)0.010 (8)0.010 (9)
Geometric parameters (Å, º) top
O1—C41.357 (3)C13—C181.401 (4)
O1—C31.460 (4)C14—C151.394 (4)
O2—C81.358 (4)C15—C161.372 (4)
O2—C111.472 (4)C15—H150.9300
O3—C131.374 (4)C16—C171.408 (5)
O3—C121.423 (4)C17—C181.375 (5)
O4—C161.380 (4)C18—H180.9300
O4—C191.414 (4)C19—H19A0.9599
O5—C171.366 (4)C19—H19B0.9600
O5—C201.439 (5)C19—H19C0.9600
O6—N11.406 (4)C20—H20A0.9599
O6—H6A0.8200C20—H20B0.9601
N1—C11.221 (4)C20—H20C0.9600
C1—C51.465 (4)C21—C22'1.351 (10)
C1—C21.517 (4)C21—C221.361 (8)
C2—C141.525 (4)C21—C23'1.412 (9)
C2—C31.534 (4)C21—C231.395 (9)
C2—H21.2107C22—C22'0.65 (5)
C3—C121.492 (4)C22—H22A0.9600
C3—H31.0655C22—H22B0.9600
C4—C91.379 (4)C22—H22C1.2196
C4—C51.416 (4)C22—H22D1.1467
C5—C61.401 (4)C22'—H22A1.3116
C6—C71.371 (5)C22'—H22B1.1608
C6—H60.9300C22'—H22C0.9600
C7—C81.397 (5)C22'—H22D0.9599
C7—H70.9301C23—C23'0.88 (3)
C8—C91.373 (4)C23—H23D0.9600
C9—C101.505 (4)C23—H23E0.9600
C10—C111.536 (5)C23—H23F0.9600
C10—H10A0.9699C23—H23A1.3029
C10—H10B0.9699C23—H23C0.7708
C11—C211.469 (5)C23'—H23D1.2659
C11—H110.9345C23'—H23E0.9082
C12—H12A0.9700C23'—H23A0.9599
C12—H12B0.9701C23'—H23B0.9600
C13—C141.373 (4)C23'—H23C0.9599
C4—O1—C3116.8 (2)O5—C20—H20C109.5
C8—O2—C11107.0 (2)H20A—C20—H20C109.5
C13—O3—C12117.5 (2)H20B—C20—H20C109.5
C16—O4—C19115.4 (3)C22'—C21—C2228 (2)
C17—O5—C20117.3 (3)C22'—C21—C23'105 (2)
N1—O6—H6A109.5C22—C21—C23'119.6 (14)
C1—N1—O6113.1 (3)C22'—C21—C23122 (3)
N1—C1—C5119.2 (3)C22—C21—C23117.8 (13)
N1—C1—C2124.8 (3)C23'—C21—C2336.4 (12)
C5—C1—C2116.0 (3)C22'—C21—C11123 (3)
C1—C2—C14112.3 (3)C22—C21—C11123.4 (12)
C1—C2—C3110.6 (3)C23'—C21—C11115.2 (9)
C14—C2—C3109.8 (2)C23—C21—C11114.1 (7)
C1—C2—H2105.2C22'—C22—C2175.4 (16)
C14—C2—H2114.0C22'—C22—H22A107.8
C3—C2—H2104.5C21—C22—H22A117.2
O1—C3—C12106.5 (3)C22'—C22—H22B90.3
O1—C3—C2112.0 (2)C21—C22—H22B122.7
C12—C3—C2110.2 (3)H22A—C22—H22B120.0
O1—C3—H3112.6C22'—C22—H22C51.4
C12—C3—H3105.3C21—C22—H22C103.0
C2—C3—H3110.0H22A—C22—H22C56.7
O1—C4—C9117.2 (3)H22B—C22—H22C110.1
O1—C4—C5123.0 (3)C22'—C22—H22D56.8
C9—C4—C5119.8 (3)C21—C22—H22D105.1
C6—C5—C4118.2 (3)H22A—C22—H22D129.6
C6—C5—C1121.9 (3)H22B—C22—H22D33.8
C4—C5—C1119.9 (3)H22C—C22—H22D89.2
C7—C6—C5122.3 (3)C22—C22'—C2177.0 (15)
C7—C6—H6118.9C22—C22'—H22A44.2
C5—C6—H6118.8C21—C22'—H22A96.8
C6—C7—C8117.6 (3)C22—C22'—H22B55.8
C6—C7—H7121.2C21—C22'—H22B108.8
C8—C7—H7121.2H22A—C22'—H22B84.3
O2—C8—C9114.0 (3)C22—C22'—H22C96.8
O2—C8—C7123.8 (3)C21—C22'—H22C121.1
C9—C8—C7122.1 (3)H22A—C22'—H22C52.9
C8—C9—C4120.0 (3)H22B—C22'—H22C115.0
C8—C9—C10107.7 (3)C22—C22'—H22D88.8
C4—C9—C10132.1 (3)C21—C22'—H22D118.4
C9—C10—C11102.1 (3)H22A—C22'—H22D113.4
C9—C10—H10A111.4H22B—C22'—H22D33.3
C11—C10—H10A111.5H22C—C22'—H22D120.0
C9—C10—H10B111.3C23'—C23—C2172.9 (11)
C11—C10—H10B111.2C23'—C23—H23D87.0
H10A—C10—H10B109.3C21—C23—H23D111.9
O2—C11—C21108.5 (3)C23'—C23—H23E59.0
O2—C11—C10105.3 (3)C21—C23—H23E112.8
C21—C11—C10115.2 (3)H23D—C23—H23E109.5
O2—C11—H11106.3C23'—C23—H23F163.0
C21—C11—H11105.6C21—C23—H23F103.6
C10—C11—H11115.4H23D—C23—H23F109.5
O3—C12—C3115.0 (3)H23E—C23—H23F109.5
O3—C12—H12A108.6C23'—C23—H23A47.5
C3—C12—H12A108.5C21—C23—H23A92.5
O3—C12—H12B108.5H23D—C23—H23A39.7
C3—C12—H12B108.5H23E—C23—H23A87.5
H12A—C12—H12B107.6H23F—C23—H23A149.1
O3—C13—C14123.6 (3)C23'—C23—H23C70.9
O3—C13—C18114.9 (3)C21—C23—H23C122.1
C14—C13—C18121.5 (3)H23D—C23—H23C109.7
C13—C14—C15117.7 (3)H23E—C23—H23C12.1
C13—C14—C2120.6 (3)H23F—C23—H23C98.6
C15—C14—C2121.6 (3)H23A—C23—H23C94.7
C16—C15—C14122.2 (3)C23—C23'—C2170.7 (10)
C16—C15—H15118.8C23—C23'—H23D49.2
C14—C15—H15119.0C21—C23'—H23D94.3
C15—C16—O4119.4 (3)C23—C23'—H23E65.0
C15—C16—C17119.1 (3)C21—C23'—H23E115.0
O4—C16—C17121.5 (3)H23D—C23'—H23E90.8
O5—C17—C18125.0 (3)C23—C23'—H23A90.2
O5—C17—C16115.3 (3)C21—C23'—H23A109.1
C18—C17—C16119.7 (3)H23D—C23'—H23A41.1
C17—C18—C13119.7 (3)H23E—C23'—H23A115.9
C17—C18—H18120.1C23—C23'—H23B156.2
C13—C18—H18120.2C21—C23'—H23B112.9
O4—C19—H19A109.3H23D—C23'—H23B147.2
O4—C19—H19B109.6H23E—C23'—H23B93.6
H19A—C19—H19B109.5H23A—C23'—H23B109.5
O4—C19—H19C109.5C23—C23'—H23C49.4
H19A—C19—H19C109.5C21—C23'—H23C106.4
H19B—C19—H19C109.5H23D—C23'—H23C77.9
O5—C20—H20A109.5H23E—C23'—H23C15.8
O5—C20—H20B109.4H23A—C23'—H23C109.5
H20A—C20—H20B109.5H23B—C23'—H23C109.5
O6—N1—C1—C5177.8 (3)C12—O3—C13—C1410.0 (4)
O6—N1—C1—C24.4 (5)C12—O3—C13—C18171.0 (3)
N1—C1—C2—C1489.4 (4)O3—C13—C14—C15177.5 (3)
C5—C1—C2—C1488.4 (3)C18—C13—C14—C151.4 (4)
N1—C1—C2—C3147.5 (3)O3—C13—C14—C24.3 (5)
C5—C1—C2—C334.7 (4)C18—C13—C14—C2176.8 (3)
C4—O1—C3—C12167.0 (2)C1—C2—C14—C13146.8 (3)
C4—O1—C3—C246.4 (3)C3—C2—C14—C1323.2 (4)
C1—C2—C3—O152.6 (3)C1—C2—C14—C1535.1 (4)
C14—C2—C3—O172.0 (3)C3—C2—C14—C15158.6 (3)
C1—C2—C3—C12170.9 (3)C13—C14—C15—C161.1 (5)
C14—C2—C3—C1246.4 (3)C2—C14—C15—C16177.1 (3)
C3—O1—C4—C9161.9 (3)C14—C15—C16—O4178.2 (3)
C3—O1—C4—C520.6 (4)C14—C15—C16—C170.8 (5)
O1—C4—C5—C6177.6 (3)C19—O4—C16—C15107.7 (4)
C9—C4—C5—C60.2 (4)C19—O4—C16—C1774.9 (4)
O1—C4—C5—C11.4 (5)C20—O5—C17—C1812.3 (5)
C9—C4—C5—C1178.8 (3)C20—O5—C17—C16167.9 (3)
N1—C1—C5—C68.8 (5)C15—C16—C17—O5177.8 (3)
C2—C1—C5—C6169.2 (3)O4—C16—C17—O50.4 (5)
N1—C1—C5—C4172.2 (3)C15—C16—C17—C182.4 (5)
C2—C1—C5—C49.9 (4)O4—C16—C17—C18179.8 (3)
C4—C5—C6—C70.4 (5)O5—C17—C18—C13178.1 (3)
C1—C5—C6—C7178.6 (3)C16—C17—C18—C132.1 (5)
C5—C6—C7—C80.0 (5)O3—C13—C18—C17179.2 (3)
C11—O2—C8—C910.9 (4)C14—C13—C18—C170.2 (5)
C11—O2—C8—C7172.7 (3)O2—C11—C21—C22'64 (2)
C6—C7—C8—O2176.8 (3)C10—C11—C21—C22'54 (2)
C6—C7—C8—C90.7 (5)O2—C11—C21—C2230.9 (9)
O2—C8—C9—C4177.3 (3)C10—C11—C21—C2286.8 (9)
C7—C8—C9—C40.9 (5)O2—C11—C21—C23'164.4 (10)
O2—C8—C9—C101.9 (4)C10—C11—C21—C23'77.9 (11)
C7—C8—C9—C10174.5 (3)O2—C11—C21—C23124.1 (8)
O1—C4—C9—C8177.1 (3)C10—C11—C21—C23118.1 (9)
C5—C4—C9—C80.4 (4)C23'—C21—C22—C22'65 (8)
O1—C4—C9—C108.7 (5)C23—C21—C22—C22'106 (7)
C5—C4—C9—C10173.7 (3)C11—C21—C22—C22'99 (8)
C8—C9—C10—C1113.1 (3)C23'—C21—C22'—C22125 (7)
C4—C9—C10—C11172.3 (3)C23—C21—C22'—C2290 (7)
C8—O2—C11—C21142.6 (3)C11—C21—C22'—C2299 (7)
C8—O2—C11—C1018.7 (3)C22'—C21—C23—C23'72 (3)
C9—C10—C11—O218.9 (3)C22—C21—C23—C23'103 (2)
C9—C10—C11—C21138.4 (3)C11—C21—C23—C23'100 (2)
C13—O3—C12—C336.4 (4)C22'—C21—C23'—C23123 (3)
O1—C3—C12—O366.4 (3)C22—C21—C23'—C2398 (2)
C2—C3—C12—O355.2 (4)C11—C21—C23'—C2397 (2)

Experimental details

Crystal data
Chemical formulaC23H23NO6
Mr409.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.3994 (10), 14.4249 (15), 14.8129 (15)
V3)2008.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.40 × 0.36
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS absorption based on ϕ and ω scans (Bruker, 1998)
Tmin, Tmax0.865, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12340, 4704, 2808
Rint0.058
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.176, 0.92
No. of reflections4704
No. of parameters277
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998) and SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL, SHELXL97.

Selected torsion angles (º) top
C5—C1—C2—C334.7 (4)C8—C9—C10—C1113.1 (3)
C4—O1—C3—C246.4 (3)C8—O2—C11—C1018.7 (3)
C1—C2—C3—O152.6 (3)C9—C10—C11—O218.9 (3)
C14—C2—C3—C1246.4 (3)C13—O3—C12—C336.4 (4)
C3—O1—C4—C520.6 (4)C2—C3—C12—O355.2 (4)
O1—C4—C5—C11.4 (5)C12—O3—C13—C1410.0 (4)
C2—C1—C5—C49.9 (4)O3—C13—C14—C24.3 (5)
C11—O2—C8—C910.9 (4)C3—C2—C14—C1323.2 (4)
O2—C8—C9—C101.9 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds