Download citation
Download citation
link to html
The crystal structure of the high-pressure phase of bismuth gallium oxide, Bi2Ga4O9, was determined up to 30.5 (5) GPa from in situ single-crystal in-house and synchrotron X-ray diffraction. Structures were refined at ambient conditions and at pressures of 3.3 (2), 6.2 (3), 8.9 (1) and 14.9 (3) GPa for the low-pressure phase, and at 21.4 (5) and 30.5 (5) GPa for the high-pressure phase. The mode-Grüneisen parameters for the Raman modes of the low-pressure structure and the changes of the modes induced by the phase transition were obtained from Raman spectroscopic measurements. Complementary quantum-mechanical calculations based on density-functional theory were performed between 0 and 50 GPa. The phase transition is driven by a large spontaneous displacement of one O atom from a fully constrained position. The density-functional theory (DFT) model confirmed the persistence of the stereochemical activity of the lone electron pair up to at least 50 GPa in accordance with the crystal structure of the high-pressure phase. While the stereochemcial activity of the lone electron pair of Bi^{3+} is reduced at increasing pressure, a symmetrization of the bismuth coordination was not observed in this pressure range. This shows an unexpected stability of the localization of the lone electron pair and of its stereochemical activity at high pressure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110010104/sn5096sup1.cif
Contains datablocks ambient, 3.3GPa, 6.2GPa, 8.9GPa, 14.9GPa, 21.4GPa, 30.5GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn5096ambientsup2.hkl
Contains datablock ambient

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn50963.3GPasup3.hkl
Contains datablock 3.3GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn50966.2GPasup4.hkl
Contains datablock 6.2GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn50968.9GPasup5.hkl
Contains datablock 8.9GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn509614.9GPasup6.hkl
Contains datablock 14.9GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn509621.4GPasup7.hkl
Contains datablock 21.4GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110010104/sn509630.5GPasup8.hkl
Contains datablock 30.5GPa

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110010104/sn5096sup9.pdf
Tables of atomic parameters and displacement parameters

Computing details top

Data collection: CrysAlis CCD, Oxford Diffraction for ambient; CAD4_0 for 3.3GPa, 6.2GPa, 8.9GPa; DIF4 (Eichhorn 1987) for 14.9GPa, 21.4GPa, 30.5GPa. Cell refinement: CrysAlis RED, Oxford Diffraction for ambient; CAD4_0 for 3.3GPa, 6.2GPa, 8.9GPa; DIF4 (Eichhorn 1987) for 14.9GPa, 21.4GPa, 30.5GPa. Data reduction: CrysAlis, Oxford Diffraction for ambient; Win-IntegrStp, version 3.5 by Angel (2004) www.crystal.vt.edu/crystal Absorb v6.0 by Angel (2003) www.crystal.vt.edu/crystal for 3.3GPa, 6.2GPa, 8.9GPa; REDUCE by Eichhorn (1987) HASYLAB/DESY, Hamburg, Germany AVSORT by Eichhorn (1978) HASYLAB/DESY, Hamburg, Germany Absorb v6.0 by Angel (2003) www.crystal.vt.edu/crystal for 14.9GPa, 21.4GPa, 30.5GPa. Program(s) used to solve structure: SIR2004 (Burla2004) for ambient; SHELXS97 (sheldrick, 1997) for 30.5GPa. For all structures, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: LATEX.

bismuth gallium oxide (ambient) top
Crystal data top
Bi2Ga4O9F(000) = 724
Mr = 840.84Dx = 7.214 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
a = 7.9264 (4) ŵ = 59.05 mm1
b = 8.2922 (4) ÅT = 293 K
c = 5.8892 (3) Å, pale-yellow
V = 387.08 (3) Å30.06 × 0.05 × 0.05 mm
Z = 2
Data collection top
Xcalibur3 four-circle
diffractometer, Oxford diffraction
609 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 31.5°, θmin = 4.9°
Detector resolution: Sapphire3 CCD camera pixels mm-1h = 1010
504 exposures, 0.75 deg frame rotation, 120 s exposure time scansk = 1212
3515 measured reflectionsl = 88
641 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0234P)2 + 2.771P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.26Δρmax = 2.57 e Å3
641 reflectionsΔρmin = 1.63 e Å3
44 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0090 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.32564 (4)0.17119 (3)0.00000.00472 (13)
Ga10.00000.00000.25826 (12)0.00307 (17)
Ga20.14870 (12)0.33727 (8)0.50000.00339 (17)
O10.3528 (8)0.4312 (6)0.00000.0047 (10)
O20.3700 (8)0.4070 (6)0.50000.0061 (10)
O30.1301 (5)0.2072 (4)0.2422 (7)0.0054 (7)
O40.00000.50000.50000.028 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0032 (2)0.00527 (15)0.00574 (15)0.00041 (8)0.0000.000
Ga10.0025 (4)0.0053 (3)0.0014 (3)0.0002 (2)0.0000.000
Ga20.0026 (4)0.0051 (3)0.0025 (3)0.0002 (2)0.0000.000
O10.006 (3)0.0052 (19)0.003 (2)0.0019 (17)0.0000.000
O20.004 (3)0.011 (2)0.002 (2)0.0051 (18)0.0000.000
O30.0040 (19)0.0084 (13)0.0037 (14)0.0027 (12)0.0004 (14)0.0018 (13)
O40.025 (4)0.017 (3)0.044 (4)0.012 (3)0.0000.000
Geometric parameters (Å, º) top
Bi1—O3i2.128 (4)Ga1—Ga1vii2.8473 (14)
Bi1—O32.128 (4)Ga1—Bi1iii3.3152 (4)
Bi1—O12.166 (5)Ga2—O41.7917 (9)
Bi1—O1ii2.442 (5)Ga2—O21.847 (6)
Bi1—Ga1iii3.3152 (4)Ga2—O31.868 (4)
Bi1—Ga13.3152 (4)Ga2—O3viii1.868 (4)
Ga1—O2ii1.919 (4)O1—Ga1ix2.000 (4)
Ga1—O2iv1.919 (4)O1—Ga1x2.000 (4)
Ga1—O1v2.000 (4)O1—Bi1ix2.442 (5)
Ga1—O1ii2.000 (4)O2—Ga1xi1.919 (4)
Ga1—O32.006 (3)O2—Ga1ix1.919 (4)
Ga1—O3vi2.006 (3)O4—Ga2xii1.7917 (9)
O3i—Bi1—O384.2 (2)O3vi—Ga1—Ga1vii92.70 (11)
O3i—Bi1—O186.14 (15)O2ii—Ga1—Bi1iii125.90 (17)
O3—Bi1—O186.14 (15)O2iv—Ga1—Bi1iii95.40 (18)
O3i—Bi1—O1ii72.09 (13)O1v—Ga1—Bi1iii47.09 (15)
O3—Bi1—O1ii72.09 (13)O1ii—Ga1—Bi1iii89.04 (16)
O1—Bi1—O1ii150.30 (9)O3—Ga1—Bi1iii138.19 (12)
O3i—Bi1—Ga1iii35.44 (9)O3vi—Ga1—Bi1iii37.95 (11)
O3—Bi1—Ga1iii78.49 (11)Ga1vii—Ga1—Bi1iii117.309 (11)
O1—Bi1—Ga1iii120.22 (14)O2ii—Ga1—Bi195.40 (18)
O1ii—Bi1—Ga1iii36.87 (9)O2iv—Ga1—Bi1125.90 (17)
O3i—Bi1—Ga178.49 (11)O1v—Ga1—Bi189.04 (16)
O3—Bi1—Ga135.44 (9)O1ii—Ga1—Bi147.09 (15)
O1—Bi1—Ga1120.22 (14)O3—Ga1—Bi137.95 (11)
O1ii—Bi1—Ga136.87 (9)O3vi—Ga1—Bi1138.19 (12)
Ga1iii—Bi1—Ga154.62 (2)Ga1vii—Ga1—Bi1117.309 (11)
O2ii—Ga1—O2iv84.2 (3)Bi1iii—Ga1—Bi1125.38 (2)
O2ii—Ga1—O1v172.7 (2)O4—Ga2—O2112.89 (17)
O2iv—Ga1—O1v97.81 (17)O4—Ga2—O3112.51 (13)
O2ii—Ga1—O1ii97.81 (17)O2—Ga2—O3104.83 (16)
O2iv—Ga1—O1ii172.7 (2)O4—Ga2—O3viii112.51 (13)
O1v—Ga1—O1ii81.0 (3)O2—Ga2—O3viii104.83 (16)
O2ii—Ga1—O395.9 (2)O3—Ga2—O3viii108.7 (2)
O2iv—Ga1—O388.1 (2)Ga1ix—O1—Ga1x99.0 (3)
O1v—Ga1—O391.13 (19)Ga1ix—O1—Bi1109.99 (18)
O1ii—Ga1—O384.76 (18)Ga1x—O1—Bi1109.99 (18)
O2ii—Ga1—O3vi88.1 (2)Ga1ix—O1—Bi1ix96.04 (16)
O2iv—Ga1—O3vi95.9 (2)Ga1x—O1—Bi1ix96.04 (16)
O1v—Ga1—O3vi84.76 (18)Bi1—O1—Bi1ix138.9 (3)
O1ii—Ga1—O3vi91.13 (19)Ga2—O2—Ga1xi129.48 (18)
O3—Ga1—O3vi174.6 (2)Ga2—O2—Ga1ix129.48 (18)
O2ii—Ga1—Ga1vii42.12 (13)Ga1xi—O2—Ga1ix95.8 (3)
O2iv—Ga1—Ga1vii42.12 (13)Ga2—O3—Ga1119.8 (2)
O1v—Ga1—Ga1vii139.49 (13)Ga2—O3—Bi1124.6 (2)
O1ii—Ga1—Ga1vii139.49 (13)Ga1—O3—Bi1106.61 (15)
O3—Ga1—Ga1vii92.70 (11)Ga2xii—O4—Ga2180.0
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y, z; (iv) x1/2, y+1/2, z+1; (v) x1/2, y+1/2, z; (vi) x, y, z; (vii) x, y, z+1; (viii) x, y, z+1; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1; (xii) x, y+1, z+1.
bismuth gallium oxide (3.3GPa) top
Crystal data top
Bi2Ga4O9Dx = 7.358 Mg m3
Mr = 840.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbamCell parameters from 25 reflections
a = 7.848 (6) Åθ = 10–15°
b = 8.230 (5) ŵ = 60.14 mm1
c = 5.875 (3) ÅT = 293 K
V = 379.5 (4) Å3Rectangular plate, pale-yellow
Z = 20.11 × 0.09 × 0.04 mm
F(000) = 724
Data collection top
Nonius CAD4 kappa-four-circle
diffractometer
413 independent reflections
Radiation source: fine-focus sealed tube413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: Point detector pixels mm-1θmax = 42.4°, θmin = 3.5°
ω scan, step scan, fixed–phi methodh = 88
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.293 0.403
thickness of diamond anvil 1: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0473 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0473 mm-1
No gasket shadowing corrections were made
k = 1414
Tmin = 0.277, Tmax = 0.380l = 99
1247 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0329P)2 + 17.8425P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.19Δρmax = 3.13 e Å3
413 reflectionsΔρmin = 3.05 e Å3
21 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0170 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.33178 (12)0.16775 (7)0.00000.00634 (18)*
Ga10.00000.00000.2571 (3)0.0046 (3)*
Ga20.1476 (3)0.3354 (2)0.50000.0054 (3)*
O10.347 (2)0.4281 (15)0.00000.009 (2)*
O20.371 (2)0.4048 (17)0.50000.011 (3)*
O30.1347 (16)0.2051 (9)0.2422 (18)0.0080 (15)*
O40.00000.50000.50000.047 (9)*
Geometric parameters (Å, º) top
Bi1—O3i2.124 (12)Ga1—Ga1iii3.021 (4)
Bi1—O32.124 (12)Ga1—Bi1iii3.312 (2)
Bi1—O12.146 (12)Ga2—O41.783 (2)
Bi1—O1ii2.422 (15)Ga2—O21.847 (19)
Bi1—Ga1iii3.312 (2)Ga2—O31.859 (10)
Bi1—Ga13.312 (2)Ga2—O3viii1.859 (10)
Ga1—O2ii1.916 (11)O1—Ga1ix2.017 (12)
Ga1—O2iv1.916 (11)O1—Ga1x2.017 (12)
Ga1—O3v1.993 (9)O1—Bi1ix2.422 (15)
Ga1—O31.993 (9)O2—Ga1xi1.916 (11)
Ga1—O1vi2.017 (12)O2—Ga1ix1.916 (11)
Ga1—O1ii2.017 (12)O4—Ga2xii1.783 (2)
Ga1—Ga1vii2.854 (4)
O3i—Bi1—O384.1 (6)O1vi—Ga1—Ga1iii41.5 (4)
O3i—Bi1—O184.1 (4)O1ii—Ga1—Ga1iii41.5 (4)
O3—Bi1—O184.1 (4)Ga1vii—Ga1—Ga1iii180.0
O3i—Bi1—O1ii72.2 (4)O2ii—Ga1—Bi1iii125.7 (5)
O3—Bi1—O1ii72.2 (4)O2iv—Ga1—Bi1iii95.5 (5)
O1—Bi1—O1ii147.8 (2)O3v—Ga1—Bi1iii37.8 (3)
O3i—Bi1—Ga1iii35.1 (2)O3—Ga1—Bi1iii138.6 (3)
O3—Bi1—Ga1iii78.1 (3)O1vi—Ga1—Bi1iii46.7 (4)
O1—Bi1—Ga1iii117.5 (4)O1ii—Ga1—Bi1iii90.2 (5)
O1ii—Bi1—Ga1iii37.3 (3)Ga1vii—Ga1—Bi1iii117.13 (3)
O3i—Bi1—Ga178.1 (3)Ga1iii—Ga1—Bi1iii62.87 (3)
O3—Bi1—Ga135.1 (2)O2ii—Ga1—Bi195.5 (5)
O1—Bi1—Ga1117.5 (4)O2iv—Ga1—Bi1125.7 (5)
O1ii—Bi1—Ga137.3 (3)O3v—Ga1—Bi1138.6 (3)
Ga1iii—Bi1—Ga154.27 (7)O3—Ga1—Bi137.8 (3)
O2ii—Ga1—O2iv83.7 (8)O1vi—Ga1—Bi190.2 (5)
O2ii—Ga1—O3v88.1 (5)O1ii—Ga1—Bi146.7 (4)
O2iv—Ga1—O3v95.7 (6)Ga1vii—Ga1—Bi1117.13 (3)
O2ii—Ga1—O395.7 (6)Ga1iii—Ga1—Bi162.87 (3)
O2iv—Ga1—O388.1 (5)Bi1iii—Ga1—Bi1125.73 (7)
O3v—Ga1—O3175.0 (6)O4—Ga2—O2112.5 (4)
O2ii—Ga1—O1vi172.4 (6)O4—Ga2—O3113.8 (4)
O2iv—Ga1—O1vi97.2 (5)O2—Ga2—O3103.3 (5)
O3v—Ga1—O1vi84.3 (5)O4—Ga2—O3viii113.8 (4)
O3—Ga1—O1vi91.9 (5)O2—Ga2—O3viii103.3 (5)
O2ii—Ga1—O1ii97.2 (5)O3—Ga2—O3viii109.2 (5)
O2iv—Ga1—O1ii172.4 (6)Ga1ix—O1—Ga1x97.0 (8)
O3v—Ga1—O1ii91.9 (5)Ga1ix—O1—Bi1109.1 (5)
O3—Ga1—O1ii84.3 (5)Ga1x—O1—Bi1109.1 (5)
O1vi—Ga1—O1ii83.0 (8)Ga1ix—O1—Bi1ix96.1 (4)
O2ii—Ga1—Ga1vii41.8 (4)Ga1x—O1—Bi1ix96.1 (4)
O2iv—Ga1—Ga1vii41.8 (4)Bi1—O1—Bi1ix141.3 (9)
O3v—Ga1—Ga1vii92.5 (3)Ga2—O2—Ga1xi128.9 (5)
O3—Ga1—Ga1vii92.5 (3)Ga2—O2—Ga1ix128.9 (5)
O1vi—Ga1—Ga1vii138.5 (4)Ga1xi—O2—Ga1ix96.3 (8)
O1ii—Ga1—Ga1vii138.5 (4)Ga2—O3—Ga1118.8 (6)
O2ii—Ga1—Ga1iii138.2 (4)Ga2—O3—Bi1126.1 (6)
O2iv—Ga1—Ga1iii138.2 (4)Ga1—O3—Bi1107.1 (4)
O3v—Ga1—Ga1iii87.5 (3)Ga2xii—O4—Ga2180.0
O3—Ga1—Ga1iii87.5 (3)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y, z; (iv) x1/2, y+1/2, z+1; (v) x, y, z; (vi) x1/2, y+1/2, z; (vii) x, y, z+1; (viii) x, y, z+1; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1; (xii) x, y+1, z+1.
bismuth gallium oxide (6.2GPa) top
Crystal data top
Bi2Ga4O9Dx = 7.588 Mg m3
Mr = 840.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbamCell parameters from 25 reflections
a = 7.7333 (17) Åθ = 10–15°
b = 8.173 (10) ŵ = 62.66 mm1
c = 5.8228 (12) ÅT = 293 K
V = 368.0 (5) Å3Crystal was described in terms of coordinates of corners now back-transformed to potentially non-integer hkl, pale-yellow
Z = 20.15 × 0.11 × 0.03 mm
F(000) = 724
Data collection top
Nonius CAD4 kappa-four-circle
diffractometer
266 independent reflections
Radiation source: fine-focus sealed tube266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: Point detector pixels mm-1θmax = 39.9°, θmin = 3.5°
ω scan, step scan, fixed–phi methodh = 1313
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.299 0.404
thickness of diamond anvil 1: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0473 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0473 mm-1
No gasket shadowing corrections were made
k = 33
Tmin = 0.066, Tmax = 0.113l = 1010
1466 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0606P)2 + 33.256P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.06Δρmax = 4.39 e Å3
266 reflectionsΔρmin = 4.56 e Å3
21 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.093 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.33679 (10)0.1646 (5)0.00000.0066 (3)*
Ga10.00000.00000.2568 (4)0.0048 (5)*
Ga20.1472 (3)0.3348 (13)0.50000.0043 (5)*
O10.350 (2)0.423 (8)0.00000.008 (3)*
O20.374 (2)0.392 (7)0.50000.009 (3)*
O30.1349 (17)0.209 (5)0.240 (2)0.009 (2)*
O40.00000.50000.50000.040 (11)*
Geometric parameters (Å, º) top
Bi1—O12.12 (6)Ga1—Ga1viii2.832 (4)
Bi1—O3i2.125 (14)Ga1—Ga1iii2.990 (4)
Bi1—O32.125 (14)Ga1—Bi1iii3.291 (2)
Bi1—O1ii2.44 (5)Ga2—O41.766 (8)
Bi1—Ga1iii3.291 (2)Ga2—O21.81 (2)
Bi1—Ga13.291 (2)Ga2—O31.83 (2)
Bi1—Bi1iv3.689 (7)Ga2—O3ix1.83 (2)
Ga1—O2ii1.93 (3)O1—Ga1x2.00 (2)
Ga1—O2v1.93 (3)O1—Ga1xi2.00 (2)
Ga1—O3vi2.00 (4)O1—Bi1x2.44 (5)
Ga1—O32.00 (4)O2—Ga1xii1.93 (3)
Ga1—O1ii2.00 (2)O2—Ga1x1.93 (3)
Ga1—O1vii2.00 (2)O4—Ga2xiii1.766 (8)
O1—Bi1—O3i82.2 (12)O2v—Ga1—Ga1iii137.1 (9)
O1—Bi1—O382.2 (12)O3vi—Ga1—Ga1iii87.2 (3)
O3i—Bi1—O382.1 (8)O3—Ga1—Ga1iii87.2 (3)
O1—Bi1—O1ii146.5 (10)O1ii—Ga1—Ga1iii41.5 (8)
O3i—Bi1—O1ii72.8 (12)O1vii—Ga1—Ga1iii41.5 (8)
O3—Bi1—O1ii72.8 (12)Ga1viii—Ga1—Ga1iii180.0
O1—Bi1—Ga1iii116.4 (4)O2ii—Ga1—Bi1iii123.1 (13)
O3i—Bi1—Ga1iii35.9 (10)O2v—Ga1—Bi1iii96.9 (8)
O3—Bi1—Ga1iii77.7 (6)O3vi—Ga1—Bi1iii38.4 (6)
O1ii—Bi1—Ga1iii37.2 (7)O3—Ga1—Bi1iii137.6 (5)
O1—Bi1—Ga1116.4 (4)O1ii—Ga1—Bi1iii89.6 (8)
O3i—Bi1—Ga177.7 (6)O1vii—Ga1—Bi1iii47.7 (16)
O3—Bi1—Ga135.9 (10)Ga1viii—Ga1—Bi1iii117.02 (4)
O1ii—Bi1—Ga137.2 (7)Ga1iii—Ga1—Bi1iii62.98 (4)
Ga1iii—Bi1—Ga154.05 (8)O2ii—Ga1—Bi196.9 (8)
O1—Bi1—Bi1iv134.2 (4)O2v—Ga1—Bi1123.1 (13)
O3i—Bi1—Bi1iv128.8 (9)O3vi—Ga1—Bi1137.6 (5)
O3—Bi1—Bi1iv128.8 (9)O3—Ga1—Bi138.4 (6)
O1ii—Bi1—Bi1iv79.3 (9)O1ii—Ga1—Bi147.7 (16)
Ga1iii—Bi1—Bi1iv104.09 (15)O1vii—Ga1—Bi189.6 (8)
Ga1—Bi1—Bi1iv104.09 (15)Ga1viii—Ga1—Bi1117.02 (4)
O2ii—Ga1—O2v85.9 (17)Ga1iii—Ga1—Bi162.98 (4)
O2ii—Ga1—O3vi84.8 (16)Bi1iii—Ga1—Bi1125.95 (8)
O2v—Ga1—O3vi99.4 (15)O4—Ga2—O2115 (2)
O2ii—Ga1—O399.4 (15)O4—Ga2—O3113.3 (8)
O2v—Ga1—O384.8 (16)O2—Ga2—O3101.2 (11)
O3vi—Ga1—O3174.3 (7)O4—Ga2—O3ix113.3 (8)
O2ii—Ga1—O1ii96.3 (13)O2—Ga2—O3ix101.2 (11)
O2v—Ga1—O1ii171 (2)O3—Ga2—O3ix111 (2)
O3vi—Ga1—O1ii89.9 (17)Ga1x—O1—Ga1xi97.0 (15)
O3—Ga1—O1ii85.8 (18)Ga1x—O1—Bi1110.0 (19)
O2ii—Ga1—O1vii171 (2)Ga1xi—O1—Bi1110.0 (19)
O2v—Ga1—O1vii96.3 (13)Ga1x—O1—Bi1x95 (2)
O3vi—Ga1—O1vii85.8 (18)Ga1xi—O1—Bi1x95 (2)
O3—Ga1—O1vii89.9 (17)Bi1—O1—Bi1x141.2 (11)
O1ii—Ga1—O1vii83.0 (15)Ga2—O2—Ga1xii127.3 (9)
O2ii—Ga1—Ga1viii42.9 (9)Ga2—O2—Ga1x127.3 (9)
O2v—Ga1—Ga1viii42.9 (9)Ga1xii—O2—Ga1x94.1 (17)
O3vi—Ga1—Ga1viii92.8 (3)Ga2—O3—Ga1117.7 (9)
O3—Ga1—Ga1viii92.8 (3)Ga2—O3—Bi1126.9 (11)
O1ii—Ga1—Ga1viii138.5 (8)Ga1—O3—Bi1105.7 (15)
O1vii—Ga1—Ga1viii138.5 (8)Ga2xiii—O4—Ga2180.000 (1)
O2ii—Ga1—Ga1iii137.1 (9)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y, z; (iv) x+1, y, z; (v) x1/2, y+1/2, z+1; (vi) x, y, z; (vii) x1/2, y+1/2, z; (viii) x, y, z+1; (ix) x, y, z+1; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y+1/2, z+1; (xiii) x, y+1, z+1.
bismuth gallium oxide (8.9GPa) top
Crystal data top
Bi2Ga4O9Dx = 7.775 Mg m3
Mr = 840.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbamCell parameters from 25 reflections
a = 7.640 (2) Åθ = 10–15°
b = 8.114 (9) ŵ = 63.81 mm1
c = 5.794 (1) ÅT = 293 K
V = 359.2 (4) Å3Crystal was described in terms of coordinates of corners now back-transformed to potentially non-integer hkl, pale-yellow
Z = 20.15 × 0.11 × 0.03 mm
F(000) = 724
Data collection top
Nonius CAD4 kappa-four-circle
diffractometer
263 independent reflections
Radiation source: fine-focus sealed tube260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: Point detector pixels mm-1θmax = 40.0°, θmin = 3.5°
ω scan, step scan, fixed–phi methodh = 1313
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.301 0.404
thickness of diamond anvil 1: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 1: 4.000 mm, mu = 0.0473 mm-1
thickness of diamond anvil 2: 1.300 mm, mu = 0.2025 mm-1 thickness of platten 2: 4.000 mm, mu = 0.0473 mm-1
No gasket shadowing corrections were made
k = 33
Tmin = 0.062, Tmax = 0.111l = 1010
1391 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0818P)2 + 15.2713P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.15Δρmax = 5.22 e Å3
263 reflectionsΔρmin = 5.80 e Å3
21 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.084 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.34164 (10)0.1633 (5)0.00000.0064 (3)*
Ga10.00000.00000.2555 (4)0.0043 (5)*
Ga20.1462 (3)0.3321 (12)0.50000.0042 (5)*
O10.348 (2)0.427 (9)0.00000.011 (4)*
O20.373 (2)0.390 (6)0.50000.007 (3)*
O30.1356 (16)0.207 (5)0.239 (2)0.008 (2)*
O40.00000.50000.50000.063 (16)*
Geometric parameters (Å, º) top
Bi1—O3i2.126 (14)Ga1—Ga1x2.833 (4)
Bi1—O32.126 (14)Ga1—Ga1iii2.961 (4)
Bi1—O12.14 (7)Ga1—Bi1iii3.280 (2)
Bi1—O1ii2.40 (6)Ga1—Bi1ii3.335 (4)
Bi1—Ga1iii3.280 (2)Ga1—Bi1ix3.335 (4)
Bi1—Ga13.280 (2)Ga2—O41.762 (8)
Bi1—Ga1iv3.335 (4)Ga2—O21.80 (2)
Bi1—Ga1v3.335 (4)Ga2—O31.82 (2)
Bi1—Bi1vi3.588 (6)Ga2—O3xi1.82 (2)
Ga1—O2ii1.93 (3)O1—Ga1iv1.97 (2)
Ga1—O2vii1.93 (3)O1—Ga1v1.97 (2)
Ga1—O3viii1.97 (4)O1—Bi1iv2.40 (6)
Ga1—O31.97 (4)O2—Ga1xii1.93 (3)
Ga1—O1ix1.97 (2)O2—Ga1iv1.93 (3)
Ga1—O1ii1.97 (2)O4—Ga2xiii1.762 (8)
O3i—Bi1—O381.3 (7)O1ix—Ga1—Ga1iii41.3 (8)
O3i—Bi1—O181.4 (11)O1ii—Ga1—Ga1iii41.3 (8)
O3—Bi1—O181.4 (11)Ga1x—Ga1—Ga1iii180.0
O3i—Bi1—O1ii71.7 (12)O2ii—Ga1—Bi1iii122.9 (12)
O3—Bi1—O1ii71.7 (12)O2vii—Ga1—Bi1iii96.8 (7)
O1—Bi1—O1ii144.2 (11)O3viii—Ga1—Bi1iii38.5 (6)
O3i—Bi1—Ga1iii35.3 (11)O3—Ga1—Bi1iii137.6 (5)
O3—Bi1—Ga1iii76.8 (6)O1ix—Ga1—Bi1iii46.6 (18)
O1—Bi1—Ga1iii115.0 (4)O1ii—Ga1—Bi1iii90.5 (9)
O1ii—Bi1—Ga1iii36.6 (7)Ga1x—Ga1—Bi1iii116.83 (4)
O3i—Bi1—Ga176.8 (6)Ga1iii—Ga1—Bi1iii63.17 (4)
O3—Bi1—Ga135.3 (11)O2ii—Ga1—Bi196.8 (7)
O1—Bi1—Ga1115.0 (4)O2vii—Ga1—Bi1122.9 (12)
O1ii—Bi1—Ga136.6 (7)O3viii—Ga1—Bi1137.6 (5)
Ga1iii—Bi1—Ga153.66 (7)O3—Ga1—Bi138.5 (6)
O3i—Bi1—Ga1iv114.9 (11)O1ix—Ga1—Bi190.5 (9)
O3—Bi1—Ga1iv81.0 (9)O1ii—Ga1—Bi146.6 (18)
O1—Bi1—Ga1iv34.2 (3)Ga1x—Ga1—Bi1116.83 (4)
O1ii—Bi1—Ga1iv150.7 (5)Ga1iii—Ga1—Bi163.17 (4)
Ga1iii—Bi1—Ga1iv145.08 (9)Bi1iii—Ga1—Bi1126.34 (7)
Ga1—Bi1—Ga1iv114.78 (7)O2ii—Ga1—Bi1ii76.5 (11)
O3i—Bi1—Ga1v81.0 (9)O2vii—Ga1—Bi1ii152.2 (13)
O3—Bi1—Ga1v114.9 (11)O3viii—Ga1—Bi1ii58.2 (6)
O1—Bi1—Ga1v34.2 (3)O3—Ga1—Bi1ii119.0 (6)
O1ii—Bi1—Ga1v150.7 (5)O1ix—Ga1—Bi1ii97.2 (17)
Ga1iii—Bi1—Ga1v114.78 (7)O1ii—Ga1—Bi1ii38 (2)
Ga1—Bi1—Ga1v145.08 (9)Ga1x—Ga1—Bi1ii116.36 (5)
Ga1iv—Bi1—Ga1v52.71 (9)Ga1iii—Ga1—Bi1ii63.64 (5)
O3i—Bi1—Bi1vi128.5 (9)Bi1iii—Ga1—Bi1ii75.96 (5)
O3—Bi1—Bi1vi128.5 (9)Bi1—Ga1—Bi1ii80.90 (6)
O1—Bi1—Bi1vi136.3 (5)O2ii—Ga1—Bi1ix152.2 (13)
O1ii—Bi1—Bi1vi79.5 (11)O2vii—Ga1—Bi1ix76.5 (11)
Ga1iii—Bi1—Bi1vi103.79 (14)O3viii—Ga1—Bi1ix119.0 (6)
Ga1—Bi1—Bi1vi103.79 (14)O3—Ga1—Bi1ix58.2 (6)
Ga1iv—Bi1—Bi1vi111.12 (7)O1ix—Ga1—Bi1ix38 (2)
Ga1v—Bi1—Bi1vi111.12 (7)O1ii—Ga1—Bi1ix97.2 (17)
O2ii—Ga1—O2vii85.7 (16)Ga1x—Ga1—Bi1ix116.36 (5)
O2ii—Ga1—O3viii84.6 (14)Ga1iii—Ga1—Bi1ix63.64 (5)
O2vii—Ga1—O3viii99.5 (13)Bi1iii—Ga1—Bi1ix80.90 (6)
O2ii—Ga1—O399.5 (13)Bi1—Ga1—Bi1ix75.96 (5)
O2vii—Ga1—O384.6 (14)Bi1ii—Ga1—Bi1ix127.29 (9)
O3viii—Ga1—O3174.4 (7)O4—Ga2—O2114.1 (18)
O2ii—Ga1—O1ix169 (2)O4—Ga2—O3113.8 (8)
O2vii—Ga1—O1ix96.8 (14)O2—Ga2—O3100.9 (10)
O3viii—Ga1—O1ix84.8 (19)O4—Ga2—O3xi113.8 (8)
O3—Ga1—O1ix91.0 (19)O2—Ga2—O3xi100.9 (10)
O2ii—Ga1—O1ii96.8 (14)O3—Ga2—O3xi112 (2)
O2vii—Ga1—O1ii169 (2)Ga1iv—O1—Ga1v97.3 (16)
O3viii—Ga1—O1ii91.0 (19)Ga1iv—O1—Bi1108 (2)
O3—Ga1—O1ii84.8 (19)Ga1v—O1—Bi1108 (2)
O1ix—Ga1—O1ii82.7 (16)Ga1iv—O1—Bi1iv97 (3)
O2ii—Ga1—Ga1x42.9 (8)Ga1v—O1—Bi1iv97 (3)
O2vii—Ga1—Ga1x42.9 (8)Bi1—O1—Bi1iv141.6 (13)
O3viii—Ga1—Ga1x92.8 (3)Ga2—O2—Ga1xii127.1 (8)
O3—Ga1—Ga1x92.8 (3)Ga2—O2—Ga1iv127.1 (8)
O1ix—Ga1—Ga1x138.7 (8)Ga1xii—O2—Ga1iv94.3 (16)
O1ii—Ga1—Ga1x138.7 (8)Ga2—O3—Ga1117.2 (9)
O2ii—Ga1—Ga1iii137.1 (8)Ga2—O3—Bi1126.8 (11)
O2vii—Ga1—Ga1iii137.1 (8)Ga1—O3—Bi1106.2 (16)
O3viii—Ga1—Ga1iii87.2 (3)Ga2—O4—Ga2xiii180.000 (1)
O3—Ga1—Ga1iii87.2 (3)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1; (viii) x, y, z; (ix) x1/2, y+1/2, z; (x) x, y, z+1; (xi) x, y, z+1; (xii) x+1/2, y+1/2, z+1; (xiii) x, y+1, z+1.
bismuth gallium oxide (14.9GPa) top
Crystal data top
Bi2Ga4O9Dx = 8.084 Mg m3
Mr = 840.84Synchrotron radiation, λ = 0.45000 Å
Orthorhombic, PbamCell parameters from 32 reflections
a = 7.4596 (10) Åθ = 11.1–18.2°
b = 8.058 (2) ŵ = 20.15 mm1
c = 5.747 (2) ÅT = 293 K
V = 345.43 (18) Å3Crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) 0.000000 0.000000 0.006500 0.039000 0.000000 0.019500 0.039000 0.000000 0.000000 0.013000 0.000000 0.019500 0.013000 0.000000 0.000000 0.000000 0.013000 0.006500 0.039000 0.013000 0.019500 0.039000 0.013000 0.000000 0.013000 0.013000 0.019500 0.013000 0.013000 0.000000, pale-yellow
Z = 20.04 × 0.03 × 0.01 mm
F(000) = 724
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
188 independent reflections
Radiation source: synchrotron HASYLAB/DESY145 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.077
Detector resolution: NaI point detector pixels mm-1θmax = 16.7°, θmin = 2.4°
ω scan, continuous, fixed–phi methodh = 99
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.686 0.765
thickness of diamond anvil 1: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1
thickness of diamond anvil 2: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1
No gasket shadowing corrections were made
k = 1010
Tmin = 0.591, Tmax = 0.521l = 13
751 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.048Secondary atom site location: difference Fourier map
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0158P)2 + 56.5806P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
188 reflectionsΔρmax = 2.95 e Å3
20 parametersΔρmin = 3.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.35145 (17)0.16198 (17)0.00000.0046 (4)*
Ga10.00000.00000.258 (2)0.0050 (9)*
Ga20.1437 (5)0.3282 (5)0.50000.0061 (9)*
O10.342 (3)0.427 (3)0.00000.003 (5)*
O20.374 (3)0.391 (3)0.50000.008 (7)*
O30.140 (2)0.2001 (18)0.246 (8)0.006 (4)*
O40.00000.50000.50000.023 (12)*
Geometric parameters (Å, º) top
Bi1—O12.13 (2)Ga1—Ga1x2.78 (2)
Bi1—O3i2.14 (3)Ga1—Ga1iii2.97 (2)
Bi1—O32.14 (3)Ga1—Bi1iii3.283 (6)
Bi1—O1ii2.38 (2)Ga1—Bi1ii3.293 (6)
Bi1—Ga1iii3.283 (6)Ga1—Bi1ix3.293 (6)
Bi1—Ga13.283 (6)Ga2—O41.751 (4)
Bi1—Ga1iv3.293 (6)Ga2—O31.79 (4)
Bi1—Ga1v3.293 (6)Ga2—O3xi1.79 (4)
Bi1—Bi1vi3.424 (3)Ga2—O21.79 (2)
Ga1—O2ii1.895 (18)O4—Ga2xii1.751 (4)
Ga1—O2vii1.895 (18)O2—Ga1xiii1.895 (18)
Ga1—O31.921 (15)O2—Ga1iv1.895 (18)
Ga1—O3viii1.921 (15)O1—Ga1iv1.984 (18)
Ga1—O1ix1.984 (18)O1—Ga1v1.984 (18)
Ga1—O1ii1.984 (18)O1—Bi1iv2.38 (2)
O1—Bi1—O3i80.4 (6)O1ix—Ga1—Ga1iii41.6 (6)
O1—Bi1—O380.4 (6)O1ii—Ga1—Ga1iii41.6 (6)
O3i—Bi1—O382 (2)Ga1x—Ga1—Ga1iii180.000 (1)
O1—Bi1—O1ii140.8 (4)O2ii—Ga1—Bi1iii122.9 (8)
O3i—Bi1—O1ii70.6 (6)O2vii—Ga1—Bi1iii96.9 (7)
O3—Bi1—O1ii70.6 (6)O3—Ga1—Bi1iii138.6 (11)
O1—Bi1—Ga1iii111.8 (6)O3viii—Ga1—Bi1iii38.4 (10)
O3i—Bi1—Ga1iii33.9 (4)O1ix—Ga1—Bi1iii46.1 (7)
O3—Bi1—Ga1iii76.4 (9)O1ii—Ga1—Bi1iii91.0 (7)
O1ii—Bi1—Ga1iii36.9 (4)Ga1x—Ga1—Bi1iii116.85 (18)
O1—Bi1—Ga1111.8 (6)Ga1iii—Ga1—Bi1iii63.15 (18)
O3i—Bi1—Ga176.4 (9)O2ii—Ga1—Bi196.9 (7)
O3—Bi1—Ga133.9 (4)O2vii—Ga1—Bi1122.9 (8)
O1ii—Bi1—Ga136.9 (4)O3—Ga1—Bi138.4 (10)
Ga1iii—Bi1—Ga153.7 (4)O3viii—Ga1—Bi1138.6 (11)
O1—Bi1—Ga1iv35.4 (4)O1ix—Ga1—Bi191.0 (7)
O3i—Bi1—Ga1iv115.3 (5)O1ii—Ga1—Bi146.1 (7)
O3—Bi1—Ga1iv80.4 (6)Ga1x—Ga1—Bi1116.85 (19)
O1ii—Bi1—Ga1iv149.5 (3)Ga1iii—Ga1—Bi163.15 (18)
Ga1iii—Bi1—Ga1iv143.22 (7)Bi1iii—Ga1—Bi1126.3 (4)
Ga1—Bi1—Ga1iv113.2 (3)O2ii—Ga1—Bi1ii77.3 (6)
O1—Bi1—Ga1v35.4 (4)O2vii—Ga1—Bi1ii151.8 (8)
O3i—Bi1—Ga1v80.4 (6)O3—Ga1—Bi1ii119.7 (9)
O3—Bi1—Ga1v115.3 (5)O3viii—Ga1—Bi1ii58.1 (8)
O1ii—Bi1—Ga1v149.5 (3)O1ix—Ga1—Bi1ii96.3 (7)
Ga1iii—Bi1—Ga1v113.2 (3)O1ii—Ga1—Bi1ii38.5 (6)
Ga1—Bi1—Ga1v143.22 (7)Ga1x—Ga1—Bi1ii116.76 (18)
Ga1iv—Bi1—Ga1v53.5 (4)Ga1iii—Ga1—Bi1ii63.24 (18)
O1—Bi1—Bi1vi141.6 (7)Bi1iii—Ga1—Bi1ii74.72 (14)
O3i—Bi1—Bi1vi125.9 (7)Bi1—Ga1—Bi1ii81.77 (16)
O3—Bi1—Bi1vi125.9 (7)O2ii—Ga1—Bi1ix151.8 (8)
O1ii—Bi1—Bi1vi77.6 (6)O2vii—Ga1—Bi1ix77.3 (6)
Ga1iii—Bi1—Bi1vi102.34 (6)O3—Ga1—Bi1ix58.1 (8)
Ga1—Bi1—Bi1vi102.34 (6)O3viii—Ga1—Bi1ix119.7 (9)
Ga1iv—Bi1—Bi1vi114.38 (7)O1ix—Ga1—Bi1ix38.5 (6)
Ga1v—Bi1—Bi1vi114.38 (7)O1ii—Ga1—Bi1ix96.3 (7)
O2ii—Ga1—O2vii85.6 (12)Ga1x—Ga1—Bi1ix116.76 (18)
O2ii—Ga1—O398.5 (13)Ga1iii—Ga1—Bi1ix63.24 (18)
O2vii—Ga1—O384.7 (13)Bi1iii—Ga1—Bi1ix81.77 (16)
O2ii—Ga1—O3viii84.7 (13)Bi1—Ga1—Bi1ix74.72 (14)
O2vii—Ga1—O3viii98.5 (13)Bi1ii—Ga1—Bi1ix126.5 (4)
O3—Ga1—O3viii176 (3)O4—Ga2—O3116.5 (8)
O2ii—Ga1—O1ix169.0 (10)O4—Ga2—O3xi116.5 (8)
O2vii—Ga1—O1ix96.6 (7)O3—Ga2—O3xi109.5 (19)
O3—Ga1—O1ix92.5 (12)O4—Ga2—O2111.3 (8)
O3viii—Ga1—O1ix84.3 (13)O3—Ga2—O2100.3 (7)
O2ii—Ga1—O1ii96.6 (7)O3xi—Ga2—O2100.3 (7)
O2vii—Ga1—O1ii169.0 (10)Ga2xii—O4—Ga2180.000 (1)
O3—Ga1—O1ii84.3 (13)Ga2—O3—Ga1118 (2)
O3viii—Ga1—O1ii92.5 (12)Ga2—O3—Bi1127.5 (9)
O1ix—Ga1—O1ii83.3 (11)Ga1—O3—Bi1107.7 (13)
O2ii—Ga1—Ga1x42.8 (6)Ga2—O2—Ga1xiii127.4 (8)
O2vii—Ga1—Ga1x42.8 (6)Ga2—O2—Ga1iv127.4 (8)
O3—Ga1—Ga1x92.1 (14)Ga1xiii—O2—Ga1iv94.4 (12)
O3viii—Ga1—Ga1x92.1 (14)Ga1iv—O1—Ga1v96.7 (11)
O1ix—Ga1—Ga1x138.4 (6)Ga1iv—O1—Bi1106.2 (8)
O1ii—Ga1—Ga1x138.4 (6)Ga1v—O1—Bi1106.2 (8)
O2ii—Ga1—Ga1iii137.2 (6)Ga1iv—O1—Bi1iv97.0 (8)
O2vii—Ga1—Ga1iii137.2 (6)Ga1v—O1—Bi1iv97.0 (8)
O3—Ga1—Ga1iii87.9 (14)Bi1—O1—Bi1iv144.6 (12)
O3viii—Ga1—Ga1iii87.9 (14)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1; (viii) x, y, z; (ix) x1/2, y+1/2, z; (x) x, y, z+1; (xi) x, y, z+1; (xii) x, y+1, z+1; (xiii) x+1/2, y+1/2, z+1.
bismuth gallium oxide (21.4GPa) top
Crystal data top
Bi2Ga4O9Dx = 8.556 Mg m3
Mr = 840.84Synchrotron radiation, λ = 0.45000 Å
Orthorhombic, PbnmCell parameters from 64 reflections
a = 6.966 (4) Åθ = 4.3–16.0°
b = 8.155 (2) ŵ = 21.32 mm1
c = 11.49 (1) ÅT = 293 K
V = 652.7 (7) Å3Crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) -0.015178 -0.020000 -0.010119 0.000000 0.000000 0.000000 -0.053000 -0.020000 0.016700 -0.040651 0.000000 0.028825 -0.017928 -0.020000 -0.011952 -0.030000 0.000000 -0.020000 -0.061258 -0.020000 0.007258 -0.068445 0.000000 -0.002956, pale-yellow
Z = 40.05 × 0.04 × 0.02 mm
F(000) = 1448
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
348 independent reflections
Radiation source: synchrotron HASYLAB/DESY282 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.060
Detector resolution: NaI point detector pixels mm-1θmax = 19.0°, θmin = 2.2°
ω scan, continuous, fixed–phi methodh = 910
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.688 0.764
thickness of diamond anvil 1: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1
thickness of diamond anvil 2: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1
No gasket shadowing corrections were made
k = 1111
Tmin = 0.554, Tmax = 0.463l = 99
1092 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.051Secondary atom site location: difference Fourier map
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0164P)2 + 150.8194P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
348 reflectionsΔρmax = 3.32 e Å3
31 parametersΔρmin = 2.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.36891 (16)0.16752 (13)0.02244 (16)0.0048 (3)*
Ga10.0244 (5)0.0082 (5)0.1251 (6)0.0042 (8)*
Ga2A0.1413 (7)0.3410 (6)0.25000.0044 (10)*
Ga2B0.6225 (8)0.2020 (5)0.25000.0035 (10)*
O10.335 (3)0.426 (2)0.011 (3)0.003 (2)*
O2A0.397 (5)0.377 (3)0.25000.003 (2)*
O2B0.841 (4)0.080 (4)0.25000.003 (2)*
O3A0.102 (3)0.217 (2)0.121 (3)0.003 (2)*
O3B0.672 (3)0.308 (2)0.114 (3)0.003 (2)*
O40.069 (5)0.552 (4)0.25000.003 (2)*
Geometric parameters (Å, º) top
Bi1—O3Bi2.09 (3)Ga2A—O41.79 (3)
Bi1—O12.124 (18)Ga2A—O2A1.81 (3)
Bi1—O3A2.21 (3)Ga2A—O3A1.82 (3)
Bi1—O1ii2.433 (19)Ga2A—O3Aviii1.82 (3)
Bi1—O3Aiii2.49 (3)Ga2B—O4ii1.81 (3)
Bi1—O3B2.63 (2)Ga2B—O3Bviii1.82 (3)
Bi1—Ga2B3.168 (5)Ga2B—O3B1.82 (3)
Bi1—Ga1iv3.207 (5)Ga2B—O2B1.82 (3)
Bi1—Ga1iii3.228 (6)Ga2B—O2A2.12 (3)
Bi1—Ga13.253 (5)Ga2B—Ga1ix2.960 (6)
Bi1—Ga1v3.269 (6)Ga2B—Ga1iv2.960 (6)
Bi1—Bi1vi3.327 (3)Ga2B—Bi1viii3.168 (5)
Ga1—O2Bvii1.812 (19)O1—Ga1iii1.92 (3)
Ga1—O3A1.915 (19)O1—Ga1iv1.97 (3)
Ga1—O1i1.92 (3)O1—Bi1iv2.433 (19)
Ga1—O3Bii1.935 (19)O2A—Ga1ix2.00 (2)
Ga1—O1ii1.97 (3)O2A—Ga1iv2.00 (2)
Ga1—O2Aii2.00 (2)O2B—Ga1x1.812 (19)
Ga1—Ga1viii2.871 (15)O2B—Ga1xi1.812 (19)
Ga1—Ga1v2.897 (15)O3A—Bi1i2.49 (3)
Ga1—Ga2Bii2.960 (6)O3B—Ga1iv1.935 (19)
Ga1—Bi1ii3.207 (5)O3B—Bi1iii2.09 (3)
Ga1—Bi1i3.228 (6)O4—Ga2Biv1.81 (3)
O3Bi—Bi1—O177.7 (10)Ga1v—Ga1—Ga2Bii118.0 (2)
O3Bi—Bi1—O3A79.3 (12)O2Bvii—Ga1—Bi1ii138.3 (9)
O1—Bi1—O3A75.9 (9)O3A—Ga1—Bi1ii127.2 (8)
O3Bi—Bi1—O1ii69.9 (9)O1i—Ga1—Bi1ii96.6 (7)
O1—Bi1—O1ii137.4 (4)O3Bii—Ga1—Bi1ii54.9 (7)
O3A—Bi1—O1ii71.5 (8)O1ii—Ga1—Bi1ii40.2 (6)
O3Bi—Bi1—O3Aiii84.0 (11)O2Aii—Ga1—Bi1ii69.6 (6)
O1—Bi1—O3Aiii69.9 (9)Ga1viii—Ga1—Bi1ii111.58 (14)
O3A—Bi1—O3Aiii144.5 (5)Ga1v—Ga1—Bi1ii63.61 (17)
O1ii—Bi1—O3Aiii130.7 (10)Ga2Bii—Ga1—Bi1ii61.67 (11)
O3Bi—Bi1—O3B141.9 (4)O2Bvii—Ga1—Bi1i91.8 (8)
O1—Bi1—O3B71.4 (8)O3A—Ga1—Bi1i50.5 (9)
O3A—Bi1—O3B113.2 (10)O1i—Ga1—Bi1i39.3 (6)
O1ii—Bi1—O3B147.6 (9)O3Bii—Ga1—Bi1i122.4 (9)
O3Aiii—Bi1—O3B64.9 (11)O1ii—Ga1—Bi1i94.9 (8)
O3Bi—Bi1—Ga2B167.3 (7)O2Aii—Ga1—Bi1i156.6 (8)
O1—Bi1—Ga2B91.3 (9)Ga1viii—Ga1—Bi1i121.67 (13)
O3A—Bi1—Ga2B91.9 (8)Ga1v—Ga1—Bi1i62.87 (19)
O1ii—Bi1—Ga2B116.2 (8)Ga2Bii—Ga1—Bi1i153.20 (18)
O3Aiii—Bi1—Ga2B98.5 (7)Bi1ii—Ga1—Bi1i126.5 (2)
O3B—Bi1—Ga2B35.0 (8)O2Bvii—Ga1—Bi1126.4 (10)
O3Bi—Bi1—Ga1iv114.5 (5)O3A—Ga1—Bi141.3 (8)
O1—Bi1—Ga1iv36.9 (8)O1i—Ga1—Bi191.2 (7)
O3A—Bi1—Ga1iv86.5 (6)O3Bii—Ga1—Bi1139.7 (9)
O1ii—Bi1—Ga1iv156.7 (7)O1ii—Ga1—Bi148.2 (5)
O3Aiii—Bi1—Ga1iv72.2 (6)O2Aii—Ga1—Bi195.7 (9)
O3B—Bi1—Ga1iv37.1 (4)Ga1viii—Ga1—Bi1111.25 (14)
Ga2B—Bi1—Ga1iv55.33 (14)Ga1v—Ga1—Bi163.90 (17)
O3Bi—Bi1—Ga1iii71.2 (6)Ga2Bii—Ga1—Bi1135.00 (17)
O1—Bi1—Ga1iii35.0 (9)Bi1ii—Ga1—Bi185.89 (13)
O3A—Bi1—Ga1iii108.2 (6)Bi1i—Ga1—Bi171.12 (12)
O1ii—Bi1—Ga1iii140.4 (8)O4—Ga2A—O2A96.9 (14)
O3Aiii—Bi1—Ga1iii36.3 (5)O4—Ga2A—O3A119.4 (8)
O3B—Bi1—Ga1iii70.6 (7)O2A—Ga2A—O3A104.0 (9)
Ga2B—Bi1—Ga1iii103.42 (14)O4—Ga2A—O3Aviii119.4 (8)
Ga1iv—Bi1—Ga1iii53.5 (2)O2A—Ga2A—O3Aviii104.0 (9)
O3Bi—Bi1—Ga176.1 (8)O3A—Ga2A—O3Aviii109.5 (18)
O1—Bi1—Ga1108.9 (6)O4ii—Ga2B—O3Bviii117.5 (8)
O3A—Bi1—Ga134.9 (5)O4ii—Ga2B—O3B117.5 (8)
O1ii—Bi1—Ga137.2 (6)O3Bviii—Ga2B—O3B118.3 (16)
O3Aiii—Bi1—Ga1159.6 (7)O4ii—Ga2B—O2B104.3 (13)
O3B—Bi1—Ga1135.0 (8)O3Bviii—Ga2B—O2B95.7 (8)
Ga2B—Bi1—Ga1101.88 (17)O3B—Ga2B—O2B95.7 (8)
Ga1iv—Bi1—Ga1119.81 (19)O4ii—Ga2B—O2A84.8 (12)
Ga1iii—Bi1—Ga1135.35 (12)O3Bviii—Ga2B—O2A79.7 (7)
O3Bi—Bi1—Ga1v34.2 (5)O3B—Ga2B—O2A79.7 (7)
O1—Bi1—Ga1v108.8 (7)O2B—Ga2B—O2A170.8 (12)
O3A—Bi1—Ga1v74.1 (7)O4ii—Ga2B—Ga1ix113.6 (8)
O1ii—Bi1—Ga1v35.8 (7)O3Bviii—Ga2B—Ga1ix39.4 (7)
O3Aiii—Bi1—Ga1v107.6 (7)O3B—Ga2B—Ga1ix93.4 (8)
O3B—Bi1—Ga1v172.2 (8)O2B—Ga2B—Ga1ix130.9 (7)
Ga2B—Bi1—Ga1v151.19 (14)O2A—Ga2B—Ga1ix42.4 (6)
Ga1iv—Bi1—Ga1v144.93 (10)O4ii—Ga2B—Ga1iv113.6 (8)
Ga1iii—Bi1—Ga1v104.8 (2)O3Bviii—Ga2B—Ga1iv93.4 (8)
Ga1—Bi1—Ga1v52.7 (2)O3B—Ga2B—Ga1iv39.4 (7)
O3Bi—Bi1—Bi1vi108.7 (6)O2B—Ga2B—Ga1iv130.9 (7)
O1—Bi1—Bi1vi150.0 (6)O2A—Ga2B—Ga1iv42.4 (6)
O3A—Bi1—Bi1vi133.6 (6)Ga1ix—Ga2B—Ga1iv58.0 (3)
O1ii—Bi1—Bi1vi69.3 (5)O4ii—Ga2B—Bi161.9 (4)
O3Aiii—Bi1—Bi1vi81.5 (4)O3Bviii—Ga2B—Bi1149.1 (7)
O3B—Bi1—Bi1vi88.8 (4)O3B—Ga2B—Bi156.0 (8)
Ga2B—Bi1—Bi1vi83.96 (12)O2B—Ga2B—Bi1114.7 (4)
Ga1iv—Bi1—Bi1vi125.67 (9)O2A—Ga2B—Bi169.4 (4)
Ga1iii—Bi1—Bi1vi117.72 (12)Ga1ix—Ga2B—Bi1110.3 (2)
Ga1—Bi1—Bi1vi100.98 (9)Ga1iv—Ga2B—Bi163.00 (14)
Ga1v—Bi1—Bi1vi87.86 (9)O4ii—Ga2B—Bi1viii61.9 (4)
O2Bvii—Ga1—O3A88.4 (13)O3Bviii—Ga2B—Bi1viii56.0 (8)
O2Bvii—Ga1—O1i107.0 (11)O3B—Ga2B—Bi1viii149.1 (7)
O3A—Ga1—O1i87.9 (11)O2B—Ga2B—Bi1viii114.7 (4)
O2Bvii—Ga1—O3Bii92.7 (13)O2A—Ga2B—Bi1viii69.4 (4)
O3A—Ga1—O3Bii172.8 (14)Ga1ix—Ga2B—Bi1viii63.00 (14)
O1i—Ga1—O3Bii85.0 (12)Ga1iv—Ga2B—Bi1viii110.3 (2)
O2Bvii—Ga1—O1ii168.5 (13)Bi1—Ga2B—Bi1viii111.25 (18)
O3A—Ga1—O1ii88.7 (10)Ga1iii—O1—Ga1iv96.0 (9)
O1i—Ga1—O1ii84.0 (9)Ga1iii—O1—Bi1105.6 (12)
O3Bii—Ga1—O1ii91.5 (10)Ga1iv—O1—Bi1102.9 (11)
O2Bvii—Ga1—O2Aii80.4 (11)Ga1iii—O1—Bi1iv96.5 (10)
O3A—Ga1—O2Aii106.9 (13)Ga1iv—O1—Bi1iv94.6 (9)
O1i—Ga1—O2Aii163.9 (10)Bi1—O1—Bi1iv149.9 (10)
O3Bii—Ga1—O2Aii80.3 (12)Ga2A—O2A—Ga1ix121.8 (11)
O1ii—Ga1—O2Aii89.9 (11)Ga2A—O2A—Ga1iv121.8 (11)
O2Bvii—Ga1—Ga1viii37.6 (8)Ga1ix—O2A—Ga1iv92.0 (13)
O3A—Ga1—Ga1viii91.6 (11)Ga2A—O2A—Ga2B128.2 (15)
O1i—Ga1—Ga1viii144.5 (8)Ga1ix—O2A—Ga2B91.8 (12)
O3Bii—Ga1—Ga1viii93.7 (12)Ga1iv—O2A—Ga2B91.8 (12)
O1ii—Ga1—Ga1viii131.4 (9)Ga1x—O2B—Ga1xi104.8 (16)
O2Aii—Ga1—Ga1viii44.0 (6)Ga1x—O2B—Ga2B127.6 (8)
O2Bvii—Ga1—Ga1v149.5 (8)Ga1xi—O2B—Ga2B127.6 (8)
O3A—Ga1—Ga1v87.7 (11)Ga2A—O3A—Ga1122.8 (19)
O1i—Ga1—Ga1v42.7 (8)Ga2A—O3A—Bi1112.9 (10)
O3Bii—Ga1—Ga1v87.7 (12)Ga1—O3A—Bi1103.8 (10)
O1ii—Ga1—Ga1v41.4 (9)Ga2A—O3A—Bi1i115.2 (9)
O2Aii—Ga1—Ga1v129.5 (7)Ga1—O3A—Bi1i93.2 (10)
Ga1viii—Ga1—Ga1v172.76 (15)Bi1—O3A—Bi1i106.3 (14)
O2Bvii—Ga1—Ga2Bii76.6 (9)Ga2B—O3B—Ga1iv104.1 (16)
O3A—Ga1—Ga2Bii150.3 (11)Ga2B—O3B—Bi1iii144.6 (11)
O1i—Ga1—Ga2Bii120.9 (6)Ga1iv—O3B—Bi1iii108.4 (13)
O3Bii—Ga1—Ga2Bii36.5 (11)Ga2B—O3B—Bi189.1 (8)
O1ii—Ga1—Ga2Bii100.9 (7)Ga1iv—O3B—Bi188.0 (8)
O2Aii—Ga1—Ga2Bii45.8 (9)Bi1iii—O3B—Bi1105.5 (14)
Ga1viii—Ga1—Ga2Bii60.99 (15)Ga2A—O4—Ga2Biv148.8 (19)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y, z; (vi) x+1, y, z; (vii) x1, y, z; (viii) x, y, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+1, y, z+1/2.
bismuth gallium oxide (30.5GPa) top
Crystal data top
Bi2Ga4O9Dx = 9.018 Mg m3
Mr = 840.84Synchrotron radiation, λ = 0.45000 Å
Orthorhombic, PbnmCell parameters from 50 reflections
a = 6.705 (1) Åθ = 8.8–16.5°
b = 8.107 (2) ŵ = 22.48 mm1
c = 11.393 (2) ÅT = 293 K
V = 619.3 (2) Å3Crystal was described in terms of coordinates of corners on the orthogonal phi-axis coordinate system of Busing and Levy (1967) (ie +Y along beam, +Z up at circles zero, +X to make right-handed set) with origin at the centre of the face of the incident-beam anvil loop is over x, y, z (mm) -0.015178 -0.020000 -0.010119 0.000000 0.000000 0.000000 -0.053000 -0.020000 0.016700 -0.040651 0.000000 0.028825 -0.017928 -0.020000 -0.011952 -0.030000 0.000000 -0.020000 -0.061258 -0.020000 0.007258 -0.068445 0.000000 -0.002956, pale-yellow
Z = 40.05 × 0.04 × 0.02 mm
F(000) = 1448
Data collection top
HUBER
diffractometer D3, HASYLAB/DESY
425 independent reflections
Radiation source: synchrotron HASYLAB/DESY340 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.070
Detector resolution: NaI point detector pixels mm-1θmax = 18.0°, θmin = 2.2°
ω scan, continuous, fixed–phi methodh = 99
Absorption correction: gaussian
Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966)
Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.684 0.764
thickness of diamond anvil 1: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1
thickness of diamond anvil 2: 1.400 mm, mu = 0.0958 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1
No gasket shadowing corrections were made
k = 99
Tmin = 0.544, Tmax = 0.448l = 99
1327 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: difference Fourier map
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0244P)2 + 11.8879P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
425 reflectionsΔρmax = 1.88 e Å3
36 parametersΔρmin = 2.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.38052 (7)0.16686 (6)0.02679 (7)0.0042 (2)*
Ga10.0282 (2)0.01046 (19)0.1241 (2)0.0036 (4)*
Ga2A0.1331 (3)0.3431 (3)0.25000.0041 (5)*
Ga2B0.6217 (3)0.2104 (3)0.25000.0040 (5)*
O10.3268 (14)0.4254 (12)0.0173 (12)0.003 (2)*
O2A0.4034 (19)0.3813 (17)0.25000.005 (3)*
O2B0.827 (2)0.073 (2)0.25000.015 (4)*
O3A0.0970 (13)0.2202 (12)0.1203 (13)0.005 (2)*
O3B0.6799 (14)0.3123 (12)0.1132 (16)0.010 (2)*
O40.076 (2)0.5592 (18)0.25000.012 (4)*
Geometric parameters (Å, º) top
Bi1—O3Bi2.094 (15)Ga1—O2Bviii1.806 (10)
Bi1—O12.129 (10)Ga1—O3A1.896 (9)
Bi1—O3A2.222 (11)Ga1—O3Biii1.905 (10)
Bi1—O3Aii2.399 (12)Ga1—O1iii1.944 (11)
Bi1—O1iii2.404 (10)Ga1—O1i1.952 (13)
Bi1—O3B2.528 (11)Ga1—O2Aiii1.963 (9)
Bi1—O4iii2.705 (5)Ga1—Ga1ix2.858 (5)
Bi1—Ga2B3.0344 (15)Ga1—Ga1vi2.869 (5)
Bi1—Ga1iv3.1573 (19)Ga1—Ga2Biii2.893 (3)
Bi1—Ga1ii3.190 (2)Ga1—Bi1iii3.1573 (19)
Bi1—Bi1v3.2030 (12)Ga1—Bi1i3.190 (2)
Bi1—Ga13.2165 (17)O4—Ga2Biv1.803 (14)
Ga2A—O41.795 (15)O4—Bi1vii2.705 (5)
Ga2A—O3A1.798 (14)O4—Bi1iv2.705 (5)
Ga2A—O3Avi1.798 (14)O1—Ga1iv1.944 (11)
Ga2A—O2A1.838 (13)O1—Ga1ii1.952 (13)
Ga2A—Bi1vi3.3554 (16)O1—Bi1iv2.404 (10)
Ga2B—O2B1.769 (16)O2A—Ga1vii1.963 (9)
Ga2B—O4iii1.803 (14)O2A—Ga1iv1.963 (9)
Ga2B—O3Bvi1.806 (17)O2B—Ga1x1.806 (10)
Ga2B—O3B1.806 (17)O2B—Ga1xi1.806 (10)
Ga2B—O2A2.016 (13)O3A—Bi1i2.399 (12)
Ga2B—Ga1vii2.893 (3)O3B—Ga1iv1.905 (10)
Ga2B—Ga1iv2.893 (3)O3B—Bi1ii2.094 (15)
Ga2B—Bi1vi3.0344 (15)
O3Bi—Bi1—O176.9 (4)Ga1iv—Ga2B—Bi164.32 (6)
O3Bi—Bi1—O3A78.5 (5)O2B—Ga2B—Bi1vi109.9 (2)
O1—Bi1—O3A71.8 (4)O4iii—Ga2B—Bi1vi61.96 (15)
O3Bi—Bi1—O3Aii80.0 (5)O3Bvi—Ga2B—Bi1vi56.3 (4)
O1—Bi1—O3Aii72.0 (4)O3B—Ga2B—Bi1vi153.0 (3)
O3A—Bi1—O3Aii141.1 (2)O2A—Ga2B—Bi1vi72.11 (19)
O3Bi—Bi1—O1iii70.1 (4)Ga1vii—Ga2B—Bi1vi64.32 (6)
O1—Bi1—O1iii134.56 (14)Ga1iv—Ga2B—Bi1vi113.45 (8)
O3A—Bi1—O1iii71.6 (4)Bi1—Ga2B—Bi1vi113.87 (7)
O3Aii—Bi1—O1iii129.0 (4)O2Bviii—Ga1—O3A90.3 (6)
O3Bi—Bi1—O3B140.3 (2)O2Bviii—Ga1—O3Biii90.0 (7)
O1—Bi1—O3B72.2 (4)O3A—Ga1—O3Biii172.1 (5)
O3A—Bi1—O3B113.7 (4)O2Bviii—Ga1—O1iii166.1 (6)
O3Aii—Bi1—O3B67.3 (5)O3A—Ga1—O1iii89.8 (5)
O1iii—Bi1—O3B149.0 (4)O3Biii—Ga1—O1iii91.8 (5)
O3Bi—Bi1—O4iii144.3 (4)O2Bviii—Ga1—O1i108.2 (5)
O1—Bi1—O4iii112.6 (5)O3A—Ga1—O1i87.9 (5)
O3A—Bi1—O4iii72.8 (5)O3Biii—Ga1—O1i84.6 (6)
O3Aii—Bi1—O4iii135.6 (4)O1iii—Ga1—O1i85.6 (4)
O1iii—Bi1—O4iii80.9 (4)O2Bviii—Ga1—O2Aiii78.4 (6)
O3B—Bi1—O4iii72.4 (5)O3A—Ga1—O2Aiii107.8 (5)
O3Bi—Bi1—Ga2B166.3 (3)O3Biii—Ga1—O2Aiii79.9 (6)
O1—Bi1—Ga2B91.0 (3)O1iii—Ga1—O2Aiii88.4 (5)
O3A—Bi1—Ga2B91.8 (4)O1i—Ga1—O2Aiii163.2 (4)
O3Aii—Bi1—Ga2B102.6 (3)O2Bviii—Ga1—Ga1ix150.9 (4)
O1iii—Bi1—Ga2B116.2 (3)O3A—Ga1—Ga1ix88.4 (5)
O3B—Bi1—Ga2B36.5 (4)O3Biii—Ga1—Ga1ix87.5 (6)
O4iii—Bi1—Ga2B36.0 (3)O1iii—Ga1—Ga1ix42.9 (4)
O3Bi—Bi1—Ga1iv113.5 (3)O1i—Ga1—Ga1ix42.7 (3)
O1—Bi1—Ga1iv37.1 (3)O2Aiii—Ga1—Ga1ix129.4 (3)
O3A—Bi1—Ga1iv85.9 (3)O2Bviii—Ga1—Ga1vi37.4 (4)
O3Aii—Bi1—Ga1iv73.7 (3)O3A—Ga1—Ga1vi91.3 (5)
O1iii—Bi1—Ga1iv156.3 (3)O3Biii—Ga1—Ga1vi93.7 (6)
O3B—Bi1—Ga1iv37.1 (2)O1iii—Ga1—Ga1vi128.7 (4)
O4iii—Bi1—Ga1iv85.4 (3)O1i—Ga1—Ga1vi145.6 (3)
Ga2B—Bi1—Ga1iv55.66 (6)O2Aiii—Ga1—Ga1vi43.1 (3)
O3Bi—Bi1—Ga1ii69.3 (3)Ga1ix—Ga1—Ga1vi171.66 (6)
O1—Bi1—Ga1ii36.7 (3)O2Bviii—Ga1—Ga2Biii74.1 (5)
O3A—Bi1—Ga1ii105.3 (3)O3A—Ga1—Ga2Biii149.4 (5)
O3Aii—Bi1—Ga1ii36.3 (2)O3Biii—Ga1—Ga2Biii37.6 (5)
O1iii—Bi1—Ga1ii139.0 (3)O1iii—Ga1—Ga2Biii99.4 (3)
O3B—Bi1—Ga1ii71.0 (3)O1i—Ga1—Ga2Biii121.7 (3)
O4iii—Bi1—Ga1ii138.6 (3)O2Aiii—Ga1—Ga2Biii44.1 (4)
Ga2B—Bi1—Ga1ii104.71 (6)Ga1ix—Ga1—Ga2Biii118.00 (9)
Ga1iv—Bi1—Ga1ii53.52 (9)Ga1vi—Ga1—Ga2Biii60.27 (5)
O3Bi—Bi1—Bi1v104.1 (3)O2Bviii—Ga1—Bi1iii134.1 (5)
O1—Bi1—Bi1v155.0 (3)O3A—Ga1—Bi1iii130.1 (3)
O3A—Bi1—Bi1v133.1 (3)O3Biii—Ga1—Bi1iii53.2 (3)
O3Aii—Bi1—Bi1v83.5 (2)O1iii—Ga1—Bi1iii41.4 (3)
O1iii—Bi1—Bi1v66.0 (2)O1i—Ga1—Bi1iii95.8 (3)
O3B—Bi1—Bi1v94.1 (2)O2Aiii—Ga1—Bi1iii69.7 (3)
O4iii—Bi1—Bi1v81.5 (3)Ga1ix—Ga1—Bi1iii63.82 (6)
Ga2B—Bi1—Bi1v89.51 (5)Ga1vi—Ga1—Bi1iii110.55 (5)
Ga1iv—Bi1—Bi1v130.94 (3)Ga2Biii—Ga1—Bi1iii60.02 (4)
Ga1ii—Bi1—Bi1v119.61 (5)O2Bviii—Ga1—Bi1i95.4 (5)
O3Bi—Bi1—Ga175.3 (4)O3A—Ga1—Bi1i48.5 (4)
O1—Bi1—Ga1105.2 (3)O3Biii—Ga1—Bi1i123.6 (4)
O3A—Bi1—Ga135.2 (2)O1iii—Ga1—Bi1i95.0 (3)
O3Aii—Bi1—Ga1155.1 (3)O1i—Ga1—Bi1i40.6 (3)
O1iii—Bi1—Ga137.0 (3)O2Aiii—Ga1—Bi1i155.9 (4)
O3B—Bi1—Ga1136.6 (4)Ga1ix—Ga1—Bi1i62.66 (7)
O4iii—Bi1—Ga169.0 (3)Ga1vi—Ga1—Bi1i122.61 (5)
Ga2B—Bi1—Ga1102.19 (6)Ga2Biii—Ga1—Bi1i156.25 (7)
Ga1iv—Bi1—Ga1119.60 (7)Bi1iii—Ga1—Bi1i126.48 (9)
Ga1ii—Bi1—Ga1132.26 (5)O2Bviii—Ga1—Bi1128.5 (5)
Bi1v—Bi1—Ga199.14 (4)O3A—Ga1—Bi142.4 (3)
O4—Ga2A—O3A120.8 (4)O3Biii—Ga1—Bi1139.9 (4)
O4—Ga2A—O3Avi120.8 (4)O1iii—Ga1—Bi148.1 (3)
O3A—Ga2A—O3Avi110.5 (8)O1i—Ga1—Bi192.0 (3)
O4—Ga2A—O2A92.7 (6)O2Aiii—Ga1—Bi195.7 (4)
O3A—Ga2A—O2A103.1 (4)Ga1ix—Ga1—Bi164.51 (6)
O3Avi—Ga2A—O2A103.1 (4)Ga1vi—Ga1—Bi1110.16 (5)
O4—Ga2A—Bi1121.5 (2)Ga2Biii—Ga1—Bi1133.40 (7)
O3A—Ga2A—Bi137.6 (3)Bi1iii—Ga1—Bi187.69 (5)
O3Avi—Ga2A—Bi1117.0 (4)Bi1i—Ga1—Bi169.79 (4)
O2A—Ga2A—Bi165.5 (2)Ga2A—O4—Ga2Biv145.2 (9)
O4—Ga2A—Bi1vi121.5 (2)Ga2A—O4—Bi1vii107.0 (3)
O3A—Ga2A—Bi1vi117.0 (4)Ga2Biv—O4—Bi1vii82.0 (3)
O3Avi—Ga2A—Bi1vi37.6 (3)Ga2A—O4—Bi1iv107.0 (3)
O2A—Ga2A—Bi1vi65.5 (2)Ga2Biv—O4—Bi1iv82.0 (3)
Bi1—Ga2A—Bi1vi98.56 (6)Bi1vii—O4—Bi1iv140.2 (6)
O2B—Ga2B—O4iii98.1 (7)Ga1iv—O1—Ga1ii94.4 (4)
O2B—Ga2B—O3Bvi96.9 (4)Ga1iv—O1—Bi1101.5 (5)
O4iii—Ga2B—O3Bvi118.0 (4)Ga1ii—O1—Bi1102.7 (5)
O2B—Ga2B—O3B96.9 (4)Ga1iv—O1—Bi1iv94.9 (4)
O4iii—Ga2B—O3B118.0 (4)Ga1ii—O1—Bi1iv96.2 (4)
O3Bvi—Ga2B—O3B119.2 (8)Bi1—O1—Bi1iv153.8 (5)
O2B—Ga2B—O2A175.6 (6)Ga2A—O2A—Ga1vii120.7 (5)
O4iii—Ga2B—O2A86.2 (6)Ga2A—O2A—Ga1iv120.7 (5)
O3Bvi—Ga2B—O2A80.9 (4)Ga1vii—O2A—Ga1iv93.9 (6)
O3B—Ga2B—O2A80.9 (4)Ga2A—O2A—Ga2B126.9 (7)
O2B—Ga2B—Ga1vii134.3 (4)Ga1vii—O2A—Ga2B93.3 (5)
O4iii—Ga2B—Ga1vii114.4 (4)Ga1iv—O2A—Ga2B93.3 (5)
O3Bvi—Ga2B—Ga1vii40.0 (3)Ga2B—O2B—Ga1x126.5 (4)
O3B—Ga2B—Ga1vii95.2 (4)Ga2B—O2B—Ga1xi126.5 (4)
O2A—Ga2B—Ga1vii42.7 (3)Ga1x—O2B—Ga1xi105.2 (8)
O2B—Ga2B—Ga1iv134.3 (4)Ga2A—O3A—Ga1122.5 (8)
O4iii—Ga2B—Ga1iv114.4 (4)Ga2A—O3A—Bi1112.7 (5)
O3Bvi—Ga2B—Ga1iv95.2 (4)Ga1—O3A—Bi1102.4 (5)
O3B—Ga2B—Ga1iv40.0 (3)Ga2A—O3A—Bi1i116.4 (4)
O2A—Ga2B—Ga1iv42.7 (3)Ga1—O3A—Bi1i95.2 (4)
Ga1vii—Ga2B—Ga1iv59.46 (11)Bi1—O3A—Bi1i104.9 (6)
O2B—Ga2B—Bi1109.9 (2)Ga2B—O3B—Ga1iv102.4 (7)
O4iii—Ga2B—Bi161.96 (15)Ga2B—O3B—Bi1ii146.4 (6)
O3Bvi—Ga2B—Bi1153.0 (3)Ga1iv—O3B—Bi1ii108.9 (7)
O3B—Ga2B—Bi156.3 (4)Ga2B—O3B—Bi187.2 (4)
O2A—Ga2B—Bi172.11 (19)Ga1iv—O3B—Bi189.7 (4)
Ga1vii—Ga2B—Bi1113.45 (8)Bi1ii—O3B—Bi1104.5 (7)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x, y, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x, y, z; (x) x+1, y, z+1/2; (xi) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds