Download citation
Download citation
link to html
Isomers 1,2-dichlorobenzene (o-DCB) and 1,3-dichlorobenzene (m-DCB) were high-pressure frozen in-situ in a Merrill–Bassett diamond–anvil cell and their structures determined at room temperature and at 0.18 (5) GPa for o-DCB, and 0.17 (5) GPa for m-DCB by single-crystal X-ray diffraction. The patterns of halogen...halogen intermolecular interactions in these structures can be considered to be the main cohesive forces responsible for the molecular arrangements in these crystals. The molecular packing of dichlorobenzene isomers, including three polymorphs of 1,4-dichlorobenzene (p-DCB), have been compared and relations between their molecular symmetry, packing arrangements, intermolecular interactions and melting points discussed. The topology of the crystal packing in dichlorobenzene isomers results from the interplay of the molecular shape, steric hindrances and intermolecular interactions. The non-planar arrangement of the dichlorobenzene molecules in the crystal structures can be justified by the distributions of the electrostatic potential on molecular surfaces, which determines electrostatic intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106046684/so5006sup1.cif
Contains datablocks global, oDCB, mDCB

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106046684/so5006oDCBsup2.hkl
Contains datablock oDCB

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106046684/so5006mDCBsup3.hkl
Contains datablock mDCB

CCDC references: 637751; 637752

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003); program(s) used to solve structure: SHELXS–97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL–97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL–97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(oDCB) 1,2-dichlorobenzene ortho-dichlorobenzene top
Crystal data top
C6H4Cl2F(000) = 296
Mr = 146.99Dx = 1.558 Mg m3
Monoclinic, P21/nMelting point: 256.4 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 3.9274 (4) ÅCell parameters from 1765 reflections
b = 10.5678 (10) Åθ = 2.3–25.7°
c = 15.199 (9) ŵ = 0.91 mm1
β = 96.70 (2)°T = 295 K
V = 626.5 (4) Å3Column, colourless
Z = 40.44 × 0.30 × 0.12 mm
Data collection top
KM-4 CCD
diffractometer
431 independent reflections
Radiation source: fine-focus sealed tube133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ– and ω–scansθmax = 25.0°, θmin = 3.9°
Absorption correction: analytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
h = 44
Tmin = 0.43, Tmax = 0.79k = 1212
3835 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: Patterson
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 0.63 w = 1/[σ2(Fo2) + (0.0138P)2]
where P = (Fo2 + 2Fc2)/3
431 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.21 e Å3
111 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H4Cl2V = 626.5 (4) Å3
Mr = 146.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.9274 (4) ŵ = 0.91 mm1
b = 10.5678 (10) ÅT = 295 K
c = 15.199 (9) Å0.44 × 0.30 × 0.12 mm
β = 96.70 (2)°
Data collection top
KM-4 CCD
diffractometer
431 independent reflections
Absorption correction: analytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
133 reflections with I > 2σ(I)
Tmin = 0.43, Tmax = 0.79Rint = 0.069
3835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031111 restraints
wR(F2) = 0.037H-atom parameters constrained
S = 0.63Δρmax = 0.21 e Å3
431 reflectionsΔρmin = 0.22 e Å3
73 parameters
Special details top

Experimental. Data were collected at pressure of 0.18 GPa (180000 kPa) with the crystal obtained by the in situ high-pressure crystallization technique Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0111 (6)0.80323 (19)0.7942 (5)0.100 (4)
Cl20.2769 (4)0.99043 (12)0.6415 (3)0.0646 (19)
C10.0274 (16)0.7634 (7)0.6869 (15)0.051 (4)
C20.103 (3)0.8469 (7)0.6220 (11)0.054 (5)
C30.073 (2)0.8126 (8)0.5341 (13)0.060 (5)
H30.15290.86700.48820.072*
C40.0759 (13)0.6978 (6)0.5150 (10)0.068 (4)
H40.09610.67510.45670.082*
C50.191 (2)0.6195 (7)0.5830 (10)0.065 (5)
H50.28940.54250.57050.078*
C60.166 (2)0.6512 (6)0.6701 (11)0.058 (5)
H60.24380.59630.71590.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1007 (15)0.0817 (13)0.121 (14)0.0101 (12)0.024 (3)0.002 (3)
Cl20.0658 (7)0.0566 (8)0.071 (6)0.0029 (9)0.0039 (11)0.004 (2)
C10.044 (3)0.060 (3)0.047 (13)0.003 (3)0.002 (8)0.011 (6)
C20.050 (3)0.051 (3)0.063 (15)0.003 (3)0.017 (8)0.005 (6)
C30.052 (4)0.070 (3)0.054 (13)0.006 (3)0.009 (9)0.004 (7)
C40.065 (4)0.082 (3)0.061 (13)0.014 (3)0.024 (7)0.016 (6)
C50.056 (4)0.061 (4)0.079 (14)0.002 (4)0.018 (8)0.020 (5)
C60.055 (4)0.051 (3)0.068 (13)0.000 (3)0.008 (10)0.002 (5)
Geometric parameters (Å, º) top
Cl1—C11.71 (2)C4—C51.359 (16)
C1—C21.376 (18)C5—C61.379 (17)
C1—C61.342 (10)C3—H30.9300
Cl2—C21.704 (9)C4—H40.9300
C2—C31.403 (19)C5—H50.9300
C3—C41.391 (11)C6—H60.9300
C1—C2—Cl2124.7 (13)C6—C1—C2123.7 (17)
C1—C2—C3116.8 (11)C1—C6—H6120.9
C1—C6—C5118.2 (14)C2—C3—H3119.7
C2—C1—Cl1117.3 (9)C3—C4—H4120.6
C3—C2—Cl2118.4 (9)C4—C3—H3119.7
C4—C3—C2120.6 (14)C4—C5—H5119.1
C4—C5—C6121.8 (9)C5—C4—H4120.6
C5—C4—C3118.8 (14)C5—C6—H6120.9
C6—C1—Cl1118.9 (14)C6—C5—H5119.1
C1—C2—C3—C41.3 (17)C6—C1—C2—Cl2179.4 (7)
C2—C1—C6—C52.3 (15)Cl1—C1—C2—C3179.4 (10)
C2—C3—C4—C50.1 (16)Cl1—C1—C6—C5179.1 (8)
C3—C4—C5—C60.4 (17)Cl1—C1—C2—Cl23.9 (10)
C4—C5—C6—C10.8 (18)Cl2—C2—C3—C4178.3 (4)
C6—C1—C2—C32.6 (14)
(mDCB) 1,3-dichlorobenzene meta-dichlorobenzene top
Crystal data top
C6H4Cl2F(000) = 592
Mr = 146.99Dx = 1.541 Mg m3
Monoclinic, P21/cMelting point: 248.3 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.9163 (6) ÅCell parameters from 2167 reflections
b = 12.532 (5) Åθ = 2.3–22.6°
c = 25.849 (5) ŵ = 0.90 mm1
β = 93.098 (14)°T = 295 K
V = 1266.8 (6) Å3Column, colourless
Z = 80.40 × 0.25 × 0.12 mm
Data collection top
KM-4 CCD
diffractometer
800 independent reflections
Radiation source: fine-focus sealed tube627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ– and ω–scansθmax = 25.0°, θmin = 2.9°
Absorption correction: analytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
h = 44
Tmin = 0.40, Tmax = 0.82k = 97
4205 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.109H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.023P)2 + 1.956P]
where P = (Fo2 + 2Fc2)/3
S = 1.47(Δ/σ)max < 0.001
800 reflectionsΔρmax = 0.18 e Å3
146 parametersΔρmin = 0.19 e Å3
222 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: PattersonExtinction coefficient: 0.018 (2)
Crystal data top
C6H4Cl2V = 1266.8 (6) Å3
Mr = 146.99Z = 8
Monoclinic, P21/cMo Kα radiation
a = 3.9163 (6) ŵ = 0.90 mm1
b = 12.532 (5) ÅT = 295 K
c = 25.849 (5) Å0.40 × 0.25 × 0.12 mm
β = 93.098 (14)°
Data collection top
KM-4 CCD
diffractometer
800 independent reflections
Absorption correction: analytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
627 reflections with I > 2σ(I)
Tmin = 0.40, Tmax = 0.82Rint = 0.091
4205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.109222 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.47Δρmax = 0.18 e Å3
800 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Experimental. Data were collected at pressure of 0.17 GPa (170000 kPa) with the crystal obtained by the in situ high-pressure crystallization technique Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2856 (7)0.5602 (4)0.09131 (11)0.076 (2)
Cl20.2206 (7)0.2061 (4)0.17370 (10)0.0707 (19)
Cl30.4221 (7)1.0049 (4)0.25859 (9)0.076 (2)
Cl40.3740 (7)0.9352 (4)0.05431 (10)0.0797 (19)
C10.153 (2)0.4284 (15)0.0842 (4)0.050 (4)
C20.030 (2)0.3750 (13)0.1259 (4)0.045 (4)
H20.01770.40960.15760.054*
C30.074 (2)0.2716 (13)0.1208 (4)0.045 (4)
C40.050 (2)0.2198 (12)0.0746 (4)0.057 (4)
H40.11550.14870.07100.069*
C50.074 (3)0.2752 (13)0.0334 (4)0.063 (4)
H50.08600.24060.00170.076*
C60.180 (3)0.3784 (14)0.0373 (4)0.061 (4)
H60.26840.41370.00930.074*
C70.510 (2)0.9219 (13)0.2060 (4)0.048 (4)
C80.410 (2)0.9590 (13)0.1571 (3)0.047 (4)
H80.29691.02350.15160.057*
C90.493 (2)0.8925 (13)0.1168 (4)0.048 (4)
C100.664 (3)0.7977 (13)0.1237 (4)0.058 (4)
H100.71980.75660.09540.069*
C110.752 (3)0.7650 (13)0.1732 (4)0.062 (4)
H110.86340.70010.17880.074*
C120.677 (3)0.8283 (13)0.2149 (4)0.057 (4)
H120.73920.80700.24860.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.074 (2)0.067 (8)0.088 (3)0.010 (3)0.0043 (15)0.008 (2)
Cl20.0676 (18)0.070 (7)0.075 (2)0.014 (2)0.0054 (15)0.014 (2)
Cl30.083 (2)0.090 (7)0.055 (2)0.001 (2)0.0121 (14)0.015 (2)
Cl40.101 (2)0.086 (7)0.052 (2)0.017 (3)0.0003 (15)0.0020 (19)
C10.041 (5)0.057 (12)0.053 (6)0.012 (7)0.002 (5)0.003 (6)
C20.036 (6)0.054 (12)0.045 (5)0.011 (7)0.000 (4)0.004 (6)
C30.033 (6)0.053 (12)0.049 (5)0.011 (7)0.003 (5)0.002 (6)
C40.056 (6)0.055 (12)0.062 (7)0.002 (7)0.010 (5)0.013 (6)
C50.064 (7)0.068 (12)0.058 (6)0.003 (8)0.012 (5)0.012 (7)
C60.062 (7)0.071 (12)0.052 (6)0.010 (8)0.011 (5)0.004 (7)
C70.048 (6)0.050 (12)0.047 (5)0.003 (7)0.017 (5)0.001 (6)
C80.052 (5)0.038 (12)0.053 (6)0.006 (6)0.010 (5)0.003 (5)
C90.049 (6)0.046 (12)0.051 (6)0.012 (7)0.010 (5)0.005 (6)
C100.063 (7)0.044 (12)0.067 (6)0.011 (7)0.020 (6)0.007 (7)
C110.055 (6)0.049 (12)0.084 (7)0.008 (7)0.020 (6)0.007 (6)
C120.056 (6)0.057 (13)0.060 (6)0.002 (7)0.006 (5)0.010 (6)
Geometric parameters (Å, º) top
Cl1—C11.739 (17)Cl3—C71.761 (13)
C1—C21.380 (13)C7—C81.383 (11)
C1—C61.373 (13)C7—C121.357 (15)
Cl2—C31.719 (12)Cl4—C91.741 (11)
C2—C31.362 (15)C8—C91.384 (13)
C3—C41.368 (12)C9—C101.372 (15)
C4—C51.382 (13)C10—C111.369 (11)
C5—C61.360 (16)C11—C121.383 (13)
C2—H20.9300C8—H80.9300
C4—H40.9300C10—H100.9300
C5—H50.9300C11—H110.9300
C6—H60.9300C12—H120.9300
C2—C3—Cl2119.2 (9)C8—C9—Cl4116.8 (11)
C3—C2—C1120.1 (12)C7—C8—C9114.8 (12)
C5—C6—C1117.5 (13)C7—C12—C11119.0 (12)
C2—C1—Cl1119.5 (10)C8—C7—Cl3116.8 (11)
C4—C3—Cl2120.6 (11)C10—C9—Cl4119.4 (9)
C2—C3—C4120.1 (11)C10—C9—C8123.8 (12)
C6—C5—C4122.7 (13)C10—C11—C12120.2 (14)
C3—C4—C5118.6 (14)C11—C10—C9118.5 (12)
C6—C1—Cl1119.4 (10)C12—C7—Cl3119.5 (9)
C6—C1—C2121.1 (15)C12—C7—C8123.7 (12)
C1—C2—H2120.0C7—C8—H8122.6
C1—C6—H6121.3C7—C12—H12120.5
C3—C2—H2120.0C9—C8—H8122.6
C3—C4—H4120.7C9—C10—H10120.7
C4—C5—H5118.7C10—C11—H11119.9
C5—C4—H4120.7C11—C10—H10120.7
C5—C6—H6121.3C11—C12—H12120.5
C6—C5—H5118.7C12—C11—H11119.9
C1—C2—C3—C41.5 (17)C8—C9—C10—C111.7 (19)
C1—C2—C3—Cl2179.0 (7)C9—C10—C11—C121.7 (18)
C2—C1—C6—C51.5 (18)C10—C11—C12—C71.1 (17)
C2—C3—C4—C51.5 (17)Cl1—C1—C2—C3179.9 (10)
C3—C4—C5—C61.5 (18)Cl1—C1—C6—C5179.9 (11)
C4—C5—C6—C12 (2)Cl2—C3—C4—C5178.9 (8)
C6—C1—C2—C31.5 (16)C12—C7—C8—C90.3 (16)
C7—C8—C9—C101.0 (17)Cl3—C7—C8—C9178.2 (8)
C7—C8—C9—Cl4180.0 (8)Cl3—C7—C12—C11178.2 (8)
C8—C7—C12—C110.4 (19)Cl4—C9—C10—C11179.3 (8)

Experimental details

(oDCB)(mDCB)
Crystal data
Chemical formulaC6H4Cl2C6H4Cl2
Mr146.99146.99
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)295295
a, b, c (Å)3.9274 (4), 10.5678 (10), 15.199 (9)3.9163 (6), 12.532 (5), 25.849 (5)
β (°) 96.70 (2) 93.098 (14)
V3)626.5 (4)1266.8 (6)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.910.90
Crystal size (mm)0.44 × 0.30 × 0.120.40 × 0.25 × 0.12
Data collection
DiffractometerKM-4 CCD
diffractometer
KM-4 CCD
diffractometer
Absorption correctionAnalytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
Analytical
Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Poznań; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467).
Tmin, Tmax0.43, 0.790.40, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
3835, 431, 133 4205, 800, 627
Rint0.0690.091
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.037, 0.63 0.109, 0.129, 1.47
No. of reflections431800
No. of parameters73146
No. of restraints111222
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.220.18, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003), SHELXS–97 (Sheldrick, 1997), SHELXL–97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990).

Selected geometric parameters (Å, º) for (oDCB) top
Cl1—C11.71 (2)C2—C31.403 (19)
C1—C21.376 (18)C3—C41.391 (11)
C1—C61.342 (10)C4—C51.359 (16)
Cl2—C21.704 (9)C5—C61.379 (17)
C1—C2—Cl2124.7 (13)C4—C3—C2120.6 (14)
C1—C2—C3116.8 (11)C4—C5—C6121.8 (9)
C1—C6—C5118.2 (14)C5—C4—C3118.8 (14)
C2—C1—Cl1117.3 (9)C6—C1—Cl1118.9 (14)
C3—C2—Cl2118.4 (9)C6—C1—C2123.7 (17)
Selected geometric parameters (Å, º) for (mDCB) top
Cl1—C11.739 (17)Cl3—C71.761 (13)
C1—C21.380 (13)C7—C81.383 (11)
C1—C61.373 (13)C7—C121.357 (15)
Cl2—C31.719 (12)Cl4—C91.741 (11)
C2—C31.362 (15)C8—C91.384 (13)
C3—C41.368 (12)C9—C101.372 (15)
C4—C51.382 (13)C10—C111.369 (11)
C5—C61.360 (16)C11—C121.383 (13)
C2—C3—Cl2119.2 (9)C8—C9—Cl4116.8 (11)
C3—C2—C1120.1 (12)C7—C8—C9114.8 (12)
C5—C6—C1117.5 (13)C7—C12—C11119.0 (12)
C2—C1—Cl1119.5 (10)C8—C7—Cl3116.8 (11)
C4—C3—Cl2120.6 (11)C10—C9—Cl4119.4 (9)
C2—C3—C4120.1 (11)C10—C9—C8123.8 (12)
C6—C5—C4122.7 (13)C10—C11—C12120.2 (14)
C3—C4—C5118.6 (14)C11—C10—C9118.5 (12)
C6—C1—Cl1119.4 (10)C12—C7—Cl3119.5 (9)
C6—C1—C2121.1 (15)C12—C7—C8123.7 (12)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds