Download citation
Download citation
link to html
The magnetic properties of a novel cobalt-based hydrogen vanadate, Co13.5(OH)6(H0.5VO3.5)2(VO4)6, are reported. This new magnetic material was synthesized in single-crystal form using a conventional hydro­thermal method. Its crystal structure was determined from single-crystal X-ray diffraction data and was also characterized by scanning electron microscopy. Its crystal framework has a dumortierite-like structure consisting of large hexa­gonal and trigonal channels; the large hexa­gonal channels contain one-dimensional chains of face-sharing CoO6 octa­hedra linked to the framework by rings of VO4 tetra­hedra, while the trigonal channels are occupied by chains of disordered V2O4 pyramidal groups. The magnetic properties of this material were investigated by DC magnetic measurements, which indicate the occurrence of anti­ferromagnetic inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619007186/sk3725sup1.cif
Contains datablock global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619007186/sk3725Isup2.hkl
Contains datablock I

CCDC reference: 1916824

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Cobalt hydroxide hydrogen vanadate top
Crystal data top
Co13.5(OH)6(H0.5VO3.5)2(VO4)6Dx = 4.140 Mg m3
Mr = 1802.13Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 1184 reflections
a = 12.837 (8) Åθ = 3.2–35.0°
c = 5.064 (3) ŵ = 10.09 mm1
V = 722.7 (7) Å3T = 293 K
Z = 1Hexagonal prism, black
F(000) = 851.50.30 × 0.20 × 0.19 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1184 independent reflections
Radiation source: INCOATEC IµS micro-focus source1155 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.041
φ and ω scansθmax = 35.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.619, Tmax = 0.747k = 2020
32344 measured reflectionsl = 88
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0211P)2 + 0.7866P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.043Δρmax = 1.21 e Å3
S = 1.10Δρmin = 0.47 e Å3
1184 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
63 parametersExtinction coefficient: 0.0056 (6)
1 restraintAbsolute structure: Flack x determined using 521 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (8)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The software APEX3 was used for data collection and SAINT for cell refinement and data reduction. A total number of 32344 reflections were measured in the range of θmin = 3.2 ° and θmax = 35 °, of which 1184 were independent and 1155 reflections with I > 2σ(I). The crystal structure was solved by direct method with the SHELXS97 (Sheldrick, 1997) program and refined with SHELXL2014 (Sheldrick, 2015) program incorporated in the WinGX (Farrugia, 2012) package.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.69852 (5)0.84926 (2)0.62349 (10)0.00656 (10)
V2A0.33330.66670.3690 (4)0.0070 (4)0.610 (5)
V2B0.33330.66670.0920 (6)0.0061 (5)0.390 (5)
Co10.57335 (2)0.64904 (3)0.09342 (5)0.00765 (8)
Co21.00001.00000.9265 (3)0.0127 (2)0.75
O10.65816 (17)0.72332 (15)0.4391 (4)0.0098 (3)
O20.6119 (2)0.80595 (12)0.9087 (5)0.0099 (4)
O30.8507 (2)0.92536 (12)0.6824 (7)0.0145 (5)
O40.40426 (12)0.59574 (12)0.2403 (7)0.0155 (5)
O50.33330.66670.720 (2)0.0174 (19)0.5
H50.36810.63190.77390.026*0.1667
O60.52603 (12)0.47397 (12)0.2789 (5)0.0090 (4)
H60.55360.44640.15840.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0088 (2)0.00597 (14)0.0059 (2)0.00438 (10)0.00049 (18)0.00024 (9)
V2A0.0040 (4)0.0040 (4)0.0131 (7)0.0020 (2)0.0000.000
V2B0.0057 (6)0.0057 (6)0.0068 (9)0.0029 (3)0.0000.000
Co10.00715 (13)0.00836 (13)0.00721 (13)0.00369 (10)0.00000 (11)0.00030 (13)
Co20.0041 (2)0.0041 (2)0.0298 (6)0.00207 (11)0.0000.000
O10.0136 (7)0.0082 (6)0.0085 (7)0.0060 (6)0.0016 (6)0.0005 (6)
O20.0140 (11)0.0093 (7)0.0080 (10)0.0070 (5)0.0024 (9)0.0012 (4)
O30.0082 (10)0.0132 (8)0.0203 (13)0.0041 (5)0.0014 (9)0.0007 (5)
O40.0092 (8)0.0092 (8)0.0293 (15)0.0055 (9)0.0016 (5)0.0016 (5)
O50.015 (3)0.015 (3)0.023 (5)0.0073 (13)0.0000.000
O60.0093 (7)0.0093 (7)0.0086 (9)0.0048 (9)0.0009 (4)0.0009 (4)
Geometric parameters (Å, º) top
V1—O11.7079 (18)Co1—O62.222 (2)
V1—O1i1.7080 (18)Co2—O3vi2.069 (3)
V1—O31.718 (3)Co2—O32.069 (3)
V1—O21.736 (3)Co2—O3vii2.070 (3)
V2A—O41.706 (3)Co2—O3viii2.106 (3)
V2A—O4ii1.706 (3)Co2—O3ix2.106 (3)
V2A—O4i1.706 (3)Co2—O3x2.106 (3)
V2A—O51.777 (13)O1—Co1ix2.0262 (17)
V2B—O41.747 (3)O2—Co1xi2.0446 (13)
V2B—O4i1.747 (3)O2—Co1xii2.0446 (13)
V2B—O4ii1.747 (3)O3—Co2xiii2.106 (3)
V2B—O5iii1.884 (13)O4—Co1xiv2.061 (2)
Co1—O1iv2.026 (2)O5—H50.8200
Co1—O12.030 (2)O6—Co1ix2.155 (2)
Co1—O2iii2.0447 (13)O6—Co1xv2.155 (2)
Co1—O42.061 (2)O6—Co1xiv2.222 (2)
Co1—O6v2.155 (2)O6—H60.8643
O1—V1—O1i105.30 (13)O1iv—Co1—O6v87.39 (8)
O1—V1—O3110.72 (9)O1—Co1—O6v164.50 (8)
O1i—V1—O3110.72 (10)O2iii—Co1—O6v98.44 (9)
O1—V1—O2108.01 (8)O4—Co1—O6v83.34 (10)
O1i—V1—O2108.01 (9)O1iv—Co1—O689.59 (8)
O3—V1—O2113.69 (15)O1—Co1—O685.52 (8)
O4—V2A—O4ii106.33 (15)O2iii—Co1—O6177.40 (9)
O4—V2A—O4i106.33 (15)O4—Co1—O678.57 (9)
O4ii—V2A—O4i106.33 (14)O6v—Co1—O678.99 (5)
O4—V2A—O5112.45 (13)O3vi—Co2—O387.98 (14)
O4ii—V2A—O5112.45 (13)O3vi—Co2—O3vii87.98 (14)
O4i—V2A—O5112.45 (13)O3—Co2—O3vii87.98 (14)
O4—V2B—O4i102.87 (17)O3vi—Co2—O3viii92.95 (7)
O4—V2B—O4ii102.87 (17)O3—Co2—O3viii178.70 (16)
O4i—V2B—O4ii102.87 (17)O3vii—Co2—O3viii92.96 (8)
O4—V2B—O5iii115.46 (14)O3vi—Co2—O3ix178.70 (16)
O4i—V2B—O5iii115.46 (14)O3—Co2—O3ix92.96 (7)
O4ii—V2B—O5iii115.46 (14)O3vii—Co2—O3ix92.96 (7)
O1iv—Co1—O191.98 (8)O3viii—Co2—O3ix86.09 (14)
O1iv—Co1—O2iii90.67 (9)O3vi—Co2—O3x92.96 (7)
O1—Co1—O2iii97.06 (9)O3—Co2—O3x92.95 (8)
O1iv—Co1—O4166.15 (8)O3vii—Co2—O3x178.70 (16)
O1—Co1—O494.20 (11)O3viii—Co2—O3x86.09 (14)
O2iii—Co1—O4100.84 (10)O3ix—Co2—O3x86.09 (14)
Symmetry codes: (i) x, xy+1, z; (ii) x+y, y, z; (iii) x, y, z1; (iv) y, x, z1/2; (v) x+1, y+1, z1/2; (vi) y+2, x+2, z; (vii) x+y+1, y, z; (viii) x+2, y+2, z+1/2; (ix) y, x, z+1/2; (x) xy+1, y+2, z+1/2; (xi) x, xy+1, z+1; (xii) x, y, z+1; (xiii) x+2, y+2, z1/2; (xiv) y+1, x+1, z; (xv) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4xii0.822.493.071 (11)128
O5—H5···O6xv0.822.353.141 (3)161
O6—H6···O4v0.862.323.137 (4)159
O6—H6···O5v0.862.533.141 (3)128
Symmetry codes: (v) x+1, y+1, z1/2; (xii) x, y, z+1; (xv) x+1, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds