Download citation
Download citation
link to html
Monoisotopic scandium yttrium oxyorthosilicate crystals as a material for quantum memory storage with high optical quality were grown by the Czochralski method. This material, of composition Sc1.368Y0.632SiO5, is characterized by congruent melting and a melting point 60 K below the tem­perature for the ideal solid-solution series Y2SiO5–Sc2SiO5. The structure of the crystals was refined on the basis of high-quality single-crystal X-ray diffraction data. Sc1.368Y0.632SiO5 belongs to B-type RE2SiO5 (space group C2/c). Scandium and yttrium cations are distributed among two 8f sites with coordination numbers 7 and 6 for which the occupancy parameters ratios Sc:Y and average bond lengths are, respectively, 0.473:0.527 and RE1—O = 2.305 (2) Å, and 0.895:0.105 and RE2—O = 2.143 (2) Å. It is shown that the character of the occupancy of the positions of the cations with coordination numbers (CN) 6 and 7 for these solid solutions can be approximated by a polynomial dependence, the magnitude of the coefficients of which depends on the difference in the ionic radii of the cations. A preliminary electron paramagnetic resonance (EPR) study shows that activator ions with a large ionic radius at a concentration less than 0.1% occupy a position with CN = 7.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619010507/sk3731sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619010507/sk3731Isup2.hkl
Contains datablock I

CCDC reference: 1942657

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2018); software used to prepare material for publication: SHELXTL (Bruker, 2018).

Scandium yttrium oxyorthosilicate top
Crystal data top
Sc1.368Y0.632SiO5F(000) = 859
Mr = 225.75Dx = 3.868 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5866 reflections
a = 13.9162 (5) Åθ = 3.0–39.5°
b = 6.5030 (2) ŵ = 12.00 mm1
c = 10.0733 (4) ÅT = 150 K
β = 121.721 (1)°Irregular, colourless
V = 775.43 (5) Å30.4 × 0.4 × 0.2 mm
Z = 8
Data collection top
Bruker APEX3 CCD
diffractometer
2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 39.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2424
Tmin = 0.061, Tmax = 0.279k = 1111
9302 measured reflectionsl = 1817
2239 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.080P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 0.98Δρmax = 2.01 e Å3
2239 reflectionsΔρmin = 2.09 e Å3
76 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.062 (3)
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71079 13.936 6.510 10.089 90.016 121.730 90.037

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The XRD experimental data were collected on a Bruker SMART APEX3 diffractometer (graphite monochromator, CCD detector, Mo Kα radiation, λ = 0.71073 Å, T = 150 K). Analysis of the reflection conditions confirmed the space group as C2/c, Z = 8. An absorption correction was done using the multi-scan method SADABS (Krause et al., 2015). The structure for Lu2SiO5 (Gustafsson et al., 2001) was used for the initial structure solution. All calculations were performed using the SHELXS and SHELXL programs (Sheldrick, 2015). The crystallographic data and refinement parameters are presented in Table 1. It should be noted that attempts to refine the Y and Sc atoms without equal site (EXYZ) constraints resulted in unrealistic atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y10.54003 (2)0.74582 (3)0.47192 (3)0.00629 (10)0.527 (6)
Sc10.54003 (2)0.74582 (3)0.47192 (3)0.00629 (10)0.473 (6)
Y20.35953 (3)0.62123 (5)0.65961 (3)0.00489 (11)0.105 (4)
Sc20.35953 (3)0.62123 (5)0.65961 (3)0.00489 (11)0.895 (4)
Si10.31652 (4)0.09224 (8)0.69201 (6)0.00455 (14)
O10.41423 (14)0.0143 (3)0.86269 (19)0.0156 (3)
O20.37268 (15)0.2941 (3)0.6622 (2)0.0141 (3)
O30.20114 (13)0.1458 (2)0.68586 (18)0.0088 (3)
O40.29676 (14)0.0798 (2)0.56393 (18)0.0102 (3)
O50.48321 (12)0.5961 (2)0.60705 (17)0.0070 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.00721 (14)0.00781 (14)0.00637 (14)0.00038 (6)0.00531 (10)0.00201 (6)
Sc10.00721 (14)0.00781 (14)0.00637 (14)0.00038 (6)0.00531 (10)0.00201 (6)
Y20.00639 (15)0.00717 (15)0.00306 (14)0.00008 (8)0.00383 (11)0.00083 (8)
Sc20.00639 (15)0.00717 (15)0.00306 (14)0.00008 (8)0.00383 (11)0.00083 (8)
Si10.0061 (2)0.0053 (2)0.0032 (2)0.00027 (14)0.00305 (17)0.00030 (14)
O10.0107 (6)0.0269 (8)0.0069 (6)0.0076 (6)0.0031 (5)0.0067 (5)
O20.0135 (6)0.0088 (6)0.0249 (9)0.0036 (5)0.0135 (6)0.0012 (6)
O30.0075 (5)0.0130 (6)0.0085 (6)0.0013 (4)0.0059 (5)0.0010 (4)
O40.0129 (6)0.0100 (5)0.0079 (5)0.0002 (5)0.0058 (5)0.0038 (4)
O50.0085 (5)0.0100 (5)0.0056 (5)0.0001 (4)0.0058 (4)0.0013 (4)
Geometric parameters (Å, º) top
Y1—O52.1349 (14)Y2—O3vi2.1316 (15)
Y1—O1i2.1641 (19)Y2—O22.1341 (18)
Y1—O3ii2.2391 (15)Y2—O4vii2.1415 (17)
Y1—O2iii2.2571 (18)Y2—O4viii2.1733 (16)
Y1—O1iv2.2614 (18)Y2—O5v2.2208 (15)
Y1—O5iii2.3262 (15)Y2—Si1vii3.1705 (6)
Y1—O2i2.754 (2)Y2—Y2v3.3339 (6)
Y1—Si1i3.0840 (6)Y2—Si1viii3.3690 (6)
Y1—Y2v3.3063 (4)Y2—Y2ix3.4828 (6)
Y1—Si1iii3.3597 (6)Si1—O31.6120 (16)
Y1—Y2iii3.3695 (4)Si1—O11.6136 (16)
Y1—Si1ii3.4274 (6)Si1—O41.6184 (15)
Y2—O52.0561 (15)Si1—O21.6343 (17)
O5—Y1—O1i100.43 (6)O3vi—Y2—Y2v113.71 (4)
O5—Y1—O3ii76.88 (6)O2—Y2—Y2v85.70 (5)
O1i—Y1—O3ii146.27 (6)O4vii—Y2—Y2v109.24 (4)
O5—Y1—O2iii145.64 (6)O4viii—Y2—Y2v144.42 (4)
O1i—Y1—O2iii108.94 (7)O5v—Y2—Y2v37.04 (4)
O3ii—Y1—O2iii87.77 (6)Si1vii—Y2—Y2v100.045 (11)
O5—Y1—O1iv86.41 (6)Y1v—Y2—Y2v72.819 (10)
O1i—Y1—O1iv69.95 (7)O5—Y2—Si1viii86.62 (4)
O3ii—Y1—O1iv76.33 (6)O3vi—Y2—Si1viii116.77 (4)
O2iii—Y1—O1iv119.88 (6)O2—Y2—Si1viii67.20 (5)
O5—Y1—O5iii75.56 (6)O4vii—Y2—Si1viii90.10 (4)
O1i—Y1—O5iii125.83 (6)O4viii—Y2—Si1viii23.26 (4)
O3ii—Y1—O5iii86.58 (5)O5v—Y2—Si1viii148.18 (4)
O2iii—Y1—O5iii72.97 (6)Si1vii—Y2—Si1viii115.724 (13)
O1iv—Y1—O5iii157.61 (6)Y1v—Y2—Si1viii157.784 (14)
O5—Y1—O2i107.65 (6)Y2v—Y2—Si1viii124.750 (15)
O1i—Y1—O2i61.04 (6)O5—Y2—Y1iii42.78 (4)
O3ii—Y1—O2i152.30 (5)O3vi—Y2—Y1iii138.22 (4)
O2iii—Y1—O2i73.25 (7)O2—Y2—Y1iii41.25 (5)
O1iv—Y1—O2i130.56 (6)O4vii—Y2—Y1iii128.42 (4)
O5iii—Y1—O2i68.89 (5)O4viii—Y2—Y1iii84.31 (4)
O5—Y1—Si1i101.83 (4)O5v—Y2—Y1iii88.99 (4)
O1i—Y1—Si1i29.73 (4)Si1vii—Y2—Y1iii149.841 (14)
O3ii—Y1—Si1i175.81 (4)Y1v—Y2—Y1iii126.661 (11)
O2iii—Y1—Si1i95.37 (5)Y2v—Y2—Y1iii66.734 (8)
O1iv—Y1—Si1i99.66 (5)Si1viii—Y2—Y1iii61.147 (11)
O5iii—Y1—Si1i96.99 (4)O5—Y2—Y2ix104.20 (4)
O2i—Y1—Si1i31.88 (4)O3vi—Y2—Y2ix98.49 (4)
O5—Y1—Y2v41.60 (4)O2—Y2—Y2ix121.23 (5)
O1i—Y1—Y2v119.93 (5)O4vii—Y2—Y2ix36.49 (4)
O3ii—Y1—Y2v39.64 (4)O4viii—Y2—Y2ix35.87 (4)
O2iii—Y1—Y2v126.94 (5)O5v—Y2—Y2ix155.46 (4)
O1iv—Y1—Y2v64.72 (5)Si1vii—Y2—Y2ix60.627 (13)
O5iii—Y1—Y2v92.89 (4)Y1v—Y2—Y2ix124.528 (14)
O2i—Y1—Y2v148.78 (4)Y2v—Y2—Y2ix135.245 (15)
Si1i—Y1—Y2v137.552 (13)Si1viii—Y2—Y2ix55.097 (12)
O5—Y1—Si1iii166.24 (4)Y1iii—Y2—Y2ix108.682 (13)
O1i—Y1—Si1iii93.15 (5)O3—Si1—O1111.91 (9)
O3ii—Y1—Si1iii90.63 (4)O3—Si1—O4111.74 (9)
O2iii—Y1—Si1iii25.30 (4)O1—Si1—O4109.09 (9)
O1iv—Y1—Si1iii96.33 (5)O3—Si1—O2112.47 (9)
O5iii—Y1—Si1iii98.24 (4)O1—Si1—O2103.39 (10)
O2i—Y1—Si1iii80.78 (4)O4—Si1—O2107.83 (9)
Si1i—Y1—Si1iii91.025 (16)O3—Si1—Y1x117.82 (6)
Y2v—Y1—Si1iii128.233 (13)O1—Si1—Y1x41.69 (7)
O5—Y1—Y2iii107.28 (4)O4—Si1—Y1x129.19 (6)
O1i—Y1—Y2iii134.64 (5)O2—Si1—Y1x62.86 (7)
O3ii—Y1—Y2iii76.13 (4)O3—Si1—Y2xi116.29 (6)
O2iii—Y1—Y2iii38.56 (4)O1—Si1—Y2xi72.98 (7)
O1iv—Y1—Y2iii145.32 (5)O4—Si1—Y2xi38.01 (6)
O5iii—Y1—Y2iii36.89 (4)O2—Si1—Y2xi128.51 (7)
O2i—Y1—Y2iii76.49 (3)Y1x—Si1—Y2xi105.651 (17)
Si1i—Y1—Y2iii108.053 (13)O3—Si1—Y1iii138.64 (6)
Y2v—Y1—Y2iii104.472 (9)O1—Si1—Y1iii103.68 (7)
Si1iii—Y1—Y2iii63.400 (11)O4—Si1—Y1iii73.78 (6)
O5—Y1—Si1ii96.94 (4)O2—Si1—Y1iii36.18 (7)
O1i—Y1—Si1ii150.67 (5)Y1x—Si1—Y1iii76.588 (14)
O3ii—Y1—Si1ii22.67 (4)Y2xi—Si1—Y1iii93.387 (15)
O2iii—Y1—Si1ii65.12 (5)O3—Si1—Y2viii83.66 (6)
O1iv—Y1—Si1ii87.88 (5)O1—Si1—Y2viii136.92 (8)
O5iii—Y1—Si1ii81.35 (4)O4—Si1—Y2viii32.02 (6)
O2i—Y1—Si1ii134.30 (4)O2—Si1—Y2viii106.95 (7)
Si1i—Y1—Si1ii160.129 (19)Y1x—Si1—Y2viii158.163 (19)
Y2v—Y1—Si1ii62.239 (11)Y2xi—Si1—Y2viii64.276 (13)
Si1iii—Y1—Si1ii69.770 (15)Y1iii—Si1—Y2viii84.489 (13)
Y2iii—Y1—Si1ii59.418 (11)O3—Si1—Y1xii32.38 (6)
O5—Y2—O3vi154.24 (6)O1—Si1—Y1xii144.23 (7)
O5—Y2—O281.14 (6)O4—Si1—Y1xii91.34 (6)
O3vi—Y2—O297.47 (6)O2—Si1—Y1xii97.46 (7)
O5—Y2—O4vii98.91 (6)Y1x—Si1—Y1xii137.855 (18)
O3vi—Y2—O4vii92.07 (6)Y2xi—Si1—Y1xii115.049 (17)
O2—Y2—O4vii157.29 (7)Y1iii—Si1—Y1xii110.232 (15)
O5—Y2—O4viii103.92 (6)Y2viii—Si1—Y1xii59.436 (11)
O3vi—Y2—O4viii101.60 (6)Si1—O1—Y1x108.57 (10)
O2—Y2—O4viii85.52 (7)Si1—O1—Y1xiii141.32 (11)
O4vii—Y2—O4viii72.36 (7)Y1x—O1—Y1xiii110.05 (7)
O5—Y2—O5v76.95 (6)Si1—O2—Y2139.18 (11)
O3vi—Y2—O5v77.34 (6)Si1—O2—Y1iii118.51 (10)
O2—Y2—O5v83.30 (7)Y2—O2—Y1iii100.19 (7)
O4vii—Y2—O5v119.01 (6)Si1—O2—Y1x85.26 (8)
O4viii—Y2—O5v168.51 (6)Y2—O2—Y1x97.12 (7)
O5—Y2—Si1vii109.40 (4)Y1iii—O2—Y1x105.46 (7)
O3vi—Y2—Si1vii71.56 (4)Si1—O3—Y2xiv136.44 (9)
O2—Y2—Si1vii168.91 (5)Si1—O3—Y1xii124.95 (9)
O4vii—Y2—Si1vii27.74 (4)Y2xiv—O3—Y1xii98.28 (6)
O4viii—Y2—Si1vii94.94 (4)Si1—O4—Y2xi114.25 (9)
O5v—Y2—Si1vii95.53 (4)Si1—O4—Y2viii124.73 (9)
O5—Y2—Y1v113.05 (4)Y2xi—O4—Y2viii107.64 (7)
O3vi—Y2—Y1v42.08 (4)Y2—O5—Y1140.24 (8)
O2—Y2—Y1v104.33 (5)Y2—O5—Y2v102.36 (6)
O4vii—Y2—Y1v96.57 (4)Y1—O5—Y2v98.75 (6)
O4viii—Y2—Y1v142.71 (4)Y2—O5—Y1iii100.33 (6)
O5v—Y2—Y1v39.66 (4)Y1—O5—Y1iii104.44 (6)
Si1vii—Y2—Y1v68.834 (12)Y2v—O5—Y1iii108.34 (6)
O5—Y2—Y2v40.59 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+3/2; (v) x+1, y, z+3/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x, y+1, z; (viii) x+1/2, y+1/2, z+1; (ix) x+1/2, y+3/2, z+1; (x) x, y+1, z+1/2; (xi) x, y1, z; (xii) x1/2, y1/2, z; (xiii) x+1, y1, z+3/2; (xiv) x+1/2, y1/2, z+3/2.
Atom positions, occupancy parameters and isotropic displacement parameters (Å-3) top
AtomOccupancy parameter (µ)xyzUiso/Ueq
Sc1/Y10.473 (6)/0.527 (6)0.54003 (2)0.74582 (3)0.47192 (3)0.00629 (10)
Sc2/Y20.895 (4)/0.105 (4)0.35953 (3)0.62123 (5)0.65961 (3)0.00489 (11)
Si10.31652 (4)0.09224 (8)0.69201 (6)0.00455 (14)
O110.41423 (14)0.0143 (3)0.86269 (19)0.0156 (3)
O210.37268 (15)0.2941 (3)0.6622 (2)0.0141 (3)
O310.20114 (13)0.1458 (2)0.68586 (18)0.0088 (3)
O410.29676 (14)-0.0798 (2)0.56393 (18)0.0102 (3)
O510.48321 (12)0.5961 (2)0.60705 (17)0.0070 (2)
Bond lengths (Å) and angles (°) in Sc1.368Y0.632SiO5 RE1 is Sc1/Y1 and RE2 is Sc2/Y1. top
Sc/Y polyhedronSiO4 tetrahedra
Sc1/Y1—O52.1349 (14)Si1—O31.6120 (16)
Sc1/Y1—O12.1641 (19)Si1—O11.6136 (16)
Sc1/Y1—O32.2391 (15)Si1—O41.6184 (15)
Sc1/Y1—O22.2571 (18)Si1—O21.6343 (17)
Sc1/Y1—O12.2614 (18)Average1.620 (2)
Sc1/Y1—O52.3262 (15)
Sc1/Y1—O22.754 (2)O1—Si1—O3111.91 (9)
Average2.305 (2)O3—Si1—O4111.74 (9)
O1—Si1—O4109.09 (9)
Sc2/Y1—O52.0561 (15)O2—Si1—O3112.47 (9)
Sc2/Y1—O32.1316 (15)O1—Si1—O2103.39 (10)
Sc2/Y1—O22.1341 (18)O2—Si1—O4107.83 (9)
Sc2/Y1—O42.1415 (17)Average109.4 (1)
Sc2/Y1—O42.1733 (16)
Sc2/Y1—O52.2208 (15)
Average2.143 (2)
Occupancy site in RE12-xRE2xSiO5 structures and polyhedra distortion data top
CompositionΔrµ (CN7)µ (CN6)Rav(CN7)Δr(CN7)D(CN7)Rav(CN6)Δr(CN6)D(CN6)Reference
Sc2SiO5112.2760.9921.8× 10-22.1320.1758× 10-4Alba et al. (2009)
Er2SiO5-112.3470.4172.6× 10-32.2580.0821.3× 10-4Phanon et al. (2008)
Lu2SiO5-112.3240.4543.16× 10-32.2280.0961.75× 10-4Gustafsson et al. (2001)
Y2SiO5-112.3600.4062.38× 10-32.2720.0761.2× 10-4Li (1999)
Lu1.82Y0.18SiO50.0390.116Y/0.884Lu0.072Y/0.938Lu2.3220.4523.2× 10-32.2320.1152.5× 10-4Ding et al. (2014)
Lu1.404Y0.596SiO50.0390.361Y/0.639Lu0.223Y/0.777Lu2.3330.4563.2× 10-32.2360.1042.2× 10-4Ding et al. (2014)
Lu096Y1.04SiO50.0390.613Y/0.387Lu0.423Y/0.577Lu2.3410.4392.8× 10-32.2460.1032.1× 10-4Ding et al. (2014)
Lu0.61Y1.39SiO50.0390.775Y/0.225Lu0.619Y/0.381Lu2.3490.4262.7× 10-32.2520.1002.2× 10-4Ding et al. (2014)
Lu0.194Y1.806SiO50.0390.93Y/0.07Lu0.875/0.1252.3540.4092.4× 10-32.2600.0771.4× 10-4Ding et al. (2014)
Lu1.50Sc0.50SiO50.1160.93Lu/0.07Sc0.57Lu//0.43Sc2.3090.4693.7× 10-32.1830.1052.4× 10-4Ben Yahia et al. (2011)
Lu1.23Sc0.77SiO50.1160.82Lu/0.18Sc0.41Lu//0.59Sc2.3090.4994.3× 10-32.1700.1367.9× 10-4Ben Yahia et al. (2011)
Lu1.12Sc0.88SiO50.1160.773Lu/0.227Sc0.346Lu//0.654Sc2.3030.5264.8× 10-32.1660.1413.9× 10-4Ben Yahia et al. (2011)
Sc1.368Y0.632SiO50.1550.527Y/0.473Sc0.105Y/0.895Sc2.3050.6196.97× 10-32.1430.1655.34× 10-4*
Sc1.931Tm0.069SiO50.1350.069Tm/0.931Sc0Tm/100Sc2.2760.8781.46× 10-22.1210.1796.8× 10-4Rodewald et al. (2012)
Sc1.955Yb0.045SiO50.1230.045Yb/0.955Sc0Yb/100Sc2.2820.9011.52× 10-22.1280.1756.6× 10-4Rodewald et al. (2012)
Lu1.923Ce0.077SiO50.1490.069Ce/0.931Lu0.003Ce/0.997Lu************Buryi et al. (2016)
Notes: (*) this work; (**) data in Buryi et al. (2016) are absent.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds