research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structural characterization of selenium and selenium-diiodine analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives

CROSSMARK_Color_square_no_text.svg

aSection of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece, and bSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
*Correspondence e-mail: a.j.blake@nottingham.ac.uk

(Received 8 March 2006; accepted 29 March 2006)

The structures of four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil [systematic name: 2,3-dihydro-6-n-propyl-2-thioxopyrimidin-4(1H)-one], namely 6-methyl-2-selenouracil, C5H6N2OSe (1), 6-ethyl-2-selenouracil, C6H8N2OSe (2), 6-n-propyl-2-selenouracil, C7H10N2OSe (3), and 6-isopropyl-2-selenouracil, C7H10N2OSe (4), are described, along with that of the dichloromethane monosolvate of 6-isopropyl-2-selenouracil, C7H10N2OSe·CH2Cl2 (4·CH2Cl2). The extended structure of (1) is a two-dimensional sheet of topology 63 with a brick-wall architecture. The extended structures of (2) and (4) are analogous, being based on a chain of eight-membered R86(32) hydrogen-bonded rings. In (3) and (4·CH2Cl2), R22(8) hydrogen bonding links molecules into chains. 6-n-Propyl-2-selenouracil·I2, C7H10N2OSe·I2 (7), is a charge-transfer complex with a `spoke' structure, the extended structure of which is based on a linear chain formed principally by intermolecular N—H⋯O hydrogen bonds. Re-crystallization of 6-ethyl-2-selenouracil or (7) from acetone gave crystals of the diselenides [N-(6′-ethyl-4′-pyr­imidone)(6-ethyl-2-selenouracil)2(Se—Se)]·2H2O (9·2H2O) or [N-(6′-n-propyl-4′-pyrimidone)(6-n-propyl-2-selenouracil)2(Se—Se)] (10), respectively: these have similar extended chain structures formed via N—H⋯O and C—H⋯O hydrogen bonds, stacked to give two-dimensional sheets. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to the formation of crystals of 6-n-propyl-2-uracil (11), in which six symmetry-related molecules combine to form a six-membered R66(24) hydrogen-bonded ring, with each pair of molecules linked by an R22(8) motif.

1. Introduction

Prior to 1960, no uncharged covalent compounds between selenium and iodine had been discovered (Dasent, 1965[Dasent, W. E. (1965). Non-Existent Compounds, p. 162. New York: Marcel Dekker.]). It was during the decade 1960–1969 that the structures of the first selenoether–iodine complexes were first reported (Chao & McCullough, 1961[Chao, G. Y. & McCullough, J. D. (1961). Acta Cryst. 14, 940-945.]; Hope & McCullough, 1962[Hope, H. & McCullough, J. D. (1962). Acta Cryst. 15, 806-807.]; Maddox & McCullough, 1966[Maddox, H. & McCullough, J. D. (1966). Inorg. Chem. 5, 522-526.]; Bjorvatten, 1963[Bjorvatten, T. (1963). Acta Chem. Scand. 17, 2292-2300.]; Dahl & Hassel, 1965[Dahl, T. & Hassel, O. (1965). Acta Chem. Scand. 19, 2000-2001.]; Holmesland & Römming, 1966[Holmesland, O. & Römming, C. (1966). Acta Chem. Scand. 20, 2601.]; Bent, 1968[Bent, H. A. (1968). Chem. Rev. 68, 587-648.]). Currently, organic selones and/or selenoamides are recognized as potential donors towards diiodine and some iodine-containing compounds, generating charge-transfer complexes that are generally more stable than those of the corresponding sulfur ligands (e.g. du Mont et al., 2001[Mont, W.-W. du, von Salzen, A. M., Ruthe, F., Seppala, E., Mugesh, G., Devillanova, F. A., Lippolis, V. & Kuhn, N. (2001). J. Organomet. Chem. 623, 14-28.]). The reactions between selones or selenoamides with diiodine I2 or interhalogens I—X (X = Br or Cl) lead to the formation of iodine charge-transfer complexes (Aragoni et al., 1999[Aragoni, M. C., Arca, A., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). Trends Inorg. Chem. 6, 1-18.], and references therein), which adopt a number of structures including:

  • (i) `spoke structures' or `extended spoke structures' bearing a linear arrangement of Se—I—X (X = I, Br or Cl) or Se—I—I⋯I—I groups;

  • (ii) two-coordinate iodine(I) cationic or iodonium salts with selone ligands ([LSe—X—SeL]);

  • (iii) donor oxidation products including dicationic diselenides [LSe—SeL]2+·2I3 or neutral diselenides; and

  • (iv) T-shaped compounds containing the linear group I—Se—X (X = I, Br or Cl; Aragoni et al., 2001[Aragoni, M. C., Arca, M., Blake, A. J., Devillanova, F. A., Du Mont, W.-W., Garau, A., Isaia, F., Lippolis, V., Verani, G. & Wilson, C. (2001). Angew. Chem. Int. Ed. 40, 4229-4232.], and references therein).

The mono-cationic diselenide geometry is the only interaction not yet observed in products of reactions between iodine and selones. As part of a study of charge-transfer complexes with iodine and polyiodides (Blake et al., 1995[Blake, A. J., Gould, R. O., Parsons, S., Radek, C. & Schröder, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 2374-2376.]; Blake, Devillanova, Garau et al., 1998[Blake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037-2046.]; Blake, Devillanova, Gould et al., 1998[Blake, A. J., Devillanova, F. A., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Chem. Soc. Rev. 27, 195-205.]; Blake, Li et al., 1998[Blake, A. J., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Angew. Chem. Int. Ed. Engl. 37, 293-296.]), we report herein the structures of 6-n-propyl-2-selenouracil·I2, 6-n-propyl-2-selenouracil itself, some selenium analogues of 6-alkyl-2-thiouracils, two diselenides and the deselenation product 6-n-propyl-2-uracil.

2. Experimental

2.1. Synthesis and crystal growth

The preparative details for all nine compounds [see Scheme (I)[link]] have been reported previously (Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]). Compounds (1), (2), (3) and (4) were re-crystallized from water to give colourless crystals, while re-crystallization of (4) [link]

[Scheme 1]
from dichloromethane gave crystals of (4·CH2Cl2). Crystals of (7) were grown from chloroform solutions, while re-crystallization of (6) and (7) from acetone gave the oxidation products (9·2H2O) and (10), respectively. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to crystals of 6-n-propyl-2-uracil (11).

2.2. Data collection, structure solution and refinement

Details of cell data, data collection and structure solution and refinement are summarized in Table 1[link]1. Except for (9·2H2O), which was solved using SIR92 direct methods (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.]), the structures were solved by direct methods using SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]) and developed by difference Fourier methods using SHELXL97 (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXL97-2. University of Göttingen, Göttingen, Germany.]). With the exception of the sp2-bound methyl group in (1), where they were located from a circular difference Fourier synthesis and refined as part of a rigid rotating group, all carbon- and nitrogen-bound H atoms were placed in geometrically calculated positions and refined using riding models (SHELXL97; Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXL97-2. University of Göttingen, Göttingen, Germany.]). Crystals of (9·2H2O) are affected by twinning, principally by a 180° rotation about [001] for which the twin fraction was 0.291 (2). The water H atoms in (9·2H2O) were not located.

Table 1
Experimental table

  (1) (2) (3) (4) (4·CH2Cl2)
Crystal data
Chemical formula C5H6N2OSe C6H8N2OSe C7H10N2OSe C7H10N2OSe C8H12Cl2N2OSe
Mr 189.08 203.10 217.13 217.13 302.06
Cell setting, space group Monoclinic, P21/c Triclinic, [P\bar1] Orthorhombic, Pbca Triclinic, [P\bar1] Triclinic, [P\bar1]
Temperature (K) 120 (2) 150 (2) 120 (2) 150 (2) 150 (2)
a, b, c (Å) 4.3411 (7), 14.756 (2), 9.690 (2) 8.394 (2), 10.029 (2), 14.931 (4) 10.568 (7), 11.257 (7), 28.79 (2) 8.9192 (9), 10.6403 (10), 15.1965 (15) 8.841 (3), 11.259 (3), 12.424 (4)
α, β, γ (°) 90.00, 90.157 (2), 90.00 101.023 (4), 100.893 (4), 105.705 (4) 90.00, 90.00, 90.00 106.019 (2), 105.366 (2), 96.166 (2) 90.450 (5), 105.350 (4), 92.945 (5)
V3) 620.71 (18) 1148.5 (5) 3425 (4) 1311.0 (2) 1190.7 (6)
Z 4 6 16 6 4
Dx (Mg m–3) 2.023 1.762 1.684 1.650 1.685
Radiation type Synchrotron Mo Kα Synchrotron Mo Kα Mo Kα
No. of reflections for cell parameters 4328 2232 3142 3689 2249
θ range (°) 2.6–29.0 2.6–24.8 2.6–27.5 2.4–27.6 2.4–24.6
μ (mm–1) 5.96 4.84 4.33 4.24 3.57
Crystal form, colour Needle, colourless Triangular prism, colourless Lath, colourless Tablet, colourless Plate, colourless
Crystal size (mm) 0.10 × 0.01 × 0.01 0.21 × 0.12 × 0.04 0.20 × 0.02 × 0.01 0.25 × 0.14 × 0.06 0.36 × 0.22 × 0.02
           
Data collection
Diffractometer Bruker SMART APEXII CCD diffractometer Bruker SMART APEX CCD area detector Bruker SMART APEXII CCD diffractometer Bruker SMART APEX CCD area detector Bruker SMART APEX CCD area detector
Data collection method Fine-slice ω scans ω scans Fine-slice ω scans ω scans ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.816 0.687 0.260 0.581 0.684
Tmax 1.000 1.000 1.000 0.770 1.000
No. of measured, independent and observed reflections 6350, 1770, 1642 8174, 4025, 3189 24 855, 3471, 2417 8163, 5780, 4932 10 743, 6193, 4391
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.027 0.038 0.250 0.013 0.050
θmax (°) 29.0 25.1 25.0 27.6 27.5
Range of h, k, l –6 → h → 6 –10 → h → 10 –13 → h → 13 –11 → h → 7 –11 → h → 11
  –20 → k → 21 –11 → k → 11 –14 → k → 14 –13 → k → 13 –14 → k → 14
  –13 → l → 13 –17 → l → 17 –35 → l → 35 –17 → l → 19 –16 → l → 16
           
Refinement
Refinement on F2 F2 F2 F2 F2
R[F2> 2σ(F2)], wR(F2), S 0.025, 0.074, 0.80 0.056, 0.146, 1.03 0.173, 0.408, 1.18 0.028, 0.071, 1.04 0.052, 0.099, 0.97
No. of reflections 1770 4025 3471 5780 6193
No. of parameters 83 271 99 298 254
H-atom treatment Rigid rotating group; riding model Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.079P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.094P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.025P)2 + 367.0], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.033P)2 + 0.854P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0305P)2], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.001 0.002 0.001 0.001
Δρmax, Δρmin (e Å–3) 0.57, −0.80 1.48, −1.02 2.38, −2.33 0.65, −0.40 0.87, −0.51
  (7) (9) (10) (11)
Crystal data
Chemical formula C7H10I2N2OSe C24H26N8O4Se2·2H2O C28H34N8O4Se2 C7H10N2O2
Mr 470.93 684.48 704.55 154.17
Cell setting, space group Triclinic, [P\bar1] Triclinic, [P\bar1] Triclinic, [P\bar1] Rhombohedral, [R\bar3]
Temperature (K) 150 (2) 120 (2) 120 (2) 150 (2)
a, b, c (Å) 6.603 (2), 7.700 (3), 13.037 (5) 4.8330 (2), 9.7970 (5), 14.1796 (8) 5.0717 (6), 11.8615 (14), 11.9385 (14) 19.9444 (10), 19.9444 (10), 9.8918 (10)
α, β, γ (°) 75.969 (6), 86.808 (6), 73.113 (6) 83.490 (3), 84.431 (3), 89.353 (3) 83.161 (2), 82.785 (2), 84.358 (2) 90.00, 90.00, 120.00
V3) 615.3 (7) 663.91 (6) 704.90 (14) 3407.6 (10)
Z 2 1 1 18
Dx (Mg m–3) 2.542 1.712 1.660 1.352
Radiation type Mo Kα Mo Kα Synchrotron Mo Kα
No. of reflections for cell parameters 1665 2951 1672 1748
θ range (°) 2.8–27.0 2.9–27.5 2.2–27.0 2.4–27.4
μ (mm–1) 8.04 2.84 2.67 0.10
Crystal form, colour Column, red Needle, orange Plate, colourless Lens, orange
Crystal size (mm) 0.22 × 0.10 × 0.06 0.20 × 0.04 × 0.03 0.08 × 0.05 × 0.01 0.52 × 0.17 × 0.17
         
Data collection
Diffractometer Bruker SMART1000 CCD area detector Bruker Nonius kappaCCD area detector Bruker SMART APEXII CCD diffractometer Bruker SMART APEX CCD area detector
Data collection method ω scans ω and φ Fine-slice ω scans ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) None
Tmin 0.114 0.679 0.804
Tmax 0.209 1.000 1.000
No. of measured, independent and observed reflections 5463, 2660, 1702 13 298, 13 281, 12 058 8292, 4198, 3144 5827, 1750, 1297
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.061 0.060 0.038 0.039
θmax (°) 27.5 27.7 28.9 27.5
Range of h, k, l –8 → h → 8 –6 → h → 6 –7 → h → 7 –25 → h → 19
  –9 → k → 9 –12 → k → 12 –16 → k → 16 –24 → k → 25
  –16 → l → 16 –18 → l → 18 –17 → l → 17 –11 → l → 12
         
Refinement
Refinement on F2 F2 F2 F2
R[F2> 2σ(F2)], wR(F2), S 0.038, 0.091, 0.87 0.084, 0.221, 1.04 0.042, 0.097, 0.98 0.044, 0.131, 1.05
No. of reflections 2657 13 281 4198 1750
No. of parameters 118 182 190 100
H-atom treatment Constrained to parent site Riding model Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.048P)2P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.098P)2 + 8.436P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0505P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0725P)2], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.001 0.001 0.001
Δρmax, Δρmin (e Å–3) 1.26, −1.31 3.35, −2.06 0.59, −0.92 0.45, −0.16
Computer programs used: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.]), SMART Version 5.625 (Bruker, 2001a[Bruker (2001a). SMART. Version 5.624 or 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.]), SMART Version 5.624 (Bruker, 2001a[Bruker (2001a). SMART. Version 5.624 or 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.]), COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). Collect. Nonius BV, Delft, The Netherlands.]), SAINT Version 6.36a (Bruker, 2000[Bruker (2000). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.]), DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]), SHELXTL (Bruker, 2001b[Bruker (2001b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), HKL (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]), SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXL97-2. University of Göttingen, Göttingen, Germany.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

The structure determination of (3) posed particular difficulties: the crystals were very small in two dimensions (10 and 20 µm) and efforts to obtain a dataset using a sealed X-ray tube or a rotating-anode source gave no significant diffraction. However, we were able to obtain a weak dataset on Station 9.8 of the Daresbury Synchrotron Radiation Source, although even this did not overcome all of the limitations imposed by the poor crystal quality. We found that only the Se atoms could be refined with anisotropic displacement parameters, and a total of 99 geometric, planarity and similarity restraints were necessary for a stable refinement. Although we cannot therefore discuss the fine details of the molecular geometry, it did prove possible to obtain reliable information about the extended structure of (3).

3. Results and discussion

3.1. Molecular structures of (1)–(4), (4·CH2Cl2) and (11)

Displacement ellipsoid plots of (1)–(4), (4·CH2Cl2) and (11) are shown in Figs. 1[link][link][link][link][link]–6[link] while selected interatomic distances and angles are listed in Tables 2[link] and 4. Although the asymmetric units of (1) and (11) each comprise single molecules, those of (2), (3), (4) and (4·CH2Cl2) comprise three, two, three and two molecules, respectively. The molecular structures of the alkylselenouracils and of 6-n-propyluracil are unremarkable, and the molecular structure of (4) is not affected by recrystallization as (4·CH2Cl2) from dichloromethane. The C—Se bond distances in (1)–(4) and in (4·CH2Cl2) vary from 1.824 (2) to 1.848 (6) Å (Table 2[link]). The two C=O bond distances found in (11) are almost equal [1.2286 (16), 1.2387 (16) Å; Table 4] and are within the range of the C=O bonds found for other similar compounds such as 1,3-di­methyl-6-R-trisubstituted uracils [R = Me, 1.233 (3) Å; R = Et, 1.224 (2) Å; R = nPr, 1.212 (3), 1.221 (3), 1.220 (3) Å; R = nBu, 1.220 (5), 1.226 (5) Å; Suwinska, 1995[Suwinska, K. (1995). Acta Cryst. B51, 248-254.]] and tri­ethylammonium 2,4-dioxo-6-(1,1,2,2,3,3-hexafluoropropyl)-5-benz­ylsulfonyl-3H-2,4-dihydropyrimidine [1.235 (3), 1.237 (2) Å] (Timoshenko et al., 2002[Timoshenko, V. M., Nikolin, Y. V., Chernega, A. N. & Shermolovich, Y. G. (2002). Eur. J. Org. Chem. pp. 1619-1627.]).

Table 2
Molecular geometry parameters (Å, °) for (1) (2), (3), (4) and (4·CH2Cl2)

(1) (2) (3) (4) (4·CH2Cl2)
Se2—C2 1.832 (2) Se12—C12 1.835 (6) Se1—C1 1.837 (16) Se1—C2 1.843 (2) Se2—C2 1.829 (6)
N1—C2 1.352 (3) Se22—C22 1.848 (6) Se21—C21 1.835 (16) Se1A—C2A 1.824 (2) Se12—C12 1.825 (5)
N3—C2 1.353 (3) Se32—C32 1.828 (7) N2—C1 1.32 (2) Se1B—C2B 1.835 (2) N1—C2 1.345 (7)
O4—C4 1.233 (3) N11—C12 1.354 (8) N2—C3 1.40 (2) N1—C2 1.348 (3) N3—C2 1.351 (7)
    N21—C22 1.341 (8) N22—C2 1.39 (2) N1A—C2A 1.354 (3) N11—C12 1.355 (7)
Se2—C2—N3 121.99 (16) N31—C32 1.352 (9) N6—C1 1.39 (2) N1B—C2B 1.342 (3) N13—C12 1.349 (7)
Se2—C2—N1 121.90 (15) N13—C12 1.352 (7) N26—C21 1.39 (2) N1—C6 1.389 (3) O4—C4 1.232 (7)
    N23—C22 1.349 (7) O5—C5 1.23 (2) N1A—C6A 1.383 (3) O14—C14 1.233 (7)
    N33—C32 1.349 (8) O25—C25 1.24 (2) N1B—C6B 1.389 (3)    
    O14—C14 1.240 (8) Se1—C1—N2 123.3 (13) C2—N3 1.341 (3) Se2—C2—N1 123.0 (4)
    O24—C24 1.242 (8) Se1—C1—N6 121.7 (12) C2A—N3A 1.351 (3) Se2—C2—N3 121.5 (4)
    O34—C34 1.227 (7) Se21—C21—N22 123.9 (13) C2B—N3B 1.353 (3) Se12—C12—N11 123.5 (4)
        Se21—C21—N26 121.2 (12) N3—C4 1.400 (3) Se12—C12—N13 121.1 (4)
    Se12—C12—N11 123.2 (4)     N3A—C4A 1.391 (3)    
    Se22—C22—N21 121.0 (4)     N3B—C4B 1.395 (3)    
    Se32—C32—N31 123.7 (5)     O1—C4 1.230 (3)    
    Se12—C12—N13 121.6 (4)     O1A—C4A 1.237 (3)    
    Se22—C22—N23 122.8 (4)     O1B—C4B 1.226 (3)    
    Se32—C32—N33 121.3 (5)            
            Se1—C2—N1 120.70 (17)    
            Se1A—C2A—N1A 123.65 (18)    
            Se1B—C2B—N1B 122.91 (17)    
            Se1—C2—N3 122.59 (17)    
            Se1A—C2A—N3A 121.33 (18)    
            Se1B—C2B—N3B 121.19 (17)    
[Figure 1]
Figure 1
Displacement ellipsoid plot of (1) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Displacement ellipsoid plot of (2) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level. There are three independent molecules in the asymmetric unit.
[Figure 3]
Figure 3
Displacement ellipsoid plot of (3) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level. There are two independent molecules in the asymmetric unit.
[Figure 4]
Figure 4
Displacement ellipsoid plot of (4) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level. There are three independent molecules in the asymmetric unit.
[Figure 5]
Figure 5
Displacement ellipsoid plot of (4·CH2Cl2) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level. Two independent molecules of (4) are solvated by two dichloromethane molecules in the asymmetric unit.
[Figure 6]
Figure 6
Displacement ellipsoid plot of (11) showing the atomic-numbering scheme, with ellipsoids drawn at the 50% probability level.

3.2. Extended structures of (1)–(4), (4·CH2Cl2) and (11)

The extended structures formed by the alkylselenouracils are worthy of comment; they depend primarily on hydrogen-bonding interactions between the two N—H donor sites and the oxygen and selenium acceptor sites of the heteroatomic ring [see Scheme (II)[link]]. Pertinent distances and angles associated with the hydrogen-bonding interactions in (1)–(4), (4·CH2Cl2) and (11) are included in Table 3[link].[link]

[Scheme 2]

Table 3
Hydrogen-bonding parameters (Å, °) for (1)–(4), (4·CH2Cl2) and (11) [N—H = 0.88 Å; C—H = 0.95 Å; λ = 0.6775 Å for (1), (3) and (10)]

Interaction H⋯Y (Å) XY (Å) X—H⋯Y (°)
(1)
N1—H1A⋯O4 1.91 2.761 (2) 162
N3—H3A⋯Se2 2.63 3.4825 (14) 162
       
(2)
N11—H11⋯O34 1.93 2.805 (6) 171
N23—H23⋯O14 1.99 2.868 (7) 172
N31—H31⋯O24 1.97 2.829 (7) 166
N13—H13⋯Se22 2.47 3.340 (5) 169
N21—H21⋯Se22 2.58 3.442 (5) 167
N33—H33⋯Se12 2.55 3.417 (6) 170
       
(3)
N6—H6N⋯O25 1.96 2.80 (2) 161
N26—H26N⋯O5 1.99 2.84 (2) 162
N2—H2N⋯Se21 2.60 3.44 (2) 160
N22—H22N⋯Se1 2.59 3.46 (2) 167
       
(4)
N1A—H1AA⋯O1 2.00 2.860 (3) 167
N1B—H1BA⋯O1A 1.92 2.797 (3) 177
N3—H3A⋯O1B 1.91 2.782 (3) 169
N1—H1A⋯Se1 2.60 3.460 (2) 165
N3A—H3AA⋯Se1B 2.60 3.430 (3) 157
N3B—H3BA⋯Se1 2.56 3.428 (2) 167
       
(4·CH2Cl2)
N3—H3⋯O14 1.97 2.831 (6) 167
N13—H13⋯O4 1.98 2.854 (6) 172
N1—H1⋯Se12 2.55 3.424 (5) 175
N11—H11⋯Se2 2.57 3.448 (5) 176
C21—H21A⋯O4 2.34 3.230 (7) 150
       
(11)
N1—H1A⋯O4 1.91 2.771 (2) 166
N3—H3A⋯O2 2.01 2.856 (2) 161
C9—H9A⋯O4 2.52 3.491 (2) 169

Analysis of the hydrogen-bonding parameters in these compounds confirms a range of intermolecular contacts with similar numbers of N1—H⋯O and N3—H⋯O and of N1—H⋯Se and N3—H⋯Se interactions.

The extended structure of (1) is a two-dimensional sheet of topology 63 (Fig. 7[link]). A centrosymmetrically related pair of N3—H⋯Se contacts form an R22(8) ring which links two molecules, thereby forming a dimeric unit. Each dimeric unit is bridged to four adjacent dimeric units through four single N1—H⋯O contacts to give a sheet of six-membered rings, each of which involves an R66(28) hydrogen-bonded motif (Table 3[link]). The 63 topology of the sheet, which is aligned parallel to the ([10\bar2]) plane, results in a brick-wall architecture (Fig. 7[link]).

[Figure 7]
Figure 7
View of part of a sheet in the crystal structure of (1) showing the intermolecular N—H⋯O and pairwise N—H⋯Se interactions. Atoms are identified as follows: Se, large cross-hatched circles; O, hatched circles; N, dotted circles; C, intermediate open circles; H, small open circles.

The extended structures of (2) and (4) are analogous. They crystallize in the same space group with similar cell dimensions, the only difference being the alkyl group. Their extended structure (Fig. 8[link]) is based on a chain of eight-membered rings which is aligned in the [101] direction in the ([21\bar2]) plane. The three molecules in the asymmetric unit are involved in different hydrogen-bonding motifs; the first (numbered C11 etc.) acts as a two-donor one-acceptor (2D–1A) species; the second (numbered C21 etc.) acts as a two-donor three-acceptor species (2D–3A); the third (numbered C31 etc.) acts as a two-donor two-acceptor species (2D–2A). Each eight-membered ring is centrosymmetric and comprises two 2D–1A molecules, two 2D–2A molecules and four 2D–3A molecules. Pairs of centrosymmetrically related 2D–3A molecules are common to two adjacent rings, thereby giving the correct stoichiometry. The hydrogen-bonding interactions leading to the eight-membered ring comprise an R86(32) motif (Table 3[link]). The aliphatic residues of the two 2D–1A and two 2D–2A molecules are located on the edges of the chain, preventing inter-chain hydrogen-bond formation (Fig. 8[link]).

[Figure 8]
Figure 8
View of part of a sheet in the crystal structure of (2) showing the intermolecular N—H⋯O and N—H⋯Se interactions. Atoms are identified as in Fig. 7[link].

In (3), R22(8) hydrogen-bonding motifs link the two molecules of the asymmetric unit, which alternate along the b axis to form a one-dimensional chain (Fig. 9[link]). The R22(8) motifs differ in that one has oxygen acceptors and the other has selenium acceptors. The 1:1 adduct (4·CH2Cl2) has a similar extended structure (Fig. 10[link]) to that of (3). In this case, however, the chain is aligned along the b axis. One of the dichloromethane molecules is locked in position by a relatively short C—H⋯O contact (Table 3[link]).

[Figure 9]
Figure 9
View of part of a chain in the crystal structure of (3) showing the intermolecular N—H⋯O and N—H⋯Se interactions. Atoms are identified as in Fig. 7[link].
[Figure 10]
Figure 10
View of part of a chain in the crystal structure of (4·CH2Cl2) showing the intermolecular N—H⋯O and N—H⋯Se interactions. Atoms are identified as in Fig. 7[link].

It is interesting to note that a different extended structure is adopted by 6-n-propyluracil (11), the uracil corresponding to (3). The asymmetric unit of (11) comprises a single molecule (Fig. 6[link]), six of which combine to form a six-membered ring (Fig. 11[link]). Linking each pair of molecules is an R22(8) hydrogen-bonding motif, which forms part of the R66(24) hydrogen-bonding motif (Table 3[link]), generating the inner diameter of the six-membered ring. The rings assemble on a sheet parallel to the (001) plane. The only inter-ring interactions are a centrosymmetric pair of relatively long C—H⋯O contacts between the pendant CH3 groups and carbonyl O atoms (Table 3[link]). Six-membered ring formation is possible owing to the fact that the R22(8) motifs in (11) [see Scheme (IIIa)[link]], which comprise two N—H⋯O contacts, are symmetrical and generate an internal ring angle of 120°. If (3) were to adopt a similar structure, the corresponding R22(8) motifs would be unsymmetrical as they would comprise one short N—H⋯O contact and one long N—H⋯Se contact. Analysis of the structure of (2), which contains such assemblies, gives a value of 133° for the internal ring angle [see Scheme (IIIb)[link]], which does not permit ring formation as it falls between the values required for seven- and eight-membered rings, namely 128.6 and 135°, respectively. Hence, (3) adopts a one-dimensional chain architecture with alternating R22(8) rings with pairs of oxygen and selenium acceptors (Fig. 9[link]).[link]

[Scheme 3]
[Figure 11]
Figure 11
View of part of a sheet of (11) showing the intermolecular N—H⋯O interactions. Atoms are identified as in Fig. 7[link].

3.3. Molecular structures of (7), (9·2H2O) and (10)

Displacement ellipsoid plots of compounds (7), (9·2H2O) and (10) are shown in Figs. 12[link], 13[link] and 14[link], while their selected bond lengths and angles are listed in Table 4[link]. Compound (7) exhibits the so-called `spoke' structure typical of iodine adducts of selenium-containing compounds. The I—Se—C—N torsion angles [−0.5 (6)° and −179.3 (6)° for (7)], together with the C—Se—I and Se—I—I angles (Table 4[link]), are consistent with a planar arrangement. This planarity, which is typical of charge-transfer complexes with a `spoke' structure, is enhanced by an intramolecular N—H⋯I hydrogen bond between N3 and I1 (Table 5[link]; Fig. 15[link]).

Table 4
Molecular geometry parameters (Å, °) for (7), (9·2H2O), (10) and (11)

(7)   (9·2H2O)   (10)   (11)  
I1—I2 2.8928 (10) Se2—Se2 2.4328 (9) Se2—Se2 2.4427 (6) O2—C2 1.2286 (16)
I1—Se 2.7807 (11) Se2—C2 1.925 (4) Se2—C2 1.922 (4) O4—C4 1.2387 (16)
Se—C2 1.876 (6) N1—C2 1.283 (6) N1—C2 1.296 (4) N1—C2 1.3668 (15)
N1—C2 1.331 (8) N3—C2 1.412 (6) N3—C2 1.407 (4) N3—C2 1.3653 (14)
N3—C2 1.334 (8) N3—C4 1.431 (6) N3—C4 1.421 (3) N3—C4 1.3895 (12)
N3—C4 1.405 (8) O4—C4 1.233 (5) O4—C4 1.236 (4)    
O4—C4 1.213 (8) N3—C12 1.420 (5) N3—C12 1.436 (4) O2—C2—N3 122.39 (11)
    N11—C12 1.296 (4) N11—C12 1.271 (4) O2—C2—N1 122.45 (11)
I2—I1—Se 176.75 (2) N13—C12 1.337 (3) N13—C12 1.356 (4) O4—C4—N3 119.56 (11)
I1—Se—C2 96.9 (2) N13—C14 1.400 (3) N13—C14 1.396 (4) O4—C4—C5 125.10 (9)
    O14—C14 1.232 (3) O14—C14 1.230 (4) N1—C2—N3 115.15 (8)
    Se2—Se2—C2 88.99 (14) Se2—Se2—C2 89.44 (8)    
    Se2—C2—N1 114.7 (3) Se2—C2—N1 122.2 (2)    
    Se2—C2—N3 121.6 (3) Se2—C2—N3 115.1 (2)    
               
    C2—Se2—Se2—C2 −179.98 (18) C2—Se2—Se2—C2 180    

Table 5
Hydrogen-bonding parameters (Å, °) for (7), (9·2H2O) and (10) (N—H = 0.88 Å; C—H = 0.95 Å)

Interaction H⋯Y (Å) XY (Å) X—H⋯Y (°)
(7)
N1—H1N⋯O4 1.85 2.698 (8) 161
N3—H3N⋯I1 2.66 3.371 (5) 139
       
(9·2H2O)
N13—H13A⋯O4 1.88 2.560 (5) 133
N13—H13A⋯O4′ 2.36 3.166 (5) 152
C5—H5A⋯O14 2.48 3.304 (5) 145
O1⋯O14   2.861 (5)  
O1⋯O1′   2.741 (5)  
O1⋯O1′   2.770 (5)  
       
(10)
N13—H13A⋯O4 1.84 2.534 (3) 134
C5—H5A⋯O4 2.59 3.535 (4) 176
C15—H15A⋯O14 2.61 3.562 (4) 175
[Figure 12]
Figure 12
Displacement ellipsoid plot of (7) showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.
[Figure 13]
Figure 13
Displacement ellipsoid plot of molecule (9·2H2O) showing the atomic-numbering scheme, with ellipsoids drawn at the 50% probability level. The diselenide link is formed between Se2 and its symmetry equivalent at (1 − x, −y, 1 − z). The water H atoms were not located.
[Figure 14]
Figure 14
Displacement ellipsoid plot of molecule (10) showing the atomic-numbering scheme, with ellipsoids drawn at the 50% probability level. The diselenide link is formed between Se2 and its symmetry equivalent at (−x, −y, −z).
[Figure 15]
Figure 15
View of part of a chain in the crystal structure of (7) showing the intermolecular N—H⋯O and C—H⋯I and Se⋯I interactions. Atoms are identified as in Fig. 7[link].

The I—I interatomic distance of 2.8928 (10) Å in (7) is longer than that in either the gas phase (2.677 Å: Pauling, 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.]) or crystalline diiodine [2.715 (6) Å at 110 K: van Bolhuis et al., 1967[Bolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90-91.]], presumably owing to the Se⋯I interaction. It is, however, the shortest such distance measured for a diiodine–selenoamide complex (Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]) suggesting minimal perturbation resulting from the long Se⋯I contact. Interestingly, correlation of the available Se⋯I and I⋯I distance data (see Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]) shows there to be a linear relationship between the two, which is quantified by the expression:  d(Se⋯I) = −0.7981d(I⋯I) + 5.0983, R2 = 0.9805. The I—I bond order of 0.547 calculated for (7) using the expression of Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.]) is the highest such bond order for selenoamide–diiodine complexes. All these data are consistent with a very weak Se⋯I interaction. Bigoli et al. (1996[Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583-3589.], 1999[Bigoli, F., Deplano, P., Ienco, A., Mealli, C., Mercuri, M. L., Pellinghelli, M. A., Pintus, G., Saba, G. & Trogu, E. F. (1999). Inorg. Chem. 38, 4626-4636.]) have separated iodine adducts of sulfur donors into three classes on the basis of I⋯I bond order. Applying the same criteria to iodine adducts of selenium donors, (7) falls into the intermediate, rather than the weakest, classification which would require an I⋯I distance of 3.92 Å, which is close to double the van der Waals radius of iodine (1.98 Å).   Therefore, a third type of Se—I adduct seems very unlikely. Although the C—Se distance in (7) [1.876 (6) Å] is slightly longer than that for the corresponding free selenouracil (3) [average 1.836 (11) Å; Table 2[link]], it is similar to the C—Se distances found for the other charge-transfer complexes (see Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]).

Re-crystallization of (6) and (7) from acetone solutions results in the formation of the diselenides (9·2H2O) and (10), respectively [see Scheme (I)[link]]. Their molecular structures consist of two centrosymmetrically related selenoamide ligands, which have been N-substituted by a deselenated ligand molecule, linked through an Se—Se bond to form the diselenide (Figs. 13[link] and 14[link]). The presence of a crystallographic inversion centre between the selenoamides fixes the C—Se—Se—C torsion angle at 180°, which is unusual for diselenoamides. The majority of those listed have torsion angles between 50 and 93°, the only other example of a 180° angle being that in N,N,N′,N′-tetraethylthiuramdiselenide (Dietzsch et al., 1998[Dietzsch, W., Sieler, J., Meiler, W. & Robien, W. (1998). Phosphorus, Sulfur Silicon Relat. Elem. 38, 293.]).

The Se—Se bond distances in (9·2H2O) [2.4328 (9) Å] and (10) [2.4427 (6) Å] fall within the range observed in other diselenoamides (2.34–2.59 Å; Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]). The C—Se bond lengths in (9·2H2O) [1.925 (4) Å] and (10) [1.922 (4) Å], although longer than those of the corresponding free ligands (2) [mean C—Se 1.838 (5) Å] and (3) [mean C—Se 1.836 (11) Å], fall in the range of other such compounds (1.874−1.952 Å; Antoniadis et al., 2006[Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.]). Molecules (9·2H2O) and (10) are neutral diselenoamides with two unequal C—N bond distances, as expected for such compounds. These bond distances become equal in the case of ionic diselenoamides. The Se—Se—C bond angles in (9·2H2O) [88.99 (14)°] and (10) [89.44 (8)°] are at the lower end of the range found for di­selenoamides.

3.4. Extended structures of (7), (9·2H2O) and (10)

The extended structure of (7) is based on a linear chain aligned along the b axis (Fig. 15[link]). The principal contact between adduct molecules is an intermolecular N—H⋯O hydrogen bond (Table 5[link]). It is supported by an interaction between the terminal iodine and the selenium atom [Se⋯I2 (x − 1, y, z) 3.862 (2) Å; I1—I2⋯Se (1 + x, y, z) 87.02 (3); C2—Se⋯I2 (x − 1, y, z) 171.3 (2); I1—Se⋯I2 (x − 1, y, z) 83.82 (3); C2—Se⋯I1 96.9 (2)°].

The extended structures of (9·2H2O) and (10) are similar. They form chains aligned along the [210] and [101] directions, respectively, as shown in Figs. 16[link] and 17[link], respectively. The principal links between molecules in (9·2H2O) are N—H⋯O and in (10) are C—H⋯O hydrogen bonds. The reason for the difference is not clear. In the case of (9·2H2O), the N—H⋯O contact is quite long at 3.166 (5) Å, and by inference weak, owing to bifurcation of the hydrogen bond, the other contact being an intramolecular interaction of 2.560 (5) Å. The intermolecular contact is supported by a relatively short C—H⋯O hydrogen bond [C⋯O 3.304 (5) Å]. In the case of (10), the N—H⋯O intramolecular contact [N⋯O 2.534 (3) Å] is an independent interaction, the molecules being linked by a pair of centrosymmetrically related, somewhat long, C—H⋯O hydrogen bonds [C⋯O 3.535 (4) Å] which form an R22(8) motif (Fig. 17[link]).

[Figure 16]
Figure 16
View of part of a sheet of (9·2H2O) showing the inter- and intramolecular N—H⋯O and intermolecular C—H⋯O interactions. Atoms are identified as in Fig. 7[link].
[Figure 17]
Figure 17
View of part of a sheet of (10) showing the intramolecular N—H⋯O and intermolecular C—H⋯O interactions. Atoms are identified as in Fig. 7[link].

In both structures the chains are stacked to give two-dimensional sheet architectures parallel to ([1\bar20]) for (9·2H2O) and to ([\bar121]) for (10). In the case of (9·2H2O) the chains are linked through hydrogen-bonded water molecules which not only form the sheet but also link the sheets into a three-dimensional structure. Although it was not possible to locate the water H atoms, the proposed interactions are supported by the geometries around the O atoms. Thus, O⋯O distances range from 2.741 (5) through 2.770 (5) to 2.861 (5) Å, while O⋯O⋯O angles range from 109.9 (2) through 122.5 (3) to 123.7 (2)°. There are no aromatic stacking interactions owing to a staggered molecular arrangement. The only other possible interaction linking the sheets is an Se⋯Se contact, but the interatomic distance is extremely long [4.125 (2) Å]. In the case of (10) the chains are linked into two-dimensional sheets by relatively long C—H⋯O contacts [C⋯O 3.562 (4) Å; Table 5[link]]. Hydrogen-bonded contacts between sheets are not feasible and the staggered molecular arrangement precludes aromatic stacking interactions. The only possible interaction is an Se⋯Se contact, but the interatomic distance of 3.961 (2) Å is rather long.

4. Concluding remarks

The architectures of the extended structures of the 6-alkyl-2-selenouracils (1)–(4) and (4·CH2Cl2) rely heavily on R22(8) hydrogen-bonded rings. All three types of rings, namely those based on two oxygen acceptors [O/O; see Scheme (IVa)[link]], two selenium acceptors [Se/Se; see Scheme (IVb)[link]] and a mixture of one oxygen and one selenium acceptor [O/Se; see Scheme (IVc)[link]], are found in the 6-alkyl-2-selenouracils. The most common is the Se/Se ring; it appears in the extended structures of all five compounds [(1)–(4) and (4·CH2Cl2)]. The other two types of ring appear twice only, the O/O ring in (3) and (4·CH2Cl2) and the O/Se ring in (2) and (4). The simplest structures are those of (3) and (4·CH2Cl2), where alternating Se/Se and O/O rings give rise to one-dimensional chain constructs (Figs. 9[link] and 10[link]). In (1), Se/Se rings form dimers which are linked through N—H⋯O hydrogen bonds to give a two-dimensional sheet of topology 63 (Fig. 7[link]). In (2) and (4), Se/Se and O/Se rings alternate to form chains of 6-alkyl-2-selenouracils, which are linked through N—H⋯O hydrogen bonds to give a two-dimensional sheet (Fig. 8[link]). O/O R22(8) hydrogen-bonded rings are also found in the extended structure of 6-n-propyl-2-uracil (11), where they generate a six-membered paddle-wheel ring with pendant propyl groups (Fig. 11[link]).

The extended structures of the diselenide oxidation products (9·2H2O and 10) also depend on O/O R22(8) hydrogen-bonded rings. However, in (9·2H2O) the donors are a mixture of C—H and N—H moieties [see (IVd)[link]] while in (10) they are exclusively C—H donors. In both cases the molecules are linked to give rise to chain architectures (Figs. 16[link] and 17[link]).[link]

[Scheme 4]

The O atoms of all five 6-alkyl-2-selenouracil and of the single 6-n-propyl-2-uracil structures act as acceptors to just one hydrogen-bonded contact. The Se atoms behave similarly except in (2) and (4). Of the Se atoms of the three molecules in the asymmetric unit of (2) and (4), one acts as a dual acceptor, one as a single acceptor while the third is not involved in any hydrogen bonds (Fig. 8[link]). The situation in the oxidation products (9·2H2O and 10) is complicated by the existence of intramolecular N—H⋯O hydrogen bonds. In (9·2H2O) one oxygen acts as a dual acceptor to intra- and intermolecular N—H⋯O hydrogen bonds and a second oxygen acts as a single acceptor in an intermolecular C—H⋯O hydrogen bond. All three contacts generate the one-dimensional chain structure (Fig. 16[link]). In (10), one oxygen acts as a dual acceptor to an intramolecular N—H⋯O and an intermolecular C—H⋯O hydrogen bond to generate the one-dimensional chain structure, while a second oxygen acts as a single acceptor in an interchain C—H⋯O hydrogen bond (Fig. 17[link]).

Supporting information


Computing details top

Data collection: Bruker APEX2 (Bruker, 2004) for (1), (3); Bruker SMART version 5.625 (Bruker, 2001) for (2), (4), 4.CH2Cl2, (11); Bruker SMART version 5.624 (Bruker, 2001) for (7); COLLECT (Hooft, 1998) for (9); Bruker APEX2 for (10). Cell refinement: Bruker SAINT (Bruker, 2004) for (1), (3); Bruker SAINT version 6.36a (Bruker, 2000) for (2), (4), 4.CH2Cl2, (11); Bruker SAINT version 6.36a (Bruker, 2001) for (7); DIRAX (Duisenberg, 1992) for (9); Bruker SAINT for (10). Data reduction: Bruker SAINT for (1), (3); Bruker SAINT; Bruker SHELXTL (Bruker, 2001) for (2), (4), 4.CH2Cl2, (11); Bruker SAINT; Bruker SHELXTL for (7), (10); HKL (Otwinowski & Minor, 1997) for (9). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (1), (2), (3), (4), 4.CH2Cl2, (7), (10), (11); SIR92 (Altomare et al., 1994) for (9). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003). Software used to prepare material for publication: enCIFer (Allen et al., 2004); PLATON for (1), (2), (3), (4), 4.CH2Cl2, (9), (10), (11); enCIFer (Allen et al., 2004; PLATON) for (7).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
(1) top
Crystal data top
C5H6N2OSeF(000) = 368
Mr = 189.08Dx = 2.023 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.6775 Å
a = 4.3411 (7) ÅCell parameters from 4328 reflections
b = 14.756 (2) Åθ = 2.6–29.0°
c = 9.690 (2) ŵ = 5.96 mm1
β = 90.157 (2)°T = 120 K
V = 620.71 (18) Å3Needle, colourless
Z = 40.10 × 0.01 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1770 independent reflections
Radiation source: Daresbury Laboratory Station 9.81642 reflections with I > 2σ(I)
Silicone (111) monochromatorRint = 0.027
fine–slice ω scansθmax = 29.0°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS version 2.10; Bruker, 2003)
h = 66
Tmin = 0.816, Tmax = 1.000k = 2021
6350 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: methyl H atoms from delta-F; others placed geometrically
wR(F2) = 0.074Rigid rotating group; riding model
S = 0.80 w = 1/[σ2(Fo2) + (0.079P)2]
where P = (Fo2 + 2Fc2)/3
1770 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C5H6N2OSeV = 620.71 (18) Å3
Mr = 189.08Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.6775 Å
a = 4.3411 (7) ŵ = 5.96 mm1
b = 14.756 (2) ÅT = 120 K
c = 9.690 (2) Å0.10 × 0.01 × 0.01 mm
β = 90.157 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1770 independent reflections
Absorption correction: multi-scan
(SADABS version 2.10; Bruker, 2003)
1642 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 1.000Rint = 0.027
6350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.074Rigid rotating group; riding model
S = 0.80Δρmax = 0.57 e Å3
1770 reflectionsΔρmin = 0.80 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2422 (3)0.73923 (8)0.10993 (12)0.0105 (2)
H1A0.37370.74850.17770.013*
C20.1605 (3)0.65292 (9)0.08020 (14)0.0104 (2)
Se20.32333 (3)0.556089 (10)0.173603 (14)0.01181 (9)
N30.0470 (3)0.64228 (8)0.02297 (12)0.0116 (2)
H3A0.10480.58660.04280.014*
C40.1767 (3)0.71205 (9)0.10027 (15)0.0119 (3)
O40.3644 (3)0.69250 (9)0.19136 (13)0.0180 (2)
C50.0765 (3)0.80120 (9)0.06473 (15)0.0119 (2)
H5A0.15400.85210.11390.014*
C60.1301 (3)0.81340 (9)0.03956 (14)0.0111 (2)
C70.2429 (3)0.90396 (9)0.08536 (16)0.0153 (3)
H7D0.22010.94750.00970.023*
H7A0.46060.89950.11160.023*
H7B0.12230.92430.16480.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0136 (5)0.0082 (5)0.0097 (5)0.0003 (4)0.0031 (4)0.0010 (4)
C20.0119 (5)0.0100 (6)0.0093 (6)0.0011 (4)0.0006 (4)0.0007 (4)
Se20.01526 (13)0.00869 (12)0.01146 (12)0.00109 (4)0.00368 (7)0.00126 (4)
N30.0137 (5)0.0089 (5)0.0123 (5)0.0014 (4)0.0043 (4)0.0003 (4)
C40.0126 (6)0.0115 (6)0.0116 (6)0.0009 (5)0.0018 (5)0.0011 (5)
O40.0203 (5)0.0170 (6)0.0165 (5)0.0005 (4)0.0106 (4)0.0005 (4)
C50.0140 (6)0.0100 (6)0.0116 (6)0.0008 (5)0.0032 (5)0.0014 (5)
C60.0135 (6)0.0089 (6)0.0108 (6)0.0005 (4)0.0005 (5)0.0001 (4)
C70.0198 (7)0.0093 (6)0.0169 (7)0.0004 (5)0.0052 (5)0.0013 (5)
Geometric parameters (Å, º) top
N1—C21.3528 (17)C4—C51.427 (2)
N1—C61.3776 (17)C5—C61.361 (2)
N1—H1A0.8800C5—H5A0.9500
C2—N31.3531 (18)C6—C71.4904 (19)
C2—Se21.8322 (14)C7—H7D0.9800
N3—C41.3913 (18)C7—H7A0.9800
N3—H3A0.8800C7—H7B0.9800
C4—O41.2338 (18)
C2—N1—C6123.40 (12)C6—C5—C4120.05 (13)
C2—N1—H1A118.3C6—C5—H5A120.0
C6—N1—H1A118.3C4—C5—H5A120.0
N1—C2—N3116.12 (12)C5—C6—N1119.57 (12)
N1—C2—Se2121.90 (10)C5—C6—C7123.70 (13)
N3—C2—Se2121.98 (10)N1—C6—C7116.72 (12)
C2—N3—C4125.41 (12)C6—C7—H7D109.5
C2—N3—H3A117.3C6—C7—H7A109.5
C4—N3—H3A117.3H7D—C7—H7A109.5
O4—C4—N3118.52 (13)C6—C7—H7B109.5
O4—C4—C5126.04 (14)H7D—C7—H7B109.5
N3—C4—C5115.44 (13)H7A—C7—H7B109.5
(2) top
Crystal data top
C6H8N2OSeZ = 6
Mr = 203.10F(000) = 600
Triclinic, P1Dx = 1.762 Mg m3
a = 8.394 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.029 (2) ÅCell parameters from 2232 reflections
c = 14.931 (4) Åθ = 2.7–24.8°
α = 101.023 (4)°µ = 4.84 mm1
β = 100.893 (4)°T = 150 K
γ = 105.705 (4)°Triangular prism, colourless
V = 1148.5 (5) Å30.21 × 0.12 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
4025 independent reflections
Radiation source: normal-focus sealed tube3189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS version 2.03; Bruker, 2001)
h = 1010
Tmin = 0.687, Tmax = 1.000k = 1111
8174 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
4025 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 1.48 e Å3
69 restraintsΔρmin = 1.02 e Å3
Crystal data top
C6H8N2OSeγ = 105.705 (4)°
Mr = 203.10V = 1148.5 (5) Å3
Triclinic, P1Z = 6
a = 8.394 (2) ÅMo Kα radiation
b = 10.029 (2) ŵ = 4.84 mm1
c = 14.931 (4) ÅT = 150 K
α = 101.023 (4)°0.21 × 0.12 × 0.04 mm
β = 100.893 (4)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
4025 independent reflections
Absorption correction: multi-scan
(SADABS version 2.03; Bruker, 2001)
3189 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 1.000Rint = 0.038
8174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05669 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 1.48 e Å3
4025 reflectionsΔρmin = 1.02 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.3293 (6)0.8677 (5)1.0200 (3)0.0162 (10)
H110.37770.84611.07050.019*
C120.2680 (7)0.9799 (6)1.0320 (4)0.0170 (12)
Se120.27048 (8)1.08298 (6)1.14818 (4)0.0202 (2)
N130.2027 (6)1.0113 (5)0.9517 (3)0.0183 (11)
H130.16181.08360.95830.022*
C140.1931 (8)0.9420 (7)0.8602 (4)0.0198 (13)
O140.1350 (6)0.9862 (5)0.7932 (3)0.0254 (10)
C150.2547 (8)0.8195 (6)0.8531 (4)0.0194 (13)
H150.24940.76350.79290.023*
C160.3197 (8)0.7852 (6)0.9323 (4)0.0186 (13)
C170.3885 (8)0.6621 (6)0.9367 (5)0.0218 (14)
H17A0.32840.60410.97420.026*
H17B0.51120.70130.97060.026*
C180.3707 (9)0.5628 (7)0.8409 (5)0.0286 (16)
H18A0.41800.48590.85080.043*
H18B0.43340.61790.80370.043*
H18C0.24950.52110.80690.043*
N210.9297 (6)0.4151 (5)0.8474 (3)0.0188 (11)
H210.93490.48190.89670.023*
Se221.10728 (8)0.31656 (6)0.98373 (4)0.0199 (2)
C221.0003 (7)0.3140 (6)0.8630 (4)0.0163 (12)
N230.9863 (7)0.2112 (5)0.7863 (3)0.0185 (11)
H231.03470.14540.79470.022*
C240.9002 (8)0.2019 (7)0.6944 (4)0.0225 (14)
O240.8883 (6)0.0990 (5)0.6294 (3)0.0299 (11)
C250.8338 (8)0.3177 (6)0.6841 (4)0.0217 (14)
H250.77830.32100.62330.026*
C260.8502 (8)0.4215 (6)0.7606 (4)0.0192 (13)
C270.7818 (9)0.5460 (7)0.7603 (4)0.0248 (14)
H27A0.68570.53150.79080.030*
H27B0.87300.63440.79950.030*
C280.7202 (12)0.5692 (9)0.6649 (5)0.048 (2)
H28A0.67880.65210.67240.072*
H28B0.62680.48380.62580.072*
H28C0.81470.58670.63440.072*
N310.7033 (7)0.9832 (5)0.4380 (4)0.0222 (12)
H310.75551.03150.49680.027*
C320.6233 (8)1.0491 (7)0.3819 (4)0.0233 (14)
Se320.62624 (11)1.23434 (7)0.41986 (5)0.0368 (2)
N330.5403 (7)0.9682 (5)0.2936 (4)0.0212 (12)
H330.48261.00700.25660.025*
O340.4622 (6)0.7690 (4)0.1719 (3)0.0266 (11)
C340.5370 (8)0.8274 (6)0.2550 (4)0.0216 (14)
C350.6296 (8)0.7701 (6)0.3200 (4)0.0221 (14)
H350.63510.67620.29930.027*
C360.7090 (8)0.8454 (6)0.4098 (4)0.0203 (13)
C370.8074 (9)0.7937 (7)0.4832 (4)0.0259 (15)
H37A0.75220.79310.53620.031*
H37B0.92470.86270.50810.031*
C380.8198 (10)0.6442 (7)0.4475 (5)0.0326 (17)
H38A0.88540.61840.49930.049*
H38B0.87740.64410.39620.049*
H38C0.70450.57440.42420.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.020 (3)0.010 (2)0.018 (3)0.008 (2)0.002 (2)0.002 (2)
C120.017 (3)0.009 (3)0.024 (3)0.003 (2)0.003 (2)0.003 (2)
Se120.0299 (4)0.0105 (3)0.0217 (4)0.0122 (3)0.0052 (3)0.0006 (2)
N130.025 (3)0.010 (3)0.022 (3)0.010 (2)0.004 (2)0.002 (2)
C140.022 (3)0.016 (3)0.022 (3)0.008 (3)0.007 (3)0.003 (3)
O140.041 (3)0.020 (2)0.023 (2)0.020 (2)0.009 (2)0.0068 (19)
C150.029 (3)0.008 (3)0.022 (3)0.009 (3)0.007 (3)0.000 (2)
C160.023 (3)0.010 (3)0.025 (3)0.006 (3)0.011 (3)0.003 (2)
C170.023 (3)0.011 (3)0.032 (4)0.011 (3)0.004 (3)0.003 (3)
C180.044 (4)0.010 (3)0.036 (4)0.017 (3)0.012 (3)0.000 (3)
N210.031 (3)0.010 (3)0.015 (2)0.012 (2)0.003 (2)0.002 (2)
Se220.0325 (4)0.0099 (3)0.0178 (3)0.0130 (3)0.0012 (3)0.0009 (2)
C220.017 (3)0.010 (3)0.020 (3)0.003 (2)0.003 (2)0.004 (2)
N230.031 (3)0.008 (2)0.019 (2)0.013 (2)0.004 (2)0.002 (2)
C240.036 (4)0.017 (3)0.017 (3)0.012 (3)0.007 (3)0.003 (2)
O240.053 (3)0.016 (2)0.023 (2)0.022 (2)0.004 (2)0.0002 (19)
C250.036 (4)0.016 (3)0.017 (3)0.016 (3)0.005 (3)0.006 (2)
C260.027 (3)0.014 (3)0.021 (3)0.011 (3)0.007 (3)0.008 (2)
C270.034 (4)0.022 (4)0.021 (3)0.019 (3)0.005 (3)0.001 (3)
C280.086 (7)0.041 (5)0.042 (5)0.052 (5)0.020 (4)0.022 (4)
N310.034 (3)0.010 (3)0.018 (3)0.011 (2)0.001 (2)0.003 (2)
C320.031 (4)0.016 (3)0.022 (3)0.011 (3)0.002 (3)0.002 (2)
Se320.0651 (6)0.0163 (4)0.0275 (4)0.0273 (4)0.0039 (4)0.0026 (3)
N330.036 (3)0.009 (2)0.022 (3)0.013 (2)0.004 (2)0.006 (2)
O340.045 (3)0.012 (2)0.020 (2)0.015 (2)0.000 (2)0.0016 (18)
C340.032 (4)0.012 (3)0.021 (3)0.009 (3)0.006 (3)0.002 (2)
C350.039 (4)0.005 (3)0.023 (3)0.012 (3)0.006 (3)0.000 (2)
C360.029 (4)0.013 (3)0.024 (3)0.012 (3)0.007 (3)0.007 (2)
C370.043 (4)0.017 (3)0.021 (3)0.020 (3)0.003 (3)0.001 (3)
C380.055 (5)0.022 (4)0.030 (4)0.025 (3)0.011 (3)0.009 (3)
Geometric parameters (Å, º) top
N11—C121.355 (7)C25—C261.347 (9)
N11—C161.384 (7)C25—H250.9500
N11—H110.8800C26—C271.510 (8)
C12—N131.351 (8)C27—C281.504 (9)
C12—Se121.835 (6)C27—H27A0.9900
N13—C141.386 (8)C27—H27B0.9900
N13—H130.8800C28—H28A0.9800
C14—O141.240 (7)C28—H28B0.9800
C14—C151.450 (8)C28—H28C0.9800
C15—C161.353 (9)N31—C321.353 (8)
C15—H150.9500N31—C361.382 (8)
C16—C171.504 (8)N31—H310.8800
C17—C181.534 (9)C32—N331.349 (8)
C17—H17A0.9900C32—Se321.828 (6)
C17—H17B0.9900N33—C341.410 (8)
C18—H18A0.9800N33—H330.8800
C18—H18B0.9800O34—C341.227 (7)
C18—H18C0.9800C34—C351.431 (9)
N21—C221.340 (7)C35—C361.347 (9)
N21—C261.363 (8)C35—H350.9500
N21—H210.8800C36—C371.503 (8)
Se22—C221.848 (6)C37—C381.530 (8)
C22—N231.350 (8)C37—H37A0.9900
N23—C241.397 (8)C37—H37B0.9900
N23—H230.8800C38—H38A0.9800
C24—O241.241 (7)C38—H38B0.9800
C24—C251.439 (9)C38—H38C0.9800
C12—N11—C16123.3 (5)C25—C26—N21119.3 (6)
C12—N11—H11118.3C25—C26—C27125.6 (6)
C16—N11—H11118.3N21—C26—C27115.1 (5)
N13—C12—N11115.3 (5)C28—C27—C26115.9 (5)
N13—C12—Se12121.6 (4)C28—C27—H27A108.3
N11—C12—Se12123.2 (4)C26—C27—H27A108.3
C12—N13—C14127.1 (5)C28—C27—H27B108.3
C12—N13—H13116.4C26—C27—H27B108.3
C14—N13—H13116.4H27A—C27—H27B107.4
O14—C14—N13119.9 (5)C27—C28—H28A109.5
O14—C14—C15125.9 (6)C27—C28—H28B109.5
N13—C14—C15114.2 (5)H28A—C28—H28B109.5
C16—C15—C14119.8 (6)C27—C28—H28C109.5
C16—C15—H15120.1H28A—C28—H28C109.5
C14—C15—H15120.1H28B—C28—H28C109.5
C15—C16—N11120.1 (5)C32—N31—C36124.8 (5)
C15—C16—C17126.2 (5)C32—N31—H31117.6
N11—C16—C17113.7 (5)C36—N31—H31117.6
C16—C17—C18115.4 (5)N33—C32—N31115.0 (5)
C16—C17—H17A108.4N33—C32—Se32121.3 (5)
C18—C17—H17A108.4N31—C32—Se32123.7 (5)
C16—C17—H17B108.4C32—N33—C34126.3 (5)
C18—C17—H17B108.4C32—N33—H33116.9
H17A—C17—H17B107.5C34—N33—H33116.9
C17—C18—H18A109.5O34—C34—N33119.1 (6)
C17—C18—H18B109.5O34—C34—C35127.2 (6)
H18A—C18—H18B109.5N33—C34—C35113.7 (5)
C17—C18—H18C109.5C36—C35—C34121.9 (6)
H18A—C18—H18C109.5C36—C35—H35119.0
H18B—C18—H18C109.5C34—C35—H35119.0
C22—N21—C26124.5 (5)C35—C36—N31118.3 (5)
C22—N21—H21117.8C35—C36—C37125.7 (6)
C26—N21—H21117.8N31—C36—C37116.1 (5)
N21—C22—N23116.2 (5)C36—C37—C38114.5 (5)
N21—C22—Se22121.0 (4)C36—C37—H37A108.6
N23—C22—Se22122.8 (4)C38—C37—H37A108.6
C22—N23—C24124.6 (5)C36—C37—H37B108.6
C22—N23—H23117.7C38—C37—H37B108.6
C24—N23—H23117.7H37A—C37—H37B107.6
O24—C24—N23119.3 (6)C37—C38—H38A109.5
O24—C24—C25125.5 (6)C37—C38—H38B109.5
N23—C24—C25115.1 (5)H38A—C38—H38B109.5
C26—C25—C24120.1 (6)C37—C38—H38C109.5
C26—C25—H25120.0H38A—C38—H38C109.5
C24—C25—H25120.0H38B—C38—H38C109.5
(3) top
Crystal data top
C7H10N2OSeDx = 1.684 Mg m3
Mr = 217.13Synchrotron radiation, λ = 0.6775 Å
Orthorhombic, PbcaCell parameters from 3142 reflections
a = 10.568 (7) Åθ = 2.6–27.5°
b = 11.257 (7) ŵ = 4.33 mm1
c = 28.79 (2) ÅT = 120 K
V = 3425 (4) Å3Lath, colourless
Z = 160.20 × 0.02 × 0.01 mm
F(000) = 1728
Data collection top
Bruker SMART APEXII CCD
diffractometer
3471 independent reflections
Radiation source: Daresbury SRS station 9.82417 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.250
fine–slice ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.260, Tmax = 1.000k = 1414
24855 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.173Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.408H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.025P)2 + 367.0]
where P = (Fo2 + 2Fc2)/3
3471 reflections(Δ/σ)max = 0.002
99 parametersΔρmax = 2.38 e Å3
35 restraintsΔρmin = 2.33 e Å3
Crystal data top
C7H10N2OSeV = 3425 (4) Å3
Mr = 217.13Z = 16
Orthorhombic, PbcaSynchrotron radiation, λ = 0.6775 Å
a = 10.568 (7) ŵ = 4.33 mm1
b = 11.257 (7) ÅT = 120 K
c = 28.79 (2) Å0.20 × 0.02 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2417 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 1.000Rint = 0.250
24855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.17335 restraints
wR(F2) = 0.408H-atom parameters constrained
S = 1.18Δρmax = 2.38 e Å3
3471 reflectionsΔρmin = 2.33 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Despite obtaining a synchrotron dataset from the Daresbury SRS, we could not overcome the limitations imposed by the poor crystal quality. As a result it was found that only the Se atoms could be refined anisotropically. Geometric restraints - similarity between the two independent molecules in the asymmetric unit and planarity of the aromatic ring - were found to be necessary.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.0749 (2)0.28948 (18)0.32853 (8)0.0333 (6)
C10.0909 (13)0.3523 (15)0.3871 (5)0.028 (5)*
N20.1159 (11)0.2874 (14)0.4243 (5)0.030 (4)*
H2N0.12050.20980.42090.036*
C30.1356 (10)0.3339 (16)0.4688 (6)0.029 (5)*
C40.1287 (11)0.4523 (16)0.4746 (6)0.031 (5)*
H40.14180.48510.50460.038*
C50.1019 (10)0.5304 (16)0.4361 (6)0.026 (4)*
O50.0948 (13)0.6397 (11)0.4387 (5)0.035 (4)*
N60.0851 (11)0.4741 (13)0.3950 (5)0.030 (4)*
H6N0.06880.51920.37080.036*
C110.1625 (16)0.2460 (17)0.5061 (6)0.033 (5)*
H11A0.21340.18070.49250.040*
H11B0.08120.21150.51650.040*
C120.232 (2)0.294 (2)0.5484 (7)0.042 (6)*
H12A0.30820.33760.53800.051*
H12B0.17650.35040.56500.051*
C130.272 (3)0.198 (2)0.5815 (8)0.049 (7)*
H13A0.31870.23280.60750.074*
H13B0.32620.14040.56530.074*
H13C0.19670.15660.59340.074*
Se210.0605 (2)0.98622 (17)0.42671 (9)0.0360 (7)
C210.0857 (14)0.9209 (16)0.3690 (6)0.038 (6)*
N220.1047 (11)0.9839 (14)0.3309 (5)0.032 (4)*
H22N0.10751.06170.33370.038*
C230.1207 (11)0.9360 (16)0.2866 (6)0.033 (5)*
C240.1164 (12)0.8173 (16)0.2817 (6)0.033 (5)*
H240.12620.78330.25170.040*
C250.0971 (11)0.7407 (18)0.3212 (7)0.073 (10)*
O250.0912 (12)0.6312 (11)0.3195 (4)0.027 (3)*
N260.0822 (11)0.7987 (14)0.3624 (5)0.034 (4)*
H26N0.06910.75450.38710.041*
C310.1410 (18)1.0226 (18)0.2482 (7)0.043 (6)*
H31A0.17611.09670.26150.051*
H31B0.05801.04210.23420.051*
C320.229 (2)0.979 (2)0.2099 (7)0.045 (6)*
H32A0.31160.95740.22370.054*
H32B0.19270.90740.19550.054*
C330.251 (2)1.071 (2)0.1729 (7)0.040 (6)*
H33A0.30811.03940.14930.060*
H33B0.28821.14250.18680.060*
H33C0.16971.09200.15840.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0392 (13)0.0120 (10)0.0486 (14)0.0005 (10)0.0017 (11)0.0015 (9)
Se210.0482 (14)0.0083 (10)0.0516 (14)0.0012 (10)0.0005 (12)0.0001 (9)
Geometric parameters (Å, º) top
Se1—C11.837 (16)Se21—C211.835 (16)
C1—N21.32 (2)C21—N221.32 (2)
C1—N61.39 (2)C21—N261.39 (2)
N2—C31.40 (2)N22—C231.40 (2)
N2—H2N0.8800N22—H22N0.8800
C3—C41.34 (2)C23—C241.34 (2)
C3—C111.49 (2)C23—C311.49 (2)
C4—C51.44 (2)C24—C251.44 (2)
C4—H40.9500C24—H240.9500
C5—O51.23 (2)C25—O251.24 (2)
C5—N61.36 (2)C25—N261.36 (2)
N6—H6N0.8800N26—H26N0.8800
C11—C121.52 (2)C31—C321.52 (2)
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
C12—C131.50 (3)C32—C331.50 (2)
C12—H12A0.9900C32—H32A0.9900
C12—H12B0.9900C32—H32B0.9900
C13—H13A0.9800C33—H33A0.9800
C13—H13B0.9800C33—H33B0.9800
C13—H13C0.9800C33—H33C0.9800
N2—C1—N6115.0 (15)N22—C21—N26114.9 (15)
N2—C1—Se1123.3 (13)N22—C21—Se21123.9 (13)
N6—C1—Se1121.7 (12)N26—C21—Se21121.2 (12)
C1—N2—C3124.3 (15)C21—N22—C23124.8 (15)
C1—N2—H2N117.9C21—N22—H22N117.6
C3—N2—H2N117.9C23—N22—H22N117.6
C4—C3—N2118.5 (16)C24—C23—N22118.4 (16)
C4—C3—C11125.4 (16)C24—C23—C31125.3 (17)
N2—C3—C11116.1 (15)N22—C23—C31116.3 (15)
C3—C4—C5121.2 (17)C23—C24—C25121.1 (17)
C3—C4—H4119.4C23—C24—H24119.4
C5—C4—H4119.4C25—C24—H24119.4
O5—C5—N6120.6 (17)O25—C25—N26120.4 (18)
O5—C5—C4125.0 (17)O25—C25—C24125.0 (18)
N6—C5—C4114.3 (16)N26—C25—C24114.6 (17)
C5—N6—C1126.7 (15)C25—N26—C21126.2 (16)
C5—N6—H6N116.7C25—N26—H26N116.9
C1—N6—H6N116.7C21—N26—H26N116.9
C3—C11—C12115.9 (15)C23—C31—C32114.7 (15)
C3—C11—H11A108.3C23—C31—H31A108.6
C12—C11—H11A108.3C32—C31—H31A108.6
C3—C11—H11B108.3C23—C31—H31B108.6
C12—C11—H11B108.3C32—C31—H31B108.6
H11A—C11—H11B107.4H31A—C31—H31B107.6
C13—C12—C11113.0 (17)C33—C32—C31112.8 (17)
C13—C12—H12A109.0C33—C32—H32A109.0
C11—C12—H12A109.0C31—C32—H32A109.0
C13—C12—H12B109.0C33—C32—H32B109.0
C11—C12—H12B109.0C31—C32—H32B109.0
H12A—C12—H12B107.8H32A—C32—H32B107.8
C12—C13—H13A109.5C32—C33—H33A109.5
C12—C13—H13B109.5C32—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C12—C13—H13C109.5C32—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
(4) top
Crystal data top
C7H10N2OSeZ = 6
Mr = 217.13F(000) = 648
Triclinic, P1Dx = 1.650 Mg m3
a = 8.9192 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6403 (10) ÅCell parameters from 3689 reflections
c = 15.1965 (15) Åθ = 2.4–27.6°
α = 106.019 (2)°µ = 4.24 mm1
β = 105.366 (2)°T = 150 K
γ = 96.166 (2)°Tablet, colourless
V = 1311.0 (2) Å30.25 × 0.14 × 0.06 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
5780 independent reflections
Radiation source: sealed tube4932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
Bruker SADABS v2.03
h = 117
Tmin = 0.581, Tmax = 0.770k = 1313
8163 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: geometrically placed, NH from delta-F and then idealised
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.033P)2 + 0.854P]
where P = (Fo2 + 2Fc2)/3
5780 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C7H10N2OSeγ = 96.166 (2)°
Mr = 217.13V = 1311.0 (2) Å3
Triclinic, P1Z = 6
a = 8.9192 (9) ÅMo Kα radiation
b = 10.6403 (10) ŵ = 4.24 mm1
c = 15.1965 (15) ÅT = 150 K
α = 106.019 (2)°0.25 × 0.14 × 0.06 mm
β = 105.366 (2)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
5780 independent reflections
Absorption correction: multi-scan
Bruker SADABS v2.03
4932 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.770Rint = 0.013
8163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.65 e Å3
5780 reflectionsΔρmin = 0.40 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se11.07398 (3)0.80241 (2)0.489662 (16)0.02136 (7)
O10.9476 (2)0.59638 (17)0.12915 (12)0.0285 (4)
N10.9208 (2)0.89862 (18)0.34418 (13)0.0183 (4)
H1A0.91560.96460.39250.022*
C20.9924 (3)0.8001 (2)0.36425 (16)0.0176 (4)
N30.9998 (2)0.70197 (19)0.28899 (14)0.0196 (4)
H3A1.05030.63920.30140.024*
C40.9335 (3)0.6915 (2)0.19217 (17)0.0219 (5)
C50.8561 (3)0.7987 (2)0.17681 (17)0.0226 (5)
H5A0.80500.79690.11300.027*
C60.8549 (3)0.9013 (2)0.25115 (17)0.0193 (5)
C70.7970 (3)1.0269 (2)0.24404 (17)0.0218 (5)
H7A0.75321.05970.29850.026*
C80.6658 (3)1.0049 (3)0.15028 (19)0.0305 (6)
H8A0.57670.93730.14440.046*
H8B0.70660.97450.09580.046*
H8C0.62981.08880.15040.046*
C90.9385 (3)1.1326 (2)0.2569 (2)0.0304 (6)
H9A1.02001.14500.31800.046*
H9B0.90381.21700.25740.046*
H9C0.98241.10340.20360.046*
Se1A0.69491 (3)0.71890 (3)0.093473 (18)0.03059 (8)
O1A0.4581 (3)0.25574 (19)0.32509 (13)0.0393 (5)
N1A0.7470 (2)0.4752 (2)0.06506 (14)0.0236 (4)
H1AA0.81050.52430.00790.028*
C2A0.6681 (3)0.5381 (2)0.12369 (17)0.0238 (5)
N3A0.5675 (3)0.4566 (2)0.20863 (15)0.0264 (5)
H3AA0.50750.49450.24540.032*
C4A0.5493 (3)0.3187 (3)0.24379 (19)0.0294 (6)
C5A0.6407 (3)0.2611 (3)0.17789 (19)0.0288 (6)
H5AA0.63560.16750.19660.035*
C6A0.7335 (3)0.3383 (2)0.08979 (18)0.0244 (5)
C7A0.8227 (3)0.2883 (3)0.01137 (18)0.0282 (6)
H7AA0.93090.34580.01940.034*
C8A0.7373 (4)0.3039 (3)0.0660 (2)0.0383 (7)
H8AA0.79490.27170.11720.057*
H8AB0.62900.25170.03670.057*
H8AC0.73390.39810.09310.057*
C9A0.8418 (4)0.1441 (3)0.0491 (2)0.0366 (7)
H9AA0.89650.13630.09790.055*
H9AB0.73710.08550.07780.055*
H9AC0.90420.11810.00420.055*
Se1B0.75370 (3)0.45066 (2)0.338610 (18)0.02597 (7)
N1B0.6585 (2)0.63716 (19)0.47242 (14)0.0200 (4)
H1BA0.62380.66910.42480.024*
O1B0.8146 (3)0.48679 (19)0.68468 (14)0.0357 (5)
C2B0.7292 (3)0.5317 (2)0.45594 (17)0.0201 (5)
N3B0.7807 (2)0.4863 (2)0.53135 (14)0.0228 (4)
H3BA0.82930.41830.52210.027*
C4B0.7638 (3)0.5376 (2)0.62238 (18)0.0243 (5)
C5B0.6852 (3)0.6498 (2)0.63353 (18)0.0225 (5)
H5BA0.66750.68950.69310.027*
C6B0.6366 (3)0.6989 (2)0.56018 (17)0.0186 (5)
C7B0.5636 (3)0.8212 (2)0.56518 (18)0.0218 (5)
H7BA0.46420.79700.50960.026*
C8B0.6764 (3)0.9317 (2)0.5549 (2)0.0292 (6)
H8BA0.62811.01060.55810.044*
H8BB0.69660.90050.49290.044*
H8BC0.77660.95460.60730.044*
C9B0.5202 (4)0.8717 (3)0.6568 (2)0.0343 (6)
H9BA0.44770.80050.66250.051*
H9BB0.46840.94800.65490.051*
H9BC0.61650.89930.71230.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03137 (14)0.01777 (11)0.01345 (11)0.00925 (9)0.00318 (9)0.00452 (9)
O10.0422 (11)0.0256 (9)0.0151 (8)0.0135 (8)0.0060 (7)0.0025 (7)
N10.0231 (10)0.0168 (9)0.0145 (9)0.0078 (8)0.0050 (8)0.0035 (7)
C20.0208 (11)0.0162 (10)0.0140 (10)0.0028 (9)0.0038 (9)0.0037 (8)
N30.0263 (11)0.0169 (9)0.0164 (9)0.0083 (8)0.0051 (8)0.0063 (8)
C40.0256 (12)0.0211 (11)0.0166 (11)0.0024 (10)0.0047 (9)0.0049 (9)
C50.0269 (13)0.0246 (11)0.0164 (11)0.0084 (10)0.0031 (9)0.0088 (9)
C60.0177 (11)0.0228 (11)0.0181 (11)0.0052 (9)0.0033 (9)0.0093 (9)
C70.0255 (12)0.0240 (11)0.0184 (12)0.0107 (10)0.0067 (10)0.0085 (9)
C80.0265 (13)0.0338 (14)0.0315 (15)0.0098 (11)0.0013 (11)0.0166 (12)
C90.0331 (14)0.0229 (12)0.0322 (14)0.0063 (11)0.0021 (11)0.0115 (11)
Se1A0.04401 (17)0.02449 (13)0.01969 (13)0.01027 (11)0.00385 (11)0.00577 (10)
O1A0.0535 (13)0.0277 (10)0.0237 (10)0.0024 (9)0.0071 (9)0.0079 (8)
N1A0.0264 (11)0.0260 (10)0.0146 (10)0.0054 (9)0.0017 (8)0.0046 (8)
C2A0.0270 (13)0.0258 (12)0.0201 (12)0.0072 (10)0.0089 (10)0.0073 (10)
N3A0.0338 (12)0.0248 (10)0.0176 (10)0.0071 (9)0.0011 (9)0.0080 (8)
C4A0.0379 (15)0.0269 (13)0.0231 (13)0.0050 (11)0.0060 (11)0.0113 (11)
C5A0.0360 (15)0.0224 (12)0.0253 (13)0.0052 (11)0.0040 (11)0.0087 (10)
C6A0.0266 (13)0.0279 (12)0.0211 (12)0.0068 (10)0.0076 (10)0.0107 (10)
C7A0.0301 (14)0.0312 (13)0.0224 (13)0.0059 (11)0.0024 (10)0.0129 (11)
C8A0.0487 (18)0.0440 (17)0.0297 (15)0.0100 (14)0.0134 (13)0.0216 (13)
C9A0.0392 (16)0.0345 (15)0.0380 (16)0.0135 (13)0.0064 (13)0.0175 (13)
Se1B0.03340 (15)0.02453 (13)0.01974 (13)0.00943 (10)0.00871 (10)0.00476 (10)
N1B0.0211 (10)0.0196 (9)0.0193 (10)0.0048 (8)0.0049 (8)0.0074 (8)
O1B0.0572 (13)0.0372 (10)0.0286 (10)0.0305 (10)0.0214 (9)0.0194 (9)
C2B0.0203 (12)0.0181 (10)0.0217 (12)0.0035 (9)0.0063 (9)0.0064 (9)
N3B0.0294 (11)0.0209 (10)0.0228 (10)0.0139 (9)0.0105 (9)0.0087 (8)
C4B0.0295 (13)0.0236 (12)0.0245 (13)0.0101 (10)0.0105 (10)0.0110 (10)
C5B0.0270 (13)0.0209 (11)0.0229 (12)0.0094 (10)0.0104 (10)0.0078 (10)
C6B0.0164 (11)0.0159 (10)0.0241 (12)0.0038 (9)0.0070 (9)0.0061 (9)
C7B0.0200 (12)0.0170 (10)0.0278 (13)0.0067 (9)0.0049 (10)0.0072 (9)
C8B0.0283 (14)0.0208 (12)0.0409 (16)0.0061 (10)0.0102 (12)0.0135 (11)
C9B0.0436 (17)0.0268 (13)0.0432 (17)0.0174 (12)0.0256 (14)0.0122 (12)
Geometric parameters (Å, º) top
Se1—C21.843 (2)C7B—C8B1.533 (3)
O1—C41.230 (3)N1—H1A0.88
N1—C21.348 (3)N3—H3A0.88
N1—C61.389 (3)N1A—H1AA0.88
C2—N31.341 (3)N3A—H3AA0.88
N3—C41.400 (3)N1B—H1BA0.88
C4—C51.437 (3)N3B—H3BA0.88
C5—C61.340 (3)C5—H5A0.95
C6—C71.504 (3)C7—H7A1.00
C7—C81.526 (3)C8—H8C0.98
C7—C91.529 (4)C8—H8B0.98
Se1A—C2A1.824 (2)C8—H8A0.98
O1A—C4A1.237 (3)C9—H9C0.98
N1A—C2A1.354 (3)C9—H9A0.98
N1A—C6A1.383 (3)C9—H9B0.98
C2A—N3A1.351 (3)C5A—H5AA0.95
N3A—C4A1.391 (3)C7A—H7AA1.00
C4A—C5A1.434 (3)C8A—H8AB0.98
C5A—C6A1.346 (3)C8A—H8AC0.98
C6A—C7A1.508 (3)C8A—H8AA0.98
C7A—C9A1.528 (4)C9A—H9AC0.98
C7A—C8A1.543 (4)C9A—H9AA0.98
Se1B—C2B1.835 (2)C9A—H9AB0.98
N1B—C2B1.342 (3)C5B—H5BA0.95
N1B—C6B1.389 (3)C7B—H7BA1.00
O1B—C4B1.226 (3)C8B—H8BA0.98
C2B—N3B1.353 (3)C8B—H8BB0.98
N3B—C4B1.395 (3)C8B—H8BC0.98
C4B—C5B1.441 (3)C9B—H9BA0.98
C5B—C6B1.348 (3)C9B—H9BB0.98
C6B—C7B1.509 (3)C9B—H9BC0.98
C7B—C9B1.515 (4)
C2—N1—C6123.3 (2)C6B—N1B—H1BA118
N3—C2—N1116.7 (2)C4B—N3B—H3BA117
N3—C2—Se1122.59 (17)C2B—N3B—H3BA117
N1—C2—Se1120.70 (17)C4—C5—H5A120
C2—N3—C4125.2 (2)C6—C5—H5A119
O1—C4—N3119.3 (2)C9—C7—H7A108
O1—C4—C5126.0 (2)C6—C7—H7A108
N3—C4—C5114.6 (2)C8—C7—H7A108
C6—C5—C4121.0 (2)H8B—C8—H8C109
C5—C6—N1119.0 (2)C7—C8—H8A109
C5—C6—C7125.6 (2)H8A—C8—H8C109
N1—C6—C7115.3 (2)C7—C8—H8C109
C6—C7—C8112.8 (2)H8A—C8—H8B109
C6—C7—C9108.6 (2)C7—C8—H8B109
C8—C7—C9111.5 (2)H9A—C9—H9B110
C2A—N1A—C6A123.9 (2)C7—C9—H9C109
N3A—C2A—N1A115.0 (2)H9B—C9—H9C109
N3A—C2A—Se1A121.33 (18)C7—C9—H9B109
N1A—C2A—Se1A123.65 (18)H9A—C9—H9C109
C2A—N3A—C4A126.5 (2)C7—C9—H9A109
O1A—C4A—N3A120.3 (2)C4A—C5A—H5AA120
O1A—C4A—C5A125.3 (2)C6A—C5A—H5AA120
N3A—C4A—C5A114.4 (2)C9A—C7A—H7AA108
C6A—C5A—C4A120.7 (2)C8A—C7A—H7AA108
C5A—C6A—N1A119.3 (2)C6A—C7A—H7AA108
C5A—C6A—C7A125.4 (2)H8AA—C8A—H8AB109
N1A—C6A—C7A115.2 (2)C7A—C8A—H8AB109
C6A—C7A—C9A112.9 (2)C7A—C8A—H8AC109
C6A—C7A—C8A109.1 (2)H8AB—C8A—H8AC109
C9A—C7A—C8A110.6 (2)H8AA—C8A—H8AC110
C2B—N1B—C6B123.9 (2)C7A—C8A—H8AA109
N1B—C2B—N3B115.9 (2)H9AA—C9A—H9AB110
N1B—C2B—Se1B122.91 (17)H9AA—C9A—H9AC109
N3B—C2B—Se1B121.19 (17)H9AB—C9A—H9AC109
C2B—N3B—C4B125.9 (2)C7A—C9A—H9AC109
O1B—C4B—N3B119.7 (2)C7A—C9A—H9AA109
O1B—C4B—C5B125.8 (2)C7A—C9A—H9AB109
N3B—C4B—C5B114.5 (2)C4B—C5B—H5BA120
C6B—C5B—C4B120.6 (2)C6B—C5B—H5BA120
C5B—C6B—N1B119.2 (2)C6B—C7B—H7BA108
C5B—C6B—C7B125.5 (2)C8B—C7B—H7BA108
N1B—C6B—C7B115.4 (2)C9B—C7B—H7BA108
C6B—C7B—C9B112.8 (2)C7B—C8B—H8BA109
C6B—C7B—C8B110.0 (2)C7B—C8B—H8BB109
C9B—C7B—C8B110.1 (2)C7B—C8B—H8BC109
C6—N1—H1A118H8BA—C8B—H8BB110
C2—N1—H1A118H8BA—C8B—H8BC109
C4—N3—H3A117H8BB—C8B—H8BC110
C2—N3—H3A117C7B—C9B—H9BA109
C6A—N1A—H1AA118C7B—C9B—H9BB109
C2A—N1A—H1AA118C7B—C9B—H9BC109
C2A—N3A—H3AA117H9BA—C9B—H9BB109
C4A—N3A—H3AA117H9BA—C9B—H9BC109
C2B—N1B—H1BA118H9BB—C9B—H9BC109
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1Bi0.881.912.782 (3)169
N1A—H1AA···O10.882.002.860 (3)167
N1B—H1BA···O1Aii0.881.922.796 (3)177
N1—H1A···Se1iii0.882.603.460 (2)165
N3B—H3BA···Se1i0.882.563.428 (2)167
N3A—H3AA···Se1Bii0.882.603.430 (2)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+2, z+1.
(4.CH2Cl2) top
Crystal data top
C8H12Cl2N2OSeZ = 4
Mr = 302.06F(000) = 600
Triclinic, P1Dx = 1.685 Mg m3
a = 8.841 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.259 (3) ÅCell parameters from 2249 reflections
c = 12.424 (4) Åθ = 2.4–24.6°
α = 90.450 (5)°µ = 3.57 mm1
β = 105.350 (4)°T = 150 K
γ = 92.945 (5)°Plate, colourless
V = 1190.7 (6) Å30.36 × 0.22 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
6193 independent reflections
Radiation source: sealed tube4391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(TWINABS version 1.02; Bruker, 2001)
h = 1111
Tmin = 0.684, Tmax = 1.000k = 1414
10743 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
6193 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C8H12Cl2N2OSeγ = 92.945 (5)°
Mr = 302.06V = 1190.7 (6) Å3
Triclinic, P1Z = 4
a = 8.841 (3) ÅMo Kα radiation
b = 11.259 (3) ŵ = 3.57 mm1
c = 12.424 (4) ÅT = 150 K
α = 90.450 (5)°0.36 × 0.22 × 0.02 mm
β = 105.350 (4)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
6193 independent reflections
Absorption correction: multi-scan
(TWINABS version 1.02; Bruker, 2001)
4391 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 1.000Rint = 0.050
10743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.97Δρmax = 0.87 e Å3
6193 reflectionsΔρmin = 0.51 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal was found to be merohedrally twinned by 180 degree rotation about [001]. Data reduction employed two orientation matrices and the minor twin component refined to approximately 0.2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9470 (5)0.4519 (4)0.1485 (4)0.0199 (11)
H10.94320.37390.14090.024*
C20.8502 (6)0.5128 (5)0.0686 (5)0.0193 (13)
Se20.70612 (7)0.44056 (5)0.05032 (5)0.02365 (16)
N30.8650 (5)0.6324 (4)0.0822 (4)0.0211 (11)
H30.80290.67400.03080.025*
C40.9684 (6)0.6954 (5)0.1692 (5)0.0209 (13)
O40.9745 (4)0.8050 (3)0.1704 (3)0.0289 (10)
C51.0622 (6)0.6232 (5)0.2538 (4)0.0186 (13)
H51.13160.66010.31850.022*
C61.0522 (6)0.5038 (5)0.2419 (4)0.0175 (13)
C71.1449 (6)0.4176 (5)0.3218 (4)0.0187 (13)
H71.18030.35540.27760.022*
C81.2905 (6)0.4788 (5)0.4025 (5)0.0309 (15)
H8A1.35690.51780.35980.046*
H8B1.35000.41940.45090.046*
H8C1.25770.53840.44840.046*
C91.0398 (7)0.3559 (5)0.3887 (5)0.0315 (16)
H9A0.94690.31700.33690.047*
H9B1.00680.41540.43460.047*
H9C1.09900.29640.43700.047*
N110.6861 (5)1.1339 (4)0.0501 (4)0.0180 (11)
H110.69301.21210.04620.022*
C120.7948 (6)1.0748 (5)0.0249 (4)0.0208 (13)
Se120.95588 (7)1.14876 (5)0.13130 (5)0.02879 (18)
N130.7749 (5)0.9551 (4)0.0180 (3)0.0216 (11)
H130.84340.91450.06600.026*
C140.6542 (6)0.8899 (5)0.0593 (5)0.0238 (14)
O140.6489 (4)0.7804 (3)0.0561 (3)0.0331 (11)
C150.5490 (6)0.9598 (5)0.1357 (5)0.0241 (14)
H150.46450.92170.19080.029*
C160.5666 (6)1.0800 (5)0.1315 (4)0.0159 (12)
C170.4665 (6)1.1617 (5)0.2126 (4)0.0187 (13)
H170.43931.22850.16880.022*
C180.3155 (6)1.1015 (5)0.2820 (5)0.0312 (15)
H18A0.25481.06830.23270.047*
H18B0.33951.03750.32770.047*
H18C0.25411.15980.33080.047*
C190.5621 (7)1.2137 (5)0.2871 (5)0.0302 (15)
H19A0.65981.25250.24100.045*
H19B0.50141.27230.33590.045*
H19C0.58691.15000.33280.045*
C200.4146 (7)0.6182 (5)0.2314 (5)0.0339 (16)
H20A0.35780.65050.17980.041*
H20B0.52610.61280.18950.041*
Cl10.33267 (17)0.47388 (12)0.27928 (13)0.0310 (4)
Cl20.40267 (19)0.71468 (13)0.34259 (14)0.0392 (4)
C210.1276 (6)0.0082 (5)0.3734 (5)0.0302 (15)
H21A0.10370.04510.29770.036*
H21B0.03720.03820.37760.036*
Cl30.29574 (19)0.08815 (14)0.39413 (15)0.0431 (5)
Cl40.1519 (2)0.12112 (13)0.47302 (13)0.0420 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.024 (3)0.005 (2)0.027 (3)0.0004 (19)0.001 (2)0.003 (2)
C20.019 (3)0.017 (3)0.019 (3)0.001 (2)0.001 (3)0.002 (2)
Se20.0299 (4)0.0141 (3)0.0214 (3)0.0004 (3)0.0027 (3)0.0021 (3)
N30.022 (3)0.012 (2)0.024 (3)0.003 (2)0.005 (2)0.004 (2)
C40.026 (3)0.018 (3)0.018 (3)0.001 (3)0.004 (3)0.004 (3)
O40.040 (3)0.010 (2)0.027 (2)0.0014 (18)0.007 (2)0.0035 (18)
C50.018 (3)0.022 (3)0.012 (3)0.000 (2)0.002 (2)0.003 (2)
C60.016 (3)0.022 (3)0.017 (3)0.001 (2)0.008 (3)0.004 (2)
C70.016 (3)0.019 (3)0.021 (3)0.003 (2)0.005 (3)0.003 (2)
C80.029 (4)0.028 (4)0.033 (4)0.006 (3)0.001 (3)0.005 (3)
C90.045 (4)0.016 (3)0.031 (4)0.004 (3)0.005 (3)0.009 (3)
N110.024 (3)0.006 (2)0.021 (3)0.0002 (19)0.001 (2)0.001 (2)
C120.028 (3)0.015 (3)0.020 (3)0.001 (2)0.008 (3)0.002 (2)
Se120.0347 (4)0.0138 (3)0.0279 (4)0.0002 (3)0.0089 (3)0.0023 (3)
N130.026 (3)0.014 (3)0.017 (3)0.003 (2)0.007 (2)0.002 (2)
C140.021 (3)0.024 (3)0.025 (4)0.003 (3)0.004 (3)0.003 (3)
O140.035 (3)0.013 (2)0.041 (3)0.0010 (18)0.008 (2)0.001 (2)
C150.024 (3)0.022 (3)0.023 (3)0.003 (3)0.002 (3)0.001 (3)
C160.011 (3)0.022 (3)0.016 (3)0.002 (2)0.007 (2)0.001 (3)
C170.023 (3)0.018 (3)0.014 (3)0.003 (2)0.004 (3)0.001 (2)
C180.032 (4)0.032 (4)0.026 (4)0.004 (3)0.001 (3)0.005 (3)
C190.043 (4)0.021 (3)0.023 (4)0.002 (3)0.003 (3)0.004 (3)
C200.043 (4)0.018 (3)0.035 (4)0.002 (3)0.002 (3)0.005 (3)
Cl10.0353 (9)0.0190 (8)0.0384 (10)0.0031 (6)0.0103 (8)0.0032 (7)
Cl20.0533 (11)0.0247 (9)0.0368 (10)0.0058 (7)0.0085 (8)0.0053 (7)
C210.037 (4)0.023 (3)0.024 (4)0.008 (3)0.001 (3)0.005 (3)
Cl30.0420 (10)0.0348 (10)0.0516 (12)0.0095 (8)0.0132 (9)0.0035 (8)
Cl40.0661 (12)0.0278 (9)0.0300 (10)0.0019 (8)0.0089 (9)0.0053 (7)
Geometric parameters (Å, º) top
N1—C21.346 (6)C12—Se121.825 (5)
N1—C61.383 (6)N13—C141.402 (6)
N1—H10.8800N13—H130.8800
C2—N31.351 (6)C14—O141.233 (6)
C2—Se21.829 (5)C14—C151.416 (7)
N3—C41.381 (6)C15—C161.354 (7)
N3—H30.8800C15—H150.9500
C4—O41.232 (6)C16—C171.506 (7)
C4—C51.440 (7)C17—C181.508 (7)
C5—C61.348 (7)C17—C191.512 (7)
C5—H50.9500C17—H171.0000
C6—C71.505 (7)C18—H18A0.9800
C7—C81.534 (7)C18—H18B0.9800
C7—C91.545 (7)C18—H18C0.9800
C7—H71.0000C19—H19A0.9800
C8—H8A0.9800C19—H19B0.9800
C8—H8B0.9800C19—H19C0.9800
C8—H8C0.9800C20—Cl21.749 (6)
C9—H9A0.9800C20—Cl11.776 (5)
C9—H9B0.9800C20—H20A0.9900
C9—H9C0.9800C20—H20B0.9900
N11—C121.355 (6)C21—Cl31.755 (5)
N11—C161.366 (6)C21—Cl41.763 (5)
N11—H110.8800C21—H21A0.9900
C12—N131.350 (6)C21—H21B0.9900
C2—N1—C6124.3 (4)C12—N13—C14125.6 (5)
C2—N1—H1117.8C12—N13—H13117.2
C6—N1—H1117.8C14—N13—H13117.2
N1—C2—N3115.4 (5)O14—C14—N13119.0 (5)
N1—C2—Se2123.0 (4)O14—C14—C15126.3 (5)
N3—C2—Se2121.6 (4)N13—C14—C15114.7 (5)
C2—N3—C4126.1 (5)C16—C15—C14121.2 (5)
C2—N3—H3116.9C16—C15—H15119.4
C4—N3—H3116.9C14—C15—H15119.4
O4—C4—N3120.0 (5)C15—C16—N11118.8 (5)
O4—C4—C5125.1 (5)C15—C16—C17125.1 (5)
N3—C4—C5114.8 (5)N11—C16—C17116.0 (4)
C6—C5—C4120.5 (5)C16—C17—C18113.4 (4)
C6—C5—H5119.7C16—C17—C19108.7 (4)
C4—C5—H5119.7C18—C17—C19110.3 (5)
C5—C6—N1118.7 (5)C16—C17—H17108.1
C5—C6—C7126.3 (5)C18—C17—H17108.1
N1—C6—C7114.9 (4)C19—C17—H17108.1
C6—C7—C8112.0 (4)C17—C18—H18A109.5
C6—C7—C9110.0 (4)C17—C18—H18B109.5
C8—C7—C9109.7 (5)H18A—C18—H18B109.5
C6—C7—H7108.4C17—C18—H18C109.5
C8—C7—H7108.4H18A—C18—H18C109.5
C9—C7—H7108.4H18B—C18—H18C109.5
C7—C8—H8A109.5C17—C19—H19A109.5
C7—C8—H8B109.5C17—C19—H19B109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
C7—C8—H8C109.5C17—C19—H19C109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
C7—C9—H9A109.5Cl2—C20—Cl1111.3 (3)
C7—C9—H9B109.5Cl2—C20—H20A109.4
H9A—C9—H9B109.5Cl1—C20—H20A109.4
C7—C9—H9C109.5Cl2—C20—H20B109.4
H9A—C9—H9C109.5Cl1—C20—H20B109.4
H9B—C9—H9C109.5H20A—C20—H20B108.0
C12—N11—C16124.4 (4)Cl3—C21—Cl4112.1 (3)
C12—N11—H11117.8Cl3—C21—H21A109.2
C16—N11—H11117.8Cl4—C21—H21A109.2
N13—C12—N11115.3 (5)Cl3—C21—H21B109.2
N13—C12—Se12121.1 (4)Cl4—C21—H21B109.2
N11—C12—Se12123.6 (4)H21A—C21—H21B107.9
(7) top
Crystal data top
C7H10I2N2OSeZ = 2
Mr = 470.93F(000) = 428
Triclinic, P1Dx = 2.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.603 (2) ÅCell parameters from 1665 reflections
b = 7.700 (3) Åθ = 2.8–27.0°
c = 13.037 (5) ŵ = 8.04 mm1
α = 75.969 (6)°T = 150 K
β = 86.808 (6)°Column, red
γ = 73.113 (6)°0.22 × 0.10 × 0.06 mm
V = 615.3 (7) Å3
Data collection top
Bruker SMART1000 CCD area detector
diffractometer
2660 independent reflections
Radiation source: normal-focus sealed tube1702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SHELXTL version 2.10; Bruker, 2003)
h = 88
Tmin = 0.114, Tmax = 0.209k = 99
5463 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.048P)2P]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.001
2657 reflectionsΔρmax = 1.26 e Å3
118 parametersΔρmin = 1.31 e Å3
0 restraints
Crystal data top
C7H10I2N2OSeγ = 73.113 (6)°
Mr = 470.93V = 615.3 (7) Å3
Triclinic, P1Z = 2
a = 6.603 (2) ÅMo Kα radiation
b = 7.700 (3) ŵ = 8.04 mm1
c = 13.037 (5) ÅT = 150 K
α = 75.969 (6)°0.22 × 0.10 × 0.06 mm
β = 86.808 (6)°
Data collection top
Bruker SMART1000 CCD area detector
diffractometer
2660 independent reflections
Absorption correction: multi-scan
(SHELXTL version 2.10; Bruker, 2003)
1702 reflections with I > 2σ(I)
Tmin = 0.114, Tmax = 0.209Rint = 0.061
5463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.87Δρmax = 1.26 e Å3
2657 reflectionsΔρmin = 1.31 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.09128 (7)0.41491 (6)0.31637 (3)0.02543 (14)
I20.43796 (8)0.50358 (7)0.18987 (4)0.03713 (17)
Se0.22575 (10)0.31930 (10)0.44747 (5)0.02645 (19)
O40.4740 (7)0.0679 (8)0.6502 (4)0.0454 (15)
N10.1391 (8)0.1172 (7)0.6565 (4)0.0205 (12)
H1N0.27530.12730.65610.025*
C20.0547 (10)0.1938 (9)0.5683 (5)0.0219 (15)
N30.1527 (8)0.1734 (8)0.5710 (4)0.0244 (13)
H3N0.20930.22520.51330.029*
C40.2879 (10)0.0757 (10)0.6586 (6)0.0285 (17)
C50.1840 (11)0.0024 (10)0.7509 (5)0.0275 (16)
H50.26390.06110.81430.033*
C60.0229 (10)0.0216 (9)0.7496 (5)0.0237 (15)
C70.1515 (10)0.0472 (9)0.8397 (5)0.0246 (15)
H7A0.24830.10400.81310.029*
H7B0.24000.06150.86510.029*
C80.0249 (11)0.1896 (10)0.9333 (5)0.0309 (17)
H8A0.06410.29950.90920.037*
H8B0.07000.13370.96210.037*
C90.1684 (13)0.2508 (11)1.0184 (5)0.044 (2)
H9A0.08350.34271.07730.066*
H9B0.26140.30730.99010.066*
H9C0.25440.14241.04330.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0296 (3)0.0242 (3)0.0203 (2)0.00775 (19)0.00053 (19)0.00133 (18)
I20.0323 (3)0.0342 (3)0.0368 (3)0.0074 (2)0.0084 (2)0.0024 (2)
Se0.0238 (4)0.0321 (4)0.0199 (4)0.0080 (3)0.0031 (3)0.0013 (3)
O40.023 (3)0.061 (4)0.045 (3)0.019 (3)0.007 (2)0.012 (3)
N10.017 (3)0.024 (3)0.018 (3)0.004 (2)0.001 (2)0.001 (2)
C20.020 (3)0.019 (3)0.024 (4)0.005 (3)0.001 (3)0.002 (3)
N30.019 (3)0.026 (3)0.023 (3)0.005 (2)0.000 (2)0.001 (3)
C40.019 (4)0.030 (4)0.034 (4)0.008 (3)0.008 (3)0.000 (3)
C50.032 (4)0.028 (4)0.018 (4)0.004 (3)0.010 (3)0.001 (3)
C60.028 (4)0.020 (4)0.024 (4)0.009 (3)0.000 (3)0.006 (3)
C70.026 (4)0.023 (4)0.022 (4)0.004 (3)0.001 (3)0.004 (3)
C80.039 (4)0.026 (4)0.024 (4)0.010 (3)0.000 (3)0.001 (3)
C90.068 (6)0.038 (5)0.020 (4)0.020 (4)0.006 (4)0.009 (3)
Geometric parameters (Å, º) top
I1—Se2.7807 (11)C5—H50.9500
I1—I22.8928 (10)C6—C71.494 (9)
Se—C21.876 (6)C7—C81.524 (9)
O4—C41.213 (8)C7—H7A0.9900
N1—C21.331 (8)C7—H7B0.9900
N1—C61.395 (8)C8—C91.496 (10)
N1—H1N0.8800C8—H8A0.9900
C2—N31.334 (8)C8—H8B0.9900
N3—C41.405 (8)C9—H9A0.9800
N3—H3N0.8800C9—H9B0.9800
C4—C51.429 (10)C9—H9C0.9800
C5—C61.332 (9)
Se—I1—I2176.75 (2)N1—C6—C7114.2 (6)
C2—Se—I196.9 (2)C6—C7—C8115.3 (5)
C2—N1—C6123.4 (5)C6—C7—H7A108.4
C2—N1—H1N118.3C8—C7—H7A108.4
C6—N1—H1N118.3C6—C7—H7B108.4
N1—C2—N3116.9 (6)C8—C7—H7B108.4
N1—C2—Se119.9 (5)H7A—C7—H7B107.5
N3—C2—Se123.2 (5)C9—C8—C7111.0 (6)
C2—N3—C4125.2 (6)C9—C8—H8A109.4
C2—N3—H3N117.4C7—C8—H8A109.4
C4—N3—H3N117.4C9—C8—H8B109.4
O4—C4—N3118.4 (6)C7—C8—H8B109.4
O4—C4—C5127.1 (6)H8A—C8—H8B108.0
N3—C4—C5114.4 (6)C8—C9—H9A109.5
C6—C5—C4121.1 (6)C8—C9—H9B109.5
C6—C5—H5119.5H9A—C9—H9B109.5
C4—C5—H5119.5C8—C9—H9C109.5
C5—C6—N1119.0 (6)H9A—C9—H9C109.5
C5—C6—C7126.8 (6)H9B—C9—H9C109.5
C6—N1—C2—N31.1 (9)N3—C4—C5—C62.5 (10)
C6—N1—C2—Se180.0 (5)C4—C5—C6—N10.8 (11)
I1—Se—C2—N1179.3 (5)C4—C5—C6—C7179.8 (6)
I1—Se—C2—N30.5 (6)C2—N1—C6—C51.1 (10)
N1—C2—N3—C40.9 (10)C2—N1—C6—C7178.0 (6)
Se—C2—N3—C4177.9 (5)C5—C6—C7—C814.8 (11)
C2—N3—C4—O4179.9 (7)N1—C6—C7—C8166.2 (6)
C2—N3—C4—C52.7 (10)C6—C7—C8—C9179.3 (6)
O4—C4—C5—C6179.6 (8)
(9) top
Crystal data top
C24H26N8O4Se2·2(H2O)Z = 1
Mr = 684.48F(000) = 346
Triclinic, P1Dx = 1.712 Mg m3
a = 4.8330 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7970 (5) ÅCell parameters from 2951 reflections
c = 14.1796 (8) Åθ = 2.9–27.5°
α = 83.490 (3)°µ = 2.84 mm1
β = 84.431 (3)°T = 120 K
γ = 89.353 (3)°Needle, orange
V = 663.91 (6) Å30.20 × 0.04 × 0.03 mm
Data collection top
Bruker Nonius kappaCCD area detector
diffractometer
12058 reflections with I > 2σ(I)
Radiation source: FR591 rotating anodeRint = 0.060
ω and phi scansθmax = 27.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.679, Tmax = 1.000k = 1212
13298 measured reflectionsl = 1818
13281 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: placed geometrically
wR(F2) = 0.221Riding model
S = 1.04 w = 1/[σ2(Fo2) + (0.098P)2 + 8.436P]
where P = (Fo2 + 2Fc2)/3
13281 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 3.35 e Å3
0 restraintsΔρmin = 2.06 e Å3
Crystal data top
C24H26N8O4Se2·2(H2O)γ = 89.353 (3)°
Mr = 684.48V = 663.91 (6) Å3
Triclinic, P1Z = 1
a = 4.8330 (2) ÅMo Kα radiation
b = 9.7970 (5) ŵ = 2.84 mm1
c = 14.1796 (8) ÅT = 120 K
α = 83.490 (3)°0.20 × 0.04 × 0.03 mm
β = 84.431 (3)°
Data collection top
Bruker Nonius kappaCCD area detector
diffractometer
13281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
12058 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.060
13298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.221Riding model
S = 1.04Δρmax = 3.35 e Å3
13281 reflectionsΔρmin = 2.06 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal is affected by twinning, principally by a 180 degree rotation about [001].

The water H atoms were not located, but are included in the formula, formula weight, density, mu, etc.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6706 (7)0.1491 (4)0.6086 (3)0.0261 (8)
C20.7861 (8)0.1716 (4)0.5228 (3)0.0213 (9)
Se20.64806 (8)0.05982 (4)0.43430 (3)0.01942 (13)
N30.9985 (7)0.2698 (4)0.4937 (3)0.0237 (8)
C41.0998 (8)0.3449 (4)0.5642 (3)0.0228 (8)
O41.2814 (7)0.4333 (4)0.5408 (2)0.0368 (8)
C50.9727 (8)0.3122 (5)0.6585 (3)0.0264 (9)
H5A1.03390.35780.70840.032*
C60.7679 (8)0.2185 (4)0.6795 (3)0.0250 (9)
C70.6138 (9)0.1823 (5)0.7756 (3)0.0296 (10)
H7A0.59750.08100.78790.035*
H7B0.42330.22030.77470.035*
C80.7477 (10)0.2343 (5)0.8576 (3)0.0360 (11)
H8A0.63460.20630.91770.054*
H8B0.76010.33470.84730.054*
H8C0.93470.19530.86050.054*
N110.9880 (7)0.2203 (4)0.3389 (3)0.0267 (8)
C121.1022 (9)0.2925 (5)0.3959 (3)0.0258 (9)
N131.3078 (7)0.3826 (4)0.3670 (3)0.0281 (8)
H13A1.37490.42910.40930.034*
C141.4195 (9)0.4051 (4)0.2715 (3)0.0230 (9)
O141.6106 (6)0.4878 (3)0.2466 (2)0.0305 (7)
C151.2867 (9)0.3226 (5)0.2087 (3)0.0300 (10)
H15A1.34460.33200.14240.036*
C161.0852 (9)0.2345 (5)0.2442 (3)0.0269 (10)
C170.9424 (9)0.1403 (5)0.1876 (3)0.0298 (10)
H17A0.74290.16510.18980.036*
H17B0.95540.04520.21880.036*
C181.0575 (13)0.1433 (6)0.0841 (4)0.0494 (15)
H18A0.95210.07930.05290.074*
H18B1.25350.11590.08070.074*
H18C1.04110.23640.05170.074*
O10.7388 (8)0.5170 (5)0.0441 (3)0.0554 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0294 (19)0.0249 (19)0.025 (2)0.0052 (15)0.0022 (15)0.0069 (16)
C20.022 (2)0.0173 (19)0.025 (2)0.0039 (16)0.0020 (17)0.0099 (17)
Se20.01854 (19)0.01570 (19)0.0238 (2)0.00081 (13)0.00164 (15)0.00138 (16)
N30.0214 (17)0.0253 (19)0.025 (2)0.0008 (14)0.0017 (14)0.0047 (16)
C40.028 (2)0.0216 (19)0.021 (2)0.0046 (16)0.0062 (17)0.0063 (18)
O40.0381 (18)0.043 (2)0.0282 (19)0.0176 (16)0.0025 (14)0.0013 (16)
C50.022 (2)0.032 (2)0.025 (2)0.0013 (18)0.0018 (17)0.0016 (19)
C60.023 (2)0.026 (2)0.026 (2)0.0051 (17)0.0062 (17)0.0043 (18)
C70.028 (2)0.028 (2)0.031 (3)0.0036 (19)0.0029 (18)0.001 (2)
C80.038 (3)0.044 (3)0.024 (3)0.005 (2)0.002 (2)0.001 (2)
N110.0289 (19)0.0242 (19)0.029 (2)0.0042 (15)0.0023 (16)0.0111 (16)
C120.024 (2)0.027 (2)0.025 (2)0.0049 (18)0.0006 (17)0.0030 (19)
N130.030 (2)0.028 (2)0.026 (2)0.0003 (16)0.0026 (16)0.0046 (17)
C140.023 (2)0.022 (2)0.023 (2)0.0028 (16)0.0000 (17)0.0016 (18)
O140.0297 (16)0.0353 (18)0.0252 (18)0.0085 (14)0.0038 (13)0.0031 (14)
C150.030 (2)0.032 (2)0.026 (3)0.0037 (19)0.0032 (18)0.001 (2)
C160.024 (2)0.027 (2)0.031 (3)0.0015 (18)0.0012 (18)0.012 (2)
C170.029 (2)0.029 (2)0.033 (3)0.0024 (19)0.0063 (19)0.006 (2)
C180.085 (4)0.038 (3)0.028 (3)0.010 (3)0.013 (3)0.010 (2)
O10.052 (2)0.078 (3)0.034 (2)0.004 (2)0.0036 (17)0.001 (2)
Geometric parameters (Å, º) top
N1—C21.284 (5)C8—H8C0.9800
N1—C61.396 (6)N11—C121.296 (6)
C2—N31.414 (5)N11—C161.371 (6)
C2—Se21.926 (4)C12—N131.339 (5)
Se2—Se2i2.4328 (9)N13—C141.402 (5)
N3—C121.423 (6)N13—H13A0.8800
N3—C41.433 (5)C14—O141.234 (5)
C4—O41.235 (5)C14—C151.464 (6)
C4—C51.420 (6)C15—C161.331 (6)
C5—C61.346 (6)C15—H15A0.9500
C5—H5A0.9500C16—C171.504 (6)
C6—C71.496 (6)C17—C181.515 (7)
C7—C81.522 (7)C17—H17A0.9900
C7—H7A0.9900C17—H17B0.9900
C7—H7B0.9900C18—H18A0.9800
C8—H8A0.9800C18—H18B0.9800
C8—H8B0.9800C18—H18C0.9800
C2—N1—C6119.2 (4)C12—N11—C16118.7 (4)
N1—C2—N3123.7 (4)N11—C12—N13123.6 (4)
N1—C2—Se2114.7 (3)N11—C12—N3116.0 (4)
N3—C2—Se2121.5 (3)N13—C12—N3120.5 (4)
C2—Se2—Se2i88.97 (13)C12—N13—C14122.0 (4)
C2—N3—C12119.4 (4)C12—N13—H13A119.0
C2—N3—C4118.5 (4)C14—N13—H13A119.0
C12—N3—C4122.0 (4)O14—C14—N13120.9 (4)
O4—C4—C5124.5 (4)O14—C14—C15125.7 (4)
O4—C4—N3120.1 (4)N13—C14—C15113.3 (4)
C5—C4—N3115.4 (4)C16—C15—C14120.3 (4)
C6—C5—C4122.1 (4)C16—C15—H15A119.8
C6—C5—H5A119.0C14—C15—H15A119.8
C4—C5—H5A119.0C15—C16—N11122.1 (4)
C5—C6—N1121.0 (4)C15—C16—C17125.1 (4)
C5—C6—C7125.6 (4)N11—C16—C17112.8 (4)
N1—C6—C7113.3 (4)C16—C17—C18115.1 (4)
C6—C7—C8114.6 (4)C16—C17—H17A108.5
C6—C7—H7A108.6C18—C17—H17A108.5
C8—C7—H7A108.6C16—C17—H17B108.5
C6—C7—H7B108.6C18—C17—H17B108.5
C8—C7—H7B108.6H17A—C17—H17B107.5
H7A—C7—H7B107.6C17—C18—H18A109.5
C7—C8—H8A109.5C17—C18—H18B109.5
C7—C8—H8B109.5H18A—C18—H18B109.5
H8A—C8—H8B109.5C17—C18—H18C109.5
C7—C8—H8C109.5H18A—C18—H18C109.5
H8A—C8—H8C109.5H18B—C18—H18C109.5
H8B—C8—H8C109.5
Symmetry code: (i) x+1, y, z+1.
(10) top
Crystal data top
C28H34N8O4Se2Z = 1
Mr = 704.55F(000) = 358
Triclinic, P1Dx = 1.660 Mg m3
a = 5.0717 (6) ÅSynchrotron radiation, λ = 0.6775 Å
b = 11.8615 (14) ÅCell parameters from 1672 reflections
c = 11.9385 (14) Åθ = 2.2–27.0°
α = 83.161 (2)°µ = 2.67 mm1
β = 82.785 (2)°T = 120 K
γ = 84.358 (2)°Plate, colourless
V = 704.90 (14) Å30.08 × 0.05 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4198 independent reflections
Radiation source: Daresbury Laboratory Station 9.83144 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.038
fine–slice ω scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
SADABS version 2.10; Bruker, 2003)
h = 77
Tmin = 0.804, Tmax = 1.000k = 1616
8292 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
4198 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C28H34N8O4Se2γ = 84.358 (2)°
Mr = 704.55V = 704.90 (14) Å3
Triclinic, P1Z = 1
a = 5.0717 (6) ÅSynchrotron radiation, λ = 0.6775 Å
b = 11.8615 (14) ŵ = 2.67 mm1
c = 11.9385 (14) ÅT = 120 K
α = 83.161 (2)°0.08 × 0.05 × 0.01 mm
β = 82.785 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4198 independent reflections
Absorption correction: multi-scan
SADABS version 2.10; Bruker, 2003)
3144 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.038
8292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.98Δρmax = 0.59 e Å3
4198 reflectionsΔρmin = 0.92 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0981 (5)0.0445 (2)0.1979 (2)0.0214 (5)
C20.2181 (6)0.0405 (2)0.1429 (3)0.0210 (6)
Se20.14052 (6)0.07943 (3)0.01112 (3)0.01897 (9)
N30.3931 (5)0.1001 (2)0.1918 (2)0.0194 (5)
C40.4500 (6)0.0647 (3)0.3048 (2)0.0236 (6)
O40.6093 (5)0.1120 (2)0.34994 (19)0.0314 (5)
C50.3102 (6)0.0281 (3)0.3613 (3)0.0245 (6)
H5A0.33590.05440.43780.029*
C60.1422 (5)0.0795 (2)0.3089 (3)0.0209 (6)
C70.0107 (6)0.1780 (3)0.3649 (3)0.0236 (6)
H7A0.03550.24330.31950.028*
H7B0.20390.15580.36400.028*
C80.0425 (6)0.2165 (3)0.4867 (3)0.0255 (6)
H8A0.00720.15210.53290.031*
H8B0.23570.23810.48820.031*
C90.1119 (7)0.3171 (3)0.5394 (3)0.0313 (7)
H9A0.06650.34020.61670.047*
H9B0.06500.38100.49360.047*
H9C0.30370.29500.54190.047*
N110.4481 (5)0.2217 (2)0.0257 (2)0.0227 (5)
C120.5138 (6)0.1946 (3)0.1253 (3)0.0216 (6)
N130.6875 (5)0.2497 (2)0.1721 (2)0.0247 (5)
H13A0.71810.22780.24270.030*
C140.8191 (6)0.3401 (3)0.1118 (3)0.0232 (6)
O140.9837 (4)0.3836 (2)0.15667 (19)0.0316 (5)
C150.7378 (6)0.3730 (3)0.0002 (3)0.0241 (6)
H15A0.81010.43600.04610.029*
C160.5581 (6)0.3141 (3)0.0391 (3)0.0232 (6)
C170.4620 (6)0.3411 (3)0.1530 (3)0.0260 (6)
H17B0.26780.36280.14160.031*
H17A0.48770.27050.19120.031*
C180.5926 (6)0.4350 (3)0.2332 (3)0.0265 (6)
H18A0.77970.41350.24940.032*
H18B0.57280.50400.19730.032*
C190.4659 (7)0.4554 (3)0.3430 (3)0.0365 (8)
H19A0.55350.51520.39380.055*
H19B0.27580.47930.32660.055*
H19C0.48640.38480.37960.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0211 (12)0.0241 (13)0.0209 (13)0.0053 (9)0.0078 (10)0.0021 (10)
C20.0197 (13)0.0227 (15)0.0232 (15)0.0029 (10)0.0088 (11)0.0063 (12)
Se20.01838 (14)0.02263 (15)0.01808 (14)0.00510 (9)0.00676 (9)0.00343 (10)
N30.0212 (12)0.0220 (12)0.0175 (12)0.0067 (9)0.0071 (9)0.0033 (10)
C40.0268 (15)0.0265 (16)0.0191 (15)0.0048 (12)0.0062 (12)0.0026 (12)
O40.0373 (13)0.0372 (13)0.0244 (12)0.0172 (10)0.0145 (10)0.0004 (10)
C50.0273 (15)0.0255 (15)0.0219 (15)0.0055 (11)0.0085 (12)0.0008 (12)
C60.0194 (13)0.0223 (14)0.0219 (14)0.0011 (10)0.0057 (11)0.0035 (11)
C70.0246 (15)0.0243 (15)0.0234 (15)0.0061 (11)0.0079 (12)0.0002 (12)
C80.0286 (15)0.0267 (15)0.0225 (15)0.0069 (12)0.0075 (12)0.0011 (12)
C90.0329 (17)0.0331 (18)0.0293 (17)0.0108 (13)0.0082 (13)0.0027 (14)
N110.0263 (13)0.0252 (13)0.0190 (12)0.0076 (10)0.0088 (10)0.0010 (10)
C120.0214 (14)0.0211 (14)0.0241 (15)0.0047 (11)0.0041 (11)0.0053 (12)
N130.0257 (13)0.0307 (14)0.0194 (13)0.0083 (10)0.0068 (10)0.0009 (11)
C140.0236 (15)0.0258 (15)0.0229 (15)0.0075 (11)0.0048 (12)0.0067 (12)
O140.0335 (12)0.0375 (13)0.0282 (12)0.0185 (10)0.0093 (10)0.0026 (10)
C150.0223 (14)0.0232 (15)0.0279 (16)0.0075 (11)0.0032 (12)0.0026 (13)
C160.0201 (14)0.0243 (15)0.0258 (15)0.0036 (11)0.0043 (11)0.0024 (12)
C170.0244 (15)0.0321 (17)0.0229 (15)0.0094 (12)0.0034 (12)0.0017 (13)
C180.0283 (16)0.0278 (16)0.0240 (16)0.0076 (12)0.0043 (12)0.0002 (13)
C190.046 (2)0.039 (2)0.0265 (17)0.0169 (16)0.0099 (15)0.0041 (15)
Geometric parameters (Å, º) top
N1—C21.296 (4)C9—H9C0.9800
N1—C61.379 (4)N11—C121.272 (4)
C2—N31.407 (3)N11—C161.386 (4)
C2—Se21.921 (3)C12—N131.356 (3)
Se2—Se2i2.4427 (6)N13—C141.396 (4)
N3—C41.421 (4)N13—H13A0.8800
N3—C121.437 (4)C14—O141.230 (3)
C4—O41.236 (3)C14—C151.443 (4)
C4—C51.423 (4)C15—C161.360 (4)
C5—C61.348 (4)C15—H15A0.9500
C5—H5A0.9500C16—C171.491 (4)
C6—C71.509 (4)C17—C181.526 (4)
C7—C81.520 (4)C17—H17B0.9900
C7—H7A0.9900C17—H17A0.9900
C7—H7B0.9900C18—C191.515 (4)
C8—C91.522 (4)C18—H18A0.96
C8—H8A0.9900C18—H18B0.96
C8—H8B0.9900C19—H19A0.9800
C9—H9A0.9800C19—H19B0.9800
C9—H9B0.9800C19—H19C0.9800
C2—N1—C6119.6 (2)C12—N11—C16118.2 (2)
N1—C2—N3122.6 (3)N11—C12—N13124.1 (3)
N1—C2—Se2115.2 (2)N11—C12—N3117.2 (2)
N3—C2—Se2122.2 (2)N13—C12—N3118.6 (3)
C2—Se2—Se2i89.43 (9)C12—N13—C14122.1 (3)
C2—N3—C4119.6 (2)C12—N13—H13A119.0
C2—N3—C12119.0 (2)C14—N13—H13A119.0
C4—N3—C12121.4 (2)O14—C14—N13119.3 (3)
O4—C4—N3121.9 (3)O14—C14—C15127.1 (3)
O4—C4—C5123.0 (3)N13—C14—C15113.6 (2)
N3—C4—C5115.1 (2)C16—C15—C14120.2 (3)
C6—C5—C4121.6 (3)C16—C15—H15A119.9
C6—C5—H5A119.2C14—C15—H15A119.9
C4—C5—H5A119.2C15—C16—N11121.7 (3)
C5—C6—N1121.4 (3)C15—C16—C17124.3 (3)
C5—C6—C7123.7 (3)N11—C16—C17114.0 (2)
N1—C6—C7114.9 (2)C16—C17—C18117.0 (2)
C6—C7—C8114.3 (2)C16—C17—H17B108.1
C6—C7—H7A108.7C18—C17—H17B108.1
C8—C7—H7A108.7C16—C17—H17A108.1
C6—C7—H7B108.7C18—C17—H17A108.1
C8—C7—H7B108.7H17B—C17—H17A107.3
H7A—C7—H7B107.6C19—C18—C17110.5 (3)
C7—C8—C9112.6 (2)C19—C18—H18A111
C7—C8—H8A109.1C17—C18—H18A110
C9—C8—H8A109.1C19—C18—H18B110
C7—C8—H8B109.1C17—C18—H18B109
C9—C8—H8B109.1H18A—C18—H18B108
H8A—C8—H8B107.8C18—C19—H19A109.5
C8—C9—H9A109.5C18—C19—H19B109.5
C8—C9—H9B109.5H19A—C19—H19B109.5
H9A—C9—H9B109.5C18—C19—H19C109.5
C8—C9—H9C109.5H19A—C19—H19C109.5
H9A—C9—H9C109.5H19B—C19—H19C109.5
H9B—C9—H9C109.5
Symmetry code: (i) x, y, z.
(11) top
Crystal data top
C7H10N2O2F(000) = 1476
Mr = 154.17Dx = 1.352 Mg m3
Rhombohedral, R3Mo Kα radiation, λ = 0.71073 Å
a = 19.9444 (10) ÅCell parameters from 1748 reflections
c = 9.8918 (10) Åθ = 2.4–27.4°
α = 90°µ = 0.10 mm1
γ = 120°T = 150 K
V = 3407.6 (10) Å3Lens, orange
Z = 180.52 × 0.17 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
1297 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 2519
5827 measured reflectionsk = 2425
1750 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
1750 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H10N2O2V = 3407.6 (10) Å3
Mr = 154.17Z = 18
Rhombohedral, R3Mo Kα radiation
a = 19.9444 (10) ŵ = 0.10 mm1
c = 9.8918 (10) ÅT = 150 K
α = 90°0.52 × 0.17 × 0.17 mm
γ = 120°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
1297 reflections with I > 2σ(I)
5827 measured reflectionsRint = 0.039
1750 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
1750 reflectionsΔρmin = 0.16 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44496 (7)0.43728 (6)0.14328 (13)0.0258 (3)
H1A0.49500.47070.14380.031*
C20.39503 (8)0.46548 (8)0.14184 (15)0.0246 (3)
O20.41748 (6)0.53514 (5)0.14432 (11)0.0312 (3)
N30.31833 (6)0.41060 (7)0.14000 (12)0.0247 (3)
H3A0.28480.42700.13630.030*
C40.28878 (8)0.33105 (8)0.14348 (16)0.0239 (3)
O40.21781 (5)0.28696 (6)0.14833 (11)0.0302 (3)
C50.34551 (8)0.30687 (8)0.14229 (15)0.0242 (4)
H5A0.32920.25320.14030.029*
C60.42145 (8)0.35933 (8)0.14395 (15)0.0230 (3)
C70.48678 (8)0.34221 (8)0.14507 (16)0.0273 (4)
H7A0.52170.37080.22120.033*
H7B0.51680.36260.06050.033*
C80.46339 (9)0.25734 (8)0.15790 (17)0.0299 (4)
H8A0.43720.23720.24580.036*
H8B0.42630.22740.08520.036*
C90.53339 (10)0.24658 (9)0.1483 (2)0.0435 (5)
H9A0.51670.19150.15670.065*
H9B0.56980.27550.22110.065*
H9C0.55890.26580.06070.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0171 (6)0.0197 (6)0.0390 (8)0.0079 (5)0.0004 (5)0.0011 (5)
C20.0220 (7)0.0226 (7)0.0291 (9)0.0111 (6)0.0000 (6)0.0007 (6)
O20.0241 (5)0.0202 (5)0.0491 (7)0.0110 (4)0.0020 (5)0.0004 (5)
N30.0189 (6)0.0208 (6)0.0351 (8)0.0105 (5)0.0007 (5)0.0003 (5)
C40.0231 (7)0.0213 (7)0.0272 (8)0.0111 (6)0.0006 (6)0.0006 (6)
O40.0190 (5)0.0219 (5)0.0466 (7)0.0080 (4)0.0018 (4)0.0013 (5)
C50.0243 (7)0.0199 (7)0.0287 (9)0.0113 (6)0.0008 (6)0.0001 (6)
C60.0240 (7)0.0201 (7)0.0250 (8)0.0112 (6)0.0006 (6)0.0002 (6)
C70.0212 (7)0.0242 (7)0.0366 (9)0.0114 (6)0.0017 (6)0.0006 (6)
C80.0270 (8)0.0253 (8)0.0408 (10)0.0156 (7)0.0004 (7)0.0001 (6)
C90.0341 (9)0.0307 (9)0.0716 (13)0.0206 (7)0.0018 (9)0.0003 (8)
Geometric parameters (Å, º) top
N1—C21.3670 (17)N1—H1A0.88
N1—C61.3812 (16)N3—H3A0.88
C2—O21.2286 (16)C5—H5A0.95
C2—N31.3652 (17)C7—H7A0.99
N3—C41.3894 (17)C7—H7B0.99
C4—O41.2387 (16)C8—H8A0.99
C4—C51.4348 (18)C8—H8B0.99
C5—C61.3432 (18)C9—H9A0.98
C6—C71.5031 (19)C9—H9B0.98
C7—C81.5195 (19)C9—H9C0.98
C8—C91.518 (2)
C2—N1—C6123.79 (11)C4—C5—H5A120
O2—C2—N3122.39 (12)C6—C5—H5A120
O2—C2—N1122.45 (12)C6—C7—H7A108
N3—C2—N1115.14 (11)C6—C7—H7B108
C2—N3—C4125.50 (11)C8—C7—H7A108
O4—C4—N3119.57 (12)C8—C7—H7B108
O4—C4—C5125.09 (12)H7A—C7—H7B107
N3—C4—C5115.34 (11)C7—C8—H8A109
C6—C5—C4120.64 (12)C7—C8—H8B109
C5—C6—N1119.51 (12)C9—C8—H8A109
C5—C6—C7126.23 (12)C9—C8—H8B109
N1—C6—C7114.26 (11)H8A—C8—H8B108
C6—C7—C8115.82 (12)C8—C9—H9A109
C9—C8—C7111.13 (13)C8—C9—H9B110
C6—N1—H1A118C8—C9—H9C110
C2—N1—H1A118H9A—C9—H9B110
C2—N3—H3A117H9A—C9—H9C109
C4—N3—H3A117H9B—C9—H9C109

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC5H6N2OSeC6H8N2OSeC7H10N2OSeC7H10N2OSe
Mr189.08203.10217.13217.13
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Orthorhombic, PbcaTriclinic, P1
Temperature (K)120150120150
a, b, c (Å)4.3411 (7), 14.756 (2), 9.690 (2)8.394 (2), 10.029 (2), 14.931 (4)10.568 (7), 11.257 (7), 28.79 (2)8.9192 (9), 10.6403 (10), 15.1965 (15)
α, β, γ (°)90, 90.157 (2), 90101.023 (4), 100.893 (4), 105.705 (4)90, 90, 90106.019 (2), 105.366 (2), 96.166 (2)
V3)620.71 (18)1148.5 (5)3425 (4)1311.0 (2)
Z46166
Radiation typeSynchrotron, λ = 0.6775 ÅMo KαSynchrotron, λ = 0.6775 ÅMo Kα
µ (mm1)5.964.844.334.24
Crystal size (mm)0.10 × 0.01 × 0.010.21 × 0.12 × 0.040.20 × 0.02 × 0.010.25 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Bruker SMART APEX CCD area detector
diffractometer
Bruker SMART APEXII CCD
diffractometer
Bruker SMART APEX CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS version 2.10; Bruker, 2003)
Multi-scan
(SADABS version 2.03; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
Bruker SADABS v2.03
Tmin, Tmax0.816, 1.0000.687, 1.0000.260, 1.0000.581, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
6350, 1770, 1642 8174, 4025, 3189 24855, 3471, 2417 8163, 5780, 4932
Rint0.0270.0380.2500.013
(sin θ/λ)max1)0.7160.5960.6240.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 0.80 0.056, 0.146, 1.03 0.173, 0.408, 1.18 0.028, 0.071, 1.04
No. of reflections1770402534715780
No. of parameters8327199298
No. of restraints069350
H-atom treatmentRigid rotating group; riding modelH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.801.48, 1.022.38, 2.330.65, 0.40


(4.CH2Cl2)(7)(9)(10)
Crystal data
Chemical formulaC8H12Cl2N2OSeC7H10I2N2OSeC24H26N8O4Se2·2(H2O)C28H34N8O4Se2
Mr302.06470.93684.48704.55
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)150150120120
a, b, c (Å)8.841 (3), 11.259 (3), 12.424 (4)6.603 (2), 7.700 (3), 13.037 (5)4.8330 (2), 9.7970 (5), 14.1796 (8)5.0717 (6), 11.8615 (14), 11.9385 (14)
α, β, γ (°)90.450 (5), 105.350 (4), 92.945 (5)75.969 (6), 86.808 (6), 73.113 (6)83.490 (3), 84.431 (3), 89.353 (3)83.161 (2), 82.785 (2), 84.358 (2)
V3)1190.7 (6)615.3 (7)663.91 (6)704.90 (14)
Z4211
Radiation typeMo KαMo KαMo KαSynchrotron, λ = 0.6775 Å
µ (mm1)3.578.042.842.67
Crystal size (mm)0.36 × 0.22 × 0.020.22 × 0.10 × 0.060.20 × 0.04 × 0.030.08 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART APEX CCD area detector
diffractometer
Bruker SMART1000 CCD area detector
diffractometer
Bruker Nonius kappaCCD area detector
diffractometer
Bruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS version 1.02; Bruker, 2001)
Multi-scan
(SHELXTL version 2.10; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Multi-scan
SADABS version 2.10; Bruker, 2003)
Tmin, Tmax0.684, 1.0000.114, 0.2090.679, 1.0000.804, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10743, 6193, 4391 5463, 2660, 1702 13298, 13281, 12058 8292, 4198, 3144
Rint0.0500.0610.0600.038
(sin θ/λ)max1)0.6500.6500.6540.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.099, 0.97 0.038, 0.091, 0.87 0.084, 0.221, 1.04 0.042, 0.097, 0.98
No. of reflections61932657132814198
No. of parameters254118182190
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedRiding modelH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.511.26, 1.313.35, 2.060.59, 0.92


(11)
Crystal data
Chemical formulaC7H10N2O2
Mr154.17
Crystal system, space groupRhombohedral, R3
Temperature (K)150
a, b, c (Å)19.9444 (10), 19.9444 (10), 9.8918 (10)
α, β, γ (°)90, 90, 120
V3)3407.6 (10)
Z18
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area detector
diffractometer
Absorption correction
Tmin, Tmax
No. of measured, independent and
observed [I > 2σ(I)] reflections
5827, 1750, 1297
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.05
No. of reflections1750
No. of parameters100
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.16

Computer programs: Bruker APEX2 (Bruker, 2004), Bruker SMART version 5.625 (Bruker, 2001), Bruker SMART version 5.624 (Bruker, 2001), COLLECT (Hooft, 1998), Bruker APEX2, Bruker SAINT (Bruker, 2004), Bruker SAINT version 6.36a (Bruker, 2000), Bruker SAINT version 6.36a (Bruker, 2001), DIRAX (Duisenberg, 1992), Bruker SAINT; Bruker SHELXTL (Bruker, 2001), Bruker SAINT; Bruker SHELXTL, HKL (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), enCIFer (Allen et al., 2004); PLATON, enCIFer (Allen et al., 2004; PLATON).

Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1Bi0.881.912.782 (3)169
N1A—H1AA···O10.882.002.860 (3)167
N1B—H1BA···O1Aii0.881.922.796 (3)177
N1—H1A···Se1iii0.882.603.460 (2)165
N3B—H3BA···Se1i0.882.563.428 (2)167
N3A—H3AA···Se1Bii0.882.603.430 (2)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+2, z+1.
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: SO5003 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

We thank the Marie Curie Foundation for funding (to CDA) as part of the Marie Curie Host Fellowship HPMT-CT-2001-00376 COSMIC, and the graduate program in Bio­inorganic Chemistry based at Ioannina, Greece and coordinated by NH. We thank EPSRC (UK) for the award of diffractometers and for data collection by the EPSRC National Service for Crystallography at the University of Southampton, UK, and at the Daresbury Laboratory Synchrotron Radiation Source. MS acknowledges receipt of a Royal Society–Leverhulme Trust Senior Research Fellowship and of a Royal Society Wolfson Merit Award.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAntoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455.  Google Scholar
First citationAragoni, M. C., Arca, A., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). Trends Inorg. Chem. 6, 1–18.  CAS Google Scholar
First citationAragoni, M. C., Arca, M., Blake, A. J., Devillanova, F. A., Du Mont, W.-W., Garau, A., Isaia, F., Lippolis, V., Verani, G. & Wilson, C. (2001). Angew. Chem. Int. Ed. 40, 4229–4232.  CrossRef CAS Google Scholar
First citationBent, H. A. (1968). Chem. Rev. 68, 587–648.  CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Deplano, P., Ienco, A., Mealli, C., Mercuri, M. L., Pellinghelli, M. A., Pintus, G., Saba, G. & Trogu, E. F. (1999). Inorg. Chem. 38, 4626–4636.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583–3589.  CSD CrossRef Web of Science Google Scholar
First citationBlake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037–2046.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Devillanova, F. A., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Chem. Soc. Rev. 27, 195–205.  CrossRef CAS Google Scholar
First citationBlake, A. J., Gould, R. O., Parsons, S., Radek, C. & Schröder, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 2374–2376.  CrossRef CAS Web of Science Google Scholar
First citationBlake, A. J., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Angew. Chem. Int. Ed. Engl. 37, 293–296.  CrossRef CAS Google Scholar
First citationBjorvatten, T. (1963). Acta Chem. Scand. 17, 2292–2300.  CrossRef CAS Google Scholar
First citationBolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90–91.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2000). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001a). SMART. Version 5.624 or 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Version 1.0–27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, G. Y. & McCullough, J. D. (1961). Acta Cryst. 14, 940–945.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDahl, T. & Hassel, O. (1965). Acta Chem. Scand. 19, 2000–2001.  CrossRef CAS Google Scholar
First citationDasent, W. E. (1965). Non-Existent Compounds, p. 162. New York: Marcel Dekker.  Google Scholar
First citationDietzsch, W., Sieler, J., Meiler, W. & Robien, W. (1998). Phosphorus, Sulfur Silicon Relat. Elem. 38, 293.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolmesland, O. & Römming, C. (1966). Acta Chem. Scand. 20, 2601.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). Collect. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHope, H. & McCullough, J. D. (1962). Acta Cryst. 15, 806–807.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMaddox, H. & McCullough, J. D. (1966). Inorg. Chem. 5, 522–526.  CSD CrossRef CAS Web of Science Google Scholar
First citationMont, W.-W. du, von Salzen, A. M., Ruthe, F., Seppala, E., Mugesh, G., Devillanova, F. A., Lippolis, V. & Kuhn, N. (2001). J. Organomet. Chem. 623, 14–28.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SHELXL97–2. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwinska, K. (1995). Acta Cryst. B51, 248–254.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTimoshenko, V. M., Nikolin, Y. V., Chernega, A. N. & Shermolovich, Y. G. (2002). Eur. J. Org. Chem. pp. 1619–1627.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds