Download citation
Download citation
link to html
In the title dinuclear uranyl complex, (C18H38N2O6)[(UO2)2(NO3)4(OH)2]·H2O, each pair of uranyl ions in the two independent centrosymmetric dianionic dimers is bridged by the two hydroxide ions, with the nitrate ions ensuring equatorial hexagonal coordination. The di­hydro[2.2.2]­cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]­hexa­cosane) dication presents an `in-in' conformation (endo protonation) and it is hydrogen bonded to the hydroxide ions, either directly or via a water mol­ecule, resulting in the formation of linear hydrogen-bonded polymers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018759/sq1000sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018759/sq1000Isup2.hkl
Contains datablock I

CCDC reference: 199414

Comment top

[2.2.2]Cryptand has recently been used as a basic agent in the synthesis of uranyl ion complexes of hexahomotrioxacalix[3]arenes (Masci et al., 2002). In some of the resulting supramolecular assemblies, dihydro[2.2.2]cryptand (2+) is encapsulated between two complex molecules and held by feeble forces (cation-π and CH-π interactions). Compound (I) was obtained as a by-product during the investigation of a similar reaction with another calixarene. A search of the Cambridge Structural Database (CSD, Version 5.23; Allen & Kennard, 1993) gives few compounds closely related to (I). The di-µ-hydroxo-bis[bis(nitrato-κ2O,O')dioxouranium(VI)] complex has been described previously, in association with choline (Viossat et al., 1983) or 4,4'-bipyridinium (Alcock & Flanders, 1987), as well as the related di-µ-aqua-bis[bis(nitrato-κ2O,O')dioxouranium(VI)] complex (Perry et al., 1980; Hämäläinen et al., 1996). The cis positioning of two nitrate ions bound to a bis(hydroxide) uranyl group was first observed in the related compound di-µ-hydroxo-[bis(nitrato-κ2O,O')dioxouranium(VI)] [tris(aqua)dioxouranium(VI)] monohydrate (Perrin, 1976). \sch

The asymmetric unit in (I) comprises two half complex molecules, a complete dihydro[2.2.2]cryptand (2+) and a water molecule. The two complex molecules have similar geometries. The U atoms are in distorted hexagonal-bipyramidal environments, with a common edge defined by the double hydroxide bridge. The six O atoms from the nitrate and hydroxide ions around each U atom define a plane with r.m.s. deviations of 0.077 (3) and 0.081 (3) Å and distances to U of 0.009 (1) and 0.028 (1) Å in each molecule. The Oaxial—U—Oequatorial angles are in the ranges 85.82 (17)–92.94 (18)° in the first molecule and 86.63 (16)–94.33 (17)° in the second, indicating some puckering of the equatorial donor atoms.

The U—O(nitrate) bond lengths are in the range 2.515 (4)–2.561 (4) Å, in agreement with values in the analogous complexes. The UO(hydroxide) bond lengths are shorter, in the range 2.313 (4)–2.342 (4) Å, and the UO(hydroxide)-U angles are 112.77 (16) and 113.60 (15)°; all these values are in agreement with those in the previous compounds. The U···U distances are 3.8556 (5) and 3.9156 (5) Å in the two molecules, close to the range of 3.896–3.944 Å in the examples cited above.

The dihydro[2.2.2]cryptand (2+) dication is in the `in-in' conformation, the two H atoms bound to the N atoms being directed inwards, as a result of endo protonation. This is the most common geometry for this cation, although it has been shown that exo protonation, associated with the `out-out' conformation, could be stabilized in the solid state when the H atoms are involved in hydrogen bonding with an external acceptor (MacGillivray & Atwood, 1997a). However, even when such acceptors are available, the `in-in' conformation may be observed, as in the present case or in the assemblies involving uranyl complexes of hexahomotrioxacalix[3]arenes (Masci et al., 2002).

The ammonium H atoms in (I) are involved in loose trifurcated hydrogen bonds with the ether O atoms (MacGillivray & Atwood, 1997b), some of the latter being themselves also hydrogen bonded to external donors. Atom O22 is thus hydrogen bonded to the hydroxide ion of the second complex molecule, whereas atoms O19 and O23, which pertain to different ether chains, are bonded to the two H atoms of the water molecule. This peculiar involvement of three ether O atoms, one in each `arm', in external hydrogen bonds, results in a rather distorted cryptand geometry. All N—C—C—O and O—C—C—O torsion angles are gauche [in the range 50.3 (6)–70.0 (6)°], but two C—O—C—C angles are gauche instead of anti, with values of 77.8 (6) and 75.3 (6)°.

The N···N separation is 5.710 (7) Å, much shorter than in the neutral ligand (6.87 Å; Reference?) due to the internal hydrogen bonds and in agreement with those in other diprotonated species (Masci et al., 2002). The O···O separations in each half-molecule are in the range 3.881 (6)–4.303 (6) Å.

The water molecule acts as a hydrogen-bond acceptor towards the hydroxide ion of the first molecule (this bond being seemingly the strongest of all hydrogen bonds in this compound). The cryptand cations are thus held between successive complex molecules, either directly or via the water molecules. Both cryptand and water molecules can be considered as second-sphere ligands with respect to the uranyl ions. This arrangement results in the formation of linear polymers along the (201) direction. A similar arrangement has been decribed in the complex 4,4'-bipyridinium di-µ-hydroxo-bis[bis(nitrato-κ2O,O')dioxouranium(VI)] monohydrate (Alcock & Flanders, 1987), in which chains of alternating uranyl complexes and 4,4'-bipyridinium ions are held together by hydrogen bonds, either directly between ammonium and hydroxide ions or via a water molecule.

Experimental top

Reaction of uranyl nitrate hexahydrate with a stoichiometric amount of [2.2.2]cryptand in boiling CH3CN/CHCl3 (1:1) in the presence of p-tert-butylcalix[5]arene gave a light-yellow solution, which indicated the absence of complexation of uranyl ions by the calixarene (the characteristic colour of such complexes is dark orange), and yielded crystals of (I) suitable for X-ray crystallography.

Refinement top

The H atoms bound to N and O atoms were found in the difference Fourier map and were introduced as riding atoms, with an isotropic displacement parameter equal to 1.2 times that of the parent atom. All other H atoms were introduced at calculated positions as riding atoms, with C—H = 0.97 Å and an isotropic displacement parameter equal to 1.2 times that of the parent atom.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view showing the two centrosymmetric complex molecules surrounding the hydrogen-bonded dication and water molecule in (I), with a partial atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms involved in hydrogen bonding are drawn as small spheres of arbitrary radii; other H atoms have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines; intramolecular hydrogen bonds are not represented [symmetry codes: (i) -x, 1 - y, 2 - z; (ii) 2 - x, 1 - y, 1 - z.]
Dihydro[2.2.2]cryptand (2+) di-µ-hydroxo-bis[bis(nitrato-κ2O,O')dioxouranium(VI)] monohydrate top
Crystal data top
(C18H38N2O6)[U2O4(NO3)4(OH)2]·H2OZ = 2
Mr = 1218.64F(000) = 1152
Triclinic, P1Dx = 2.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0595 (5) ÅCell parameters from 12164 reflections
b = 9.8517 (5) Åθ = 2.8–25.7°
c = 20.8019 (12) ŵ = 9.22 mm1
α = 86.528 (3)°T = 100 K
β = 82.042 (3)°Needle, light yellow
γ = 74.826 (3)°0.3 × 0.1 × 0.1 mm
V = 1774.04 (17) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
6199 independent reflections
Radiation source: fine-focus sealed tube5014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ scansθmax = 25.7°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)
(DELABS in PLATON; Spek, 2000)
h = 1111
Tmin = 0.201, Tmax = 0.398k = 1212
12164 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2)]
6199 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
(C18H38N2O6)[U2O4(NO3)4(OH)2]·H2Oγ = 74.826 (3)°
Mr = 1218.64V = 1774.04 (17) Å3
Triclinic, P1Z = 2
a = 9.0595 (5) ÅMo Kα radiation
b = 9.8517 (5) ŵ = 9.22 mm1
c = 20.8019 (12) ÅT = 100 K
α = 86.528 (3)°0.3 × 0.1 × 0.1 mm
β = 82.042 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6199 independent reflections
Absorption correction: empirical (using intensity measurements)
(DELABS in PLATON; Spek, 2000)
5014 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.398Rint = 0.039
12164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.04Δρmax = 0.92 e Å3
6199 reflectionsΔρmin = 0.90 e Å3
460 parameters
Special details top

Experimental. A 180° range in ϕ was scanned during both data collections, with 2° ϕ steps. The crystal-to-detector distance was fixed at 28 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms bound to O and N have been found on the Fourier-difference map and introduced as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. All other H atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.05889 (2)0.69563 (2)0.973552 (10)0.02207 (7)
U20.87830 (2)0.66955 (2)0.545312 (10)0.02116 (7)
O10.2555 (5)0.6901 (4)0.9762 (2)0.0287 (10)
O20.1360 (5)0.7058 (4)0.9701 (2)0.0302 (10)
O30.1093 (5)0.8079 (4)1.0834 (2)0.0327 (10)
O40.1684 (6)0.9537 (5)1.0043 (2)0.0370 (11)
O50.2190 (6)1.0282 (5)1.1039 (2)0.0439 (12)
O60.1018 (5)0.8883 (4)0.8868 (2)0.0363 (11)
O70.0176 (5)0.6778 (5)0.8499 (2)0.0360 (11)
O80.0458 (6)0.8580 (5)0.7821 (2)0.0467 (13)
O90.0279 (5)0.4653 (4)0.94029 (19)0.0235 (9)
H90.09970.45410.89620.028*
O100.7055 (5)0.6212 (4)0.53670 (19)0.0262 (9)
O111.0469 (5)0.7248 (4)0.55390 (19)0.0276 (9)
O120.8806 (5)0.5758 (4)0.6605 (2)0.0341 (10)
O130.7440 (5)0.7888 (4)0.6499 (2)0.0294 (10)
O140.7514 (6)0.6883 (5)0.7461 (2)0.0422 (12)
O150.7237 (5)0.9269 (4)0.5400 (2)0.0307 (10)
O160.8234 (5)0.8337 (4)0.4477 (2)0.0315 (10)
O170.6683 (6)1.0462 (5)0.4504 (2)0.0373 (11)
O180.9998 (5)0.4297 (4)0.55388 (19)0.0253 (9)
H180.94450.38370.57680.030*
N10.1692 (6)0.9345 (5)1.0652 (3)0.0294 (12)
N20.0543 (6)0.8087 (5)0.8370 (3)0.0322 (13)
N30.7913 (6)0.6837 (5)0.6881 (3)0.0300 (12)
N40.7353 (6)0.9400 (5)0.4784 (2)0.0258 (11)
O190.4973 (5)0.1410 (4)0.86130 (19)0.0262 (9)
O200.4464 (4)0.1644 (4)0.7306 (2)0.0242 (9)
O210.8219 (5)0.2592 (5)0.74850 (19)0.0296 (10)
O220.7677 (5)0.2821 (4)0.61438 (19)0.0241 (9)
O230.4378 (5)0.5731 (4)0.83267 (19)0.0266 (9)
O240.3951 (5)0.6084 (4)0.69586 (19)0.0287 (9)
N50.6675 (5)0.3411 (5)0.8719 (2)0.0242 (11)
H50.63800.33480.83420.029*
N60.4382 (5)0.3600 (5)0.6284 (2)0.0229 (11)
H60.51810.34300.65240.027*
C10.7112 (7)0.1988 (6)0.9044 (3)0.0269 (13)
H1A0.74900.20690.94500.032*
H1B0.79330.13690.87680.032*
C20.5711 (7)0.1354 (6)0.9177 (3)0.0255 (13)
H2A0.60480.03820.93250.031*
H2B0.49790.18670.95200.031*
C30.5765 (7)0.0344 (6)0.8156 (3)0.0276 (14)
H3A0.60170.05670.83770.033*
H3B0.67180.05440.79520.033*
C40.4744 (7)0.0326 (6)0.7654 (3)0.0272 (13)
H4A0.52330.04300.73560.033*
H4B0.37750.01630.78600.033*
C50.3248 (7)0.1794 (6)0.6930 (3)0.0249 (13)
H5A0.23310.16690.72010.030*
H5B0.35330.10930.65960.030*
C60.2937 (6)0.3272 (6)0.6620 (3)0.0246 (13)
H6A0.22140.33530.63080.030*
H6B0.24670.39560.69530.030*
C70.8056 (7)0.3940 (7)0.8416 (3)0.0292 (14)
H7A0.76930.48430.82000.035*
H7B0.86310.40780.87560.035*
C80.9112 (7)0.2933 (7)0.7932 (3)0.0307 (15)
H8A0.98900.33620.77030.037*
H8B0.96300.20850.81560.037*
C90.9186 (7)0.1770 (7)0.6967 (3)0.0279 (14)
H9A0.97470.08780.71410.034*
H9B0.99310.22620.67610.034*
C100.8246 (7)0.1509 (7)0.6475 (3)0.0292 (14)
H10A0.88750.08190.61690.035*
H10B0.73930.11530.66860.035*
C110.6919 (7)0.2700 (7)0.5600 (3)0.0266 (13)
H11A0.75360.19120.53420.032*
H11B0.68310.35470.53290.032*
C120.5320 (7)0.2480 (6)0.5812 (3)0.0282 (14)
H12A0.47900.25190.54350.034*
H12B0.54140.15570.60190.034*
C130.5640 (7)0.4490 (6)0.9185 (3)0.0278 (14)
H13A0.47620.41440.93720.033*
H13B0.62050.45830.95360.033*
C140.5067 (8)0.5902 (7)0.8883 (3)0.0303 (14)
H14A0.43130.65040.91910.036*
H14B0.59140.63330.87560.036*
C150.3891 (8)0.7066 (7)0.7995 (3)0.0313 (14)
H15A0.47880.73980.78210.038*
H15B0.32480.77500.83010.038*
C160.3009 (7)0.6942 (6)0.7456 (3)0.0312 (14)
H16A0.21570.65440.76260.037*
H16B0.25850.78710.72750.037*
C170.3132 (8)0.6170 (7)0.6410 (3)0.0308 (14)
H17A0.30320.70840.61930.037*
H17B0.21080.60460.65480.037*
C180.4034 (7)0.5025 (6)0.5955 (3)0.0275 (14)
H18A0.34510.50060.56000.033*
H18B0.49960.52380.57730.033*
O250.2383 (5)0.3929 (4)0.8317 (2)0.0311 (10)
H25A0.31240.44640.81910.037*
H25B0.29700.30290.83100.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.02178 (12)0.02027 (12)0.02378 (13)0.00479 (9)0.00285 (9)0.00035 (9)
U20.02052 (12)0.02157 (13)0.02093 (12)0.00477 (9)0.00186 (9)0.00142 (9)
O10.027 (2)0.033 (2)0.028 (2)0.0096 (19)0.0025 (19)0.0047 (19)
O20.028 (2)0.029 (2)0.034 (2)0.0110 (19)0.0016 (19)0.003 (2)
O30.046 (3)0.022 (2)0.032 (2)0.009 (2)0.010 (2)0.0009 (19)
O40.047 (3)0.025 (2)0.038 (3)0.007 (2)0.006 (2)0.002 (2)
O50.062 (3)0.027 (2)0.040 (3)0.015 (2)0.015 (2)0.009 (2)
O60.042 (3)0.023 (2)0.037 (3)0.001 (2)0.005 (2)0.003 (2)
O70.043 (3)0.028 (2)0.028 (2)0.003 (2)0.002 (2)0.004 (2)
O80.040 (3)0.050 (3)0.038 (3)0.001 (2)0.006 (2)0.020 (2)
O90.027 (2)0.023 (2)0.022 (2)0.0112 (17)0.0020 (17)0.0021 (17)
O100.026 (2)0.024 (2)0.029 (2)0.0083 (18)0.0047 (18)0.0006 (18)
O110.027 (2)0.031 (2)0.026 (2)0.0091 (19)0.0025 (18)0.0007 (19)
O120.043 (3)0.026 (2)0.028 (2)0.001 (2)0.002 (2)0.005 (2)
O130.033 (2)0.027 (2)0.025 (2)0.0047 (19)0.0013 (19)0.0004 (19)
O140.059 (3)0.043 (3)0.020 (2)0.010 (3)0.006 (2)0.002 (2)
O150.035 (2)0.027 (2)0.027 (2)0.0028 (19)0.003 (2)0.0040 (19)
O160.035 (2)0.028 (2)0.027 (2)0.001 (2)0.002 (2)0.0032 (19)
O170.049 (3)0.024 (2)0.033 (3)0.002 (2)0.010 (2)0.003 (2)
O180.030 (2)0.023 (2)0.022 (2)0.0073 (18)0.0014 (18)0.0045 (17)
N10.039 (3)0.021 (3)0.028 (3)0.010 (2)0.001 (2)0.001 (2)
N20.028 (3)0.028 (3)0.031 (3)0.004 (2)0.006 (2)0.008 (3)
N30.035 (3)0.029 (3)0.027 (3)0.013 (3)0.002 (2)0.001 (3)
N40.031 (3)0.021 (3)0.026 (3)0.004 (2)0.008 (2)0.001 (2)
O190.025 (2)0.025 (2)0.026 (2)0.0040 (18)0.0008 (18)0.0039 (18)
O200.022 (2)0.022 (2)0.028 (2)0.0066 (17)0.0033 (17)0.0018 (18)
O210.028 (2)0.039 (3)0.023 (2)0.011 (2)0.0042 (19)0.0006 (19)
O220.027 (2)0.022 (2)0.024 (2)0.0068 (18)0.0052 (18)0.0017 (17)
O230.033 (2)0.023 (2)0.022 (2)0.0050 (19)0.0016 (18)0.0028 (18)
O240.030 (2)0.031 (2)0.024 (2)0.0045 (19)0.0064 (19)0.0029 (19)
N50.024 (3)0.027 (3)0.020 (2)0.003 (2)0.002 (2)0.004 (2)
N60.022 (2)0.021 (3)0.027 (3)0.008 (2)0.003 (2)0.001 (2)
C10.030 (3)0.021 (3)0.029 (3)0.005 (3)0.005 (3)0.004 (3)
C20.032 (3)0.021 (3)0.023 (3)0.005 (3)0.005 (3)0.001 (3)
C30.028 (3)0.024 (3)0.029 (3)0.005 (3)0.004 (3)0.005 (3)
C40.026 (3)0.021 (3)0.033 (3)0.005 (3)0.002 (3)0.008 (3)
C50.022 (3)0.032 (3)0.022 (3)0.010 (3)0.005 (2)0.003 (3)
C60.017 (3)0.032 (3)0.026 (3)0.009 (3)0.003 (2)0.000 (3)
C70.029 (3)0.032 (3)0.031 (3)0.015 (3)0.008 (3)0.004 (3)
C80.029 (3)0.043 (4)0.026 (3)0.019 (3)0.010 (3)0.004 (3)
C90.028 (3)0.032 (3)0.022 (3)0.006 (3)0.002 (3)0.002 (3)
C100.028 (3)0.029 (3)0.033 (3)0.011 (3)0.010 (3)0.003 (3)
C110.024 (3)0.033 (3)0.023 (3)0.008 (3)0.000 (3)0.001 (3)
C120.032 (3)0.026 (3)0.028 (3)0.008 (3)0.004 (3)0.004 (3)
C130.028 (3)0.027 (3)0.027 (3)0.004 (3)0.002 (3)0.004 (3)
C140.036 (4)0.029 (3)0.023 (3)0.003 (3)0.001 (3)0.011 (3)
C150.043 (4)0.027 (3)0.025 (3)0.008 (3)0.007 (3)0.002 (3)
C160.034 (3)0.022 (3)0.031 (3)0.002 (3)0.002 (3)0.004 (3)
C170.034 (4)0.027 (3)0.030 (3)0.005 (3)0.009 (3)0.005 (3)
C180.031 (3)0.026 (3)0.026 (3)0.011 (3)0.004 (3)0.007 (3)
O250.031 (2)0.023 (2)0.035 (2)0.0043 (19)0.002 (2)0.0016 (19)
Geometric parameters (Å, º) top
U1—O11.789 (4)N6—C181.500 (7)
U1—O21.786 (4)N6—C121.520 (8)
U1—O32.531 (4)N6—H60.9096
U1—O42.561 (4)C1—C21.540 (8)
U1—O62.529 (4)C1—H1A0.9700
U1—O72.559 (4)C1—H1B0.9700
U1—O92.313 (4)C2—H2A0.9700
U1—O9i2.317 (4)C2—H2B0.9700
U1—U1i3.8556 (5)C3—C41.492 (8)
U2—O101.785 (4)C3—H3A0.9700
U2—O111.784 (4)C3—H3B0.9700
U2—O122.515 (4)C4—H4A0.9700
U2—O132.534 (4)C4—H4B0.9700
U2—O152.560 (4)C5—C61.529 (8)
U2—O162.539 (4)C5—H5A0.9700
U2—O182.338 (4)C5—H5B0.9700
U2—O18ii2.341 (4)C6—H6A0.9700
U2—U2ii3.9156 (5)C6—H6B0.9700
O3—N11.281 (6)C7—C81.506 (9)
O4—N11.268 (7)C7—H7A0.9700
O5—N11.215 (7)C7—H7B0.9700
O6—N21.293 (7)C8—H8A0.9700
O7—N21.266 (6)C8—H8B0.9700
O8—N21.214 (7)C9—C101.493 (8)
O9—U1i2.317 (4)C9—H9A0.9700
O9—H91.0420C9—H9B0.9700
O12—N31.269 (7)C10—H10A0.9700
O13—N31.284 (6)C10—H10B0.9700
O14—N31.210 (7)C11—C121.522 (8)
O15—N41.273 (6)C11—H11A0.9700
O16—N41.282 (6)C11—H11B0.9700
O17—N41.222 (6)C12—H12A0.9700
O18—U2ii2.341 (4)C12—H12B0.9700
O18—H180.8426C13—C141.486 (9)
O19—C21.420 (7)C13—H13A0.9700
O19—C31.436 (7)C13—H13B0.9700
O20—C51.410 (7)C14—H14A0.9700
O20—C41.427 (7)C14—H14B0.9700
O21—C81.421 (7)C15—C161.494 (9)
O21—C91.434 (7)C15—H15A0.9700
O22—C111.428 (7)C15—H15B0.9700
O22—C101.433 (7)C16—H16A0.9700
O23—C141.427 (7)C16—H16B0.9700
O23—C151.439 (7)C17—C181.506 (9)
O24—C161.412 (7)C17—H17A0.9700
O24—C171.433 (7)C17—H17B0.9700
N5—C11.499 (7)C18—H18A0.9700
N5—C131.516 (7)C18—H18B0.9700
N5—C71.523 (8)O25—H25A0.9566
N5—H50.8733O25—H25B0.9069
N6—C61.499 (7)
O1—U1—O2178.51 (18)C2—C1—H1B109.6
O3—U1—O449.89 (14)H1A—C1—H1B108.1
O4—U1—O659.24 (14)O19—C2—C1111.6 (5)
O6—U1—O750.29 (14)O19—C2—H2A109.3
O7—U1—O967.56 (14)C1—C2—H2A109.2
O9—U1—O9i67.23 (16)O19—C2—H2B109.4
O9i—U1—O366.26 (13)C1—C2—H2B109.3
U1—O9—U1i112.77 (16)H2A—C2—H2B107.9
O2—U1—O989.83 (17)O19—C3—C4108.6 (5)
O1—U1—O991.35 (17)O19—C3—H3A110.0
O2—U1—O9i90.88 (16)C4—C3—H3A110.0
O1—U1—O9i90.41 (17)O19—C3—H3B110.0
O2—U1—O689.46 (17)C4—C3—H3B110.0
O1—U1—O689.19 (17)H3A—C3—H3B108.3
O9—U1—O6117.84 (14)O20—C4—C3109.2 (5)
O9i—U1—O6174.92 (14)O20—C4—H4A109.9
O2—U1—O387.30 (18)C3—C4—H4A109.9
O1—U1—O392.53 (17)O20—C4—H4B109.8
O9—U1—O3133.33 (13)C3—C4—H4B109.8
O6—U1—O3108.70 (14)H4A—C4—H4B108.3
O2—U1—O788.64 (18)O20—C5—C6107.6 (5)
O1—U1—O790.98 (17)O20—C5—H5A110.2
O9i—U1—O7134.78 (14)C6—C5—H5A110.2
O3—U1—O7158.66 (14)O20—C5—H5B110.2
O2—U1—O492.95 (18)C6—C5—H5B110.2
O1—U1—O485.82 (17)H5A—C5—H5B108.5
O9—U1—O4175.91 (14)N6—C6—C5112.1 (5)
O9i—U1—O4115.69 (14)N6—C6—H6A109.2
O7—U1—O4109.49 (14)C5—C6—H6A109.2
O10—U2—O11177.80 (17)N6—C6—H6B109.1
O12—U2—O1350.52 (13)C5—C6—H6B109.2
O13—U2—O1561.18 (13)H6A—C6—H6B107.9
O15—U2—O1650.02 (13)C8—C7—N5112.3 (5)
O12—U2—O1866.28 (13)C8—C7—H7A109.2
O18—U2—O18ii66.40 (15)N5—C7—H7A109.2
O18ii—U2—O1666.15 (13)C8—C7—H7B109.1
U2—O18—U2ii113.60 (15)N5—C7—H7B109.1
O11—U2—O1894.33 (17)H7A—C7—H7B107.9
O10—U2—O1887.87 (16)O21—C8—C7108.8 (5)
O11—U2—O18ii89.10 (17)O21—C8—H8A109.9
O10—U2—O18ii91.93 (16)C7—C8—H8A110.0
O11—U2—O1287.87 (17)O21—C8—H8B109.9
O10—U2—O1292.87 (17)C7—C8—H8B109.9
O18ii—U2—O12132.18 (13)H8A—C8—H8B108.3
O11—U2—O1390.25 (16)O21—C9—C10110.7 (5)
O10—U2—O1388.62 (16)O21—C9—H9A109.5
O18—U2—O13116.38 (13)C10—C9—H9A109.5
O18ii—U2—O13177.19 (13)O21—C9—H9B109.5
O11—U2—O1692.02 (17)C10—C9—H9B109.5
O10—U2—O1686.63 (16)H9A—C9—H9B108.1
O18—U2—O16131.96 (13)O22—C10—C9107.5 (5)
O18ii—U2—O1666.15 (13)O22—C10—H10A110.2
O12—U2—O16161.65 (14)C9—C10—H10A110.2
O13—U2—O16111.15 (13)O22—C10—H10B110.2
O11—U2—O1589.99 (16)C9—C10—H10B110.2
O10—U2—O1587.81 (16)H10A—C10—H10B108.5
O18—U2—O15175.09 (14)O22—C11—C12111.6 (5)
O18ii—U2—O15116.08 (13)O22—C11—H11A109.3
O12—U2—O15111.63 (13)C12—C11—H11A109.3
N1—O3—U198.0 (3)O22—C11—H11B109.3
N1—O4—U197.0 (3)C12—C11—H11B109.3
N2—O6—U197.4 (3)H11A—C11—H11B107.9
N2—O7—U196.8 (3)N6—C12—C11110.9 (5)
U1—O9—H9113.4N6—C12—H12A109.5
U1i—O9—H9124.4C11—C12—H12A109.4
N3—O12—U297.8 (3)N6—C12—H12B109.5
N3—O13—U296.5 (3)C11—C12—H12B109.5
N4—O15—U296.9 (3)H12A—C12—H12B108.1
N4—O16—U297.6 (3)C14—C13—N5114.2 (5)
U2—O18—H18113.1C14—C13—H13A108.7
U2ii—O18—H18115.5N5—C13—H13A108.7
O5—N1—O4123.5 (5)C14—C13—H13B108.7
O5—N1—O3121.6 (5)N5—C13—H13B108.7
O4—N1—O3114.9 (5)H13A—C13—H13B107.6
O8—N2—O7123.2 (6)O23—C14—C13108.1 (5)
O8—N2—O6121.5 (5)O23—C14—H14A110.0
O7—N2—O6115.3 (5)C13—C14—H14A110.1
O14—N3—O12123.1 (6)O23—C14—H14B110.1
O14—N3—O13121.8 (5)C13—C14—H14B110.1
O12—N3—O13115.1 (5)H14A—C14—H14B108.4
O17—N4—O15122.6 (5)O23—C15—C16110.9 (5)
O17—N4—O16122.3 (5)O23—C15—H15A109.5
O15—N4—O16115.1 (5)C16—C15—H15A109.4
C2—O19—C3113.6 (4)O23—C15—H15B109.4
C5—O20—C4111.0 (4)C16—C15—H15B109.5
C8—O21—C9111.2 (5)H15A—C15—H15B108.1
C11—O22—C10113.7 (4)O24—C16—C15111.6 (5)
C14—O23—C15110.0 (4)O24—C16—H16A109.3
C16—O24—C17109.7 (4)C15—C16—H16A109.3
C1—N5—C13111.3 (5)O24—C16—H16B109.3
C1—N5—C7113.5 (4)C15—C16—H16B109.3
C13—N5—C7109.5 (5)H16A—C16—H16B108.0
C1—N5—H5110.6O24—C17—C18107.7 (5)
C13—N5—H5118.1O24—C17—H17A110.2
C7—N5—H592.7C18—C17—H17A110.1
C6—N6—C18111.0 (4)O24—C17—H17B110.2
C6—N6—C12113.3 (4)C18—C17—H17B110.1
C18—N6—C12111.0 (5)H17A—C17—H17B108.5
C6—N6—H6115.4N6—C18—C17112.7 (5)
C18—N6—H6114.5N6—C18—H18A109.1
C12—N6—H690.0C17—C18—H18A109.1
N5—C1—C2110.5 (5)N6—C18—H18B109.0
N5—C1—H1A109.5C17—C18—H18B109.0
C2—C1—H1A109.5H18A—C18—H18B107.8
N5—C1—H1B109.5H25A—O25—H25B103.1
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O190.872.562.837 (6)100
N5—H5···O210.872.282.805 (6)119
N5—H5···O230.872.572.824 (6)98
N6—H6···O200.912.472.777 (6)100
N6—H6···O220.912.232.858 (6)126
N6—H6···O240.912.722.806 (6)86
O9—H9···O251.041.732.746 (6)165
O18—H18···O220.842.142.961 (6)165
O25—H25B···O190.912.223.035 (6)150
O25—H25A···O230.961.952.849 (6)155

Experimental details

Crystal data
Chemical formula(C18H38N2O6)[U2O4(NO3)4(OH)2]·H2O
Mr1218.64
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0595 (5), 9.8517 (5), 20.8019 (12)
α, β, γ (°)86.528 (3), 82.042 (3), 74.826 (3)
V3)1774.04 (17)
Z2
Radiation typeMo Kα
µ (mm1)9.22
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DELABS in PLATON; Spek, 2000)
Tmin, Tmax0.201, 0.398
No. of measured, independent and
observed [I > 2σ(I)] reflections
12164, 6199, 5014
Rint0.039
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.04
No. of reflections6199
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.90

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL and PARST97 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
U1—O11.789 (4)U2—O101.785 (4)
U1—O21.786 (4)U2—O111.784 (4)
U1—O32.531 (4)U2—O122.515 (4)
U1—O42.561 (4)U2—O132.534 (4)
U1—O62.529 (4)U2—O152.560 (4)
U1—O72.559 (4)U2—O162.539 (4)
U1—O92.313 (4)U2—O182.338 (4)
U1—O9i2.317 (4)U2—O18ii2.341 (4)
U1—U1i3.8556 (5)U2—U2ii3.9156 (5)
O1—U1—O2178.51 (18)O10—U2—O11177.80 (17)
O3—U1—O449.89 (14)O12—U2—O1350.52 (13)
O4—U1—O659.24 (14)O13—U2—O1561.18 (13)
O6—U1—O750.29 (14)O15—U2—O1650.02 (13)
O7—U1—O967.56 (14)O12—U2—O1866.28 (13)
O9—U1—O9i67.23 (16)O18—U2—O18ii66.40 (15)
O9i—U1—O366.26 (13)O18ii—U2—O1666.15 (13)
U1—O9—U1i112.77 (16)U2—O18—U2ii113.60 (15)
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O190.872.562.837 (6)100
N5—H5···O210.872.282.805 (6)119
N5—H5···O230.872.572.824 (6)98
N6—H6···O200.912.472.777 (6)100
N6—H6···O220.912.232.858 (6)126
N6—H6···O240.912.722.806 (6)86
O9—H9···O251.041.732.746 (6)165
O18—H18···O220.842.142.961 (6)165
O25—H25B···O190.912.223.035 (6)150
O25—H25A···O230.961.952.849 (6)155
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds