Download citation
Download citation
link to html
Coordination polymers constructed from conjugated organic ligands and metal ions with a d10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII-based coordination polymer, namely poly[aqua­(μ6-biphenyl-3,3′,5,5′-tetra­carboxyl­ato)(μ2-4,4′-bi­pyridine)­di­zinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2]n or [Zn2(m,m-bpta)(4,4′-bipy)(H2O)2]n, was syn­thesized from a mixture of biphenyl-3,3′,5,5′-tetra­carb­oxy­lic acid [H4(m,m-bpta)], 4,4′-bi­pyridine (4,4′-bipy) and Zn(NO3)2·6H2O under solvo­thermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis, and features a μ6-coordination mode. The ZnII ions adopt square-pyramidal geometries and are bridged by two synsyn carboxyl­ate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m-bpta)4− ligands to produce a two-dimensional grid-like layer that exhibits a stair-like structure along the a axis. Adjacent layers are linked by 4,4′-bipy ligands to form a three-dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619000767/sk3720sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619000767/sk3720Isup2.hkl
Contains datablock I

CCDC reference: 1891342

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2008), DIAMOND (Brandenburg, 2005) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[aqua(µ6-biphenyl-3,3',5,5'-tetracarboxylato)(µ2-4,4'-bipyridine)dizinc(II)] top
Crystal data top
[Zn2(C16H6O8)(C10H8N2)(H2O)2]Z = 1
Mr = 649.16F(000) = 328
Triclinic, P1Dx = 1.892 Mg m3
a = 7.7926 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2969 (5) ÅCell parameters from 5744 reflections
c = 9.7964 (9) Åθ = 2.7–27.7°
α = 73.953 (2)°µ = 2.18 mm1
β = 76.973 (2)°T = 296 K
γ = 71.184 (1)°Block, colourless
V = 569.67 (7) Å30.35 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2226 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.044
φ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.670, Tmax = 0.746k = 1111
12819 measured reflectionsl = 1213
2827 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.4864P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2827 reflectionsΔρmax = 0.46 e Å3
181 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.49602 (4)1.12378 (4)0.11306 (3)0.02067 (11)
O10.6404 (3)0.8846 (2)0.1782 (2)0.0270 (5)
O20.6622 (3)0.7200 (2)0.02631 (19)0.0243 (4)
O31.2633 (2)0.0449 (2)0.2484 (2)0.0243 (4)
O41.0140 (3)0.0814 (3)0.1577 (2)0.0367 (5)
O50.7460 (3)1.1746 (2)0.0172 (2)0.0284 (5)
H5A0.8051411.1173780.0770480.043*
H5B0.8252671.1692140.0278720.043*
N10.5072 (3)1.2651 (3)0.2472 (2)0.0195 (5)
C10.7033 (3)0.7463 (3)0.1336 (3)0.0160 (5)
C20.8319 (3)0.5988 (3)0.2197 (3)0.0143 (5)
C30.9027 (3)0.4374 (3)0.1828 (3)0.0157 (5)
H30.8736170.4205090.1017580.019*
C41.0173 (3)0.3015 (3)0.2678 (3)0.0165 (5)
C51.1032 (4)0.1292 (3)0.2218 (3)0.0198 (6)
C61.0551 (3)0.3265 (3)0.3909 (3)0.0187 (6)
H61.1312360.2343250.4474400.022*
C70.9818 (3)0.4870 (3)0.4326 (3)0.0153 (5)
C80.8739 (3)0.6225 (3)0.3420 (3)0.0172 (5)
H80.8284820.7321470.3639020.021*
C90.4273 (4)1.4377 (3)0.2270 (3)0.0214 (6)
H90.3738431.4950400.1444880.026*
C100.4212 (4)1.5329 (3)0.3233 (3)0.0190 (6)
H100.3638801.6522170.3057440.023*
C110.5010 (3)1.4505 (3)0.4472 (3)0.0166 (5)
C120.5827 (4)1.2711 (3)0.4677 (3)0.0234 (6)
H120.6366651.2101810.5494340.028*
C130.5831 (4)1.1851 (3)0.3669 (3)0.0234 (6)
H130.6386591.0655190.3822180.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02881 (19)0.01352 (14)0.02106 (18)0.00476 (12)0.01717 (13)0.00782 (11)
O10.0320 (11)0.0155 (9)0.0286 (11)0.0093 (8)0.0154 (9)0.0070 (8)
O20.0307 (11)0.0225 (9)0.0188 (10)0.0021 (8)0.0165 (8)0.0042 (8)
O30.0228 (10)0.0180 (9)0.0288 (11)0.0029 (8)0.0100 (8)0.0054 (8)
O40.0361 (12)0.0327 (11)0.0512 (14)0.0038 (9)0.0226 (11)0.0279 (10)
O50.0278 (11)0.0282 (10)0.0301 (11)0.0003 (8)0.0074 (9)0.0140 (9)
N10.0220 (12)0.0211 (11)0.0177 (11)0.0042 (9)0.0053 (9)0.0084 (9)
C10.0135 (13)0.0155 (11)0.0157 (13)0.0012 (10)0.0040 (10)0.0001 (10)
C20.0141 (12)0.0157 (11)0.0116 (12)0.0003 (10)0.0054 (10)0.0022 (9)
C30.0164 (13)0.0183 (11)0.0133 (12)0.0009 (10)0.0074 (10)0.0055 (10)
C40.0162 (13)0.0163 (11)0.0165 (13)0.0003 (10)0.0042 (10)0.0064 (10)
C50.0247 (14)0.0172 (12)0.0163 (13)0.0013 (11)0.0053 (11)0.0056 (10)
C60.0201 (14)0.0160 (11)0.0190 (14)0.0013 (10)0.0107 (11)0.0037 (10)
C70.0136 (13)0.0162 (11)0.0151 (13)0.0006 (10)0.0047 (10)0.0056 (10)
C80.0182 (13)0.0144 (11)0.0176 (13)0.0008 (10)0.0059 (11)0.0052 (10)
C90.0260 (15)0.0190 (12)0.0196 (14)0.0034 (11)0.0092 (12)0.0035 (11)
C100.0229 (14)0.0160 (11)0.0193 (14)0.0028 (10)0.0042 (11)0.0077 (10)
C110.0175 (13)0.0204 (12)0.0129 (13)0.0059 (10)0.0007 (10)0.0068 (10)
C120.0330 (16)0.0193 (12)0.0185 (14)0.0011 (11)0.0115 (12)0.0062 (11)
C130.0327 (16)0.0169 (12)0.0209 (14)0.0010 (11)0.0101 (12)0.0065 (11)
Geometric parameters (Å, º) top
Zn1—O11.9479 (17)C3—H30.9300
Zn1—O2i1.9531 (17)C4—C61.386 (3)
Zn1—N12.020 (2)C4—C51.516 (3)
Zn1—O3ii2.1622 (19)C6—C71.404 (3)
Zn1—O52.171 (2)C6—H60.9300
O1—C11.251 (3)C7—C81.390 (3)
O2—C11.256 (3)C7—C7iii1.496 (5)
O3—C51.263 (3)C8—H80.9300
O4—C51.244 (3)C9—C101.373 (3)
O5—H5A0.8201C9—H90.9300
O5—H5B0.8202C10—C111.391 (3)
N1—C131.340 (3)C10—H100.9300
N1—C91.342 (3)C11—C121.394 (3)
C1—C21.494 (3)C11—C11iv1.482 (5)
C2—C31.389 (3)C12—C131.367 (4)
C2—C81.389 (3)C12—H120.9300
C3—C41.389 (3)C13—H130.9300
O1—Zn1—O2i145.01 (8)C3—C4—C5119.2 (2)
O1—Zn1—N1107.61 (8)C6—C4—C5121.0 (2)
O2i—Zn1—N1107.33 (8)O4—C5—O3124.1 (2)
O1—Zn1—O3ii86.45 (7)O4—C5—C4118.2 (2)
O2i—Zn1—O3ii90.12 (7)O3—C5—C4117.7 (2)
N1—Zn1—O3ii92.70 (8)C4—C6—C7121.9 (2)
O1—Zn1—O587.59 (8)C4—C6—H6119.1
O2i—Zn1—O594.44 (8)C7—C6—H6119.1
N1—Zn1—O589.65 (8)C8—C7—C6116.9 (2)
O3ii—Zn1—O5174.02 (7)C8—C7—C7iii121.1 (3)
C1—O1—Zn1138.22 (17)C6—C7—C7iii122.0 (3)
C1—O2—Zn1i130.58 (16)C7—C8—C2121.9 (2)
C5—O3—Zn1v119.64 (16)C7—C8—H8119.1
Zn1—O5—H5A121.1C2—C8—H8119.1
Zn1—O5—H5B115.3N1—C9—C10122.6 (2)
H5A—O5—H5B102.1N1—C9—H9118.7
C13—N1—C9117.6 (2)C10—C9—H9118.7
C13—N1—Zn1120.11 (17)C9—C10—C11119.9 (2)
C9—N1—Zn1122.03 (17)C9—C10—H10120.1
O1—C1—O2125.4 (2)C11—C10—H10120.1
O1—C1—C2116.6 (2)C12—C11—C10117.1 (2)
O2—C1—C2117.9 (2)C12—C11—C11iv121.6 (3)
C3—C2—C8119.9 (2)C10—C11—C11iv121.4 (3)
C3—C2—C1121.0 (2)C13—C12—C11119.7 (2)
C8—C2—C1119.0 (2)C13—C12—H12120.2
C4—C3—C2119.5 (2)C11—C12—H12120.2
C4—C3—H3120.2N1—C13—C12123.1 (2)
C2—C3—H3120.2N1—C13—H13118.5
C3—C4—C6119.8 (2)C12—C13—H13118.5
Zn1—O1—C1—O211.0 (4)C3—C4—C6—C70.5 (4)
Zn1—O1—C1—C2171.65 (18)C5—C4—C6—C7177.8 (2)
Zn1i—O2—C1—O13.4 (4)C4—C6—C7—C82.1 (4)
Zn1i—O2—C1—C2179.26 (16)C4—C6—C7—C7iii178.3 (3)
O1—C1—C2—C3177.1 (2)C6—C7—C8—C23.3 (4)
O2—C1—C2—C30.4 (4)C7iii—C7—C8—C2177.1 (3)
O1—C1—C2—C80.0 (4)C3—C2—C8—C71.9 (4)
O2—C1—C2—C8177.5 (2)C1—C2—C8—C7175.3 (2)
C8—C2—C3—C40.9 (4)C13—N1—C9—C100.1 (4)
C1—C2—C3—C4178.0 (2)Zn1—N1—C9—C10174.7 (2)
C2—C3—C4—C62.0 (4)N1—C9—C10—C110.4 (4)
C2—C3—C4—C5176.3 (2)C9—C10—C11—C120.7 (4)
Zn1v—O3—C5—O4100.0 (3)C9—C10—C11—C11iv179.3 (3)
Zn1v—O3—C5—C478.3 (3)C10—C11—C12—C130.7 (4)
C3—C4—C5—O433.4 (4)C11iv—C11—C12—C13179.4 (3)
C6—C4—C5—O4148.2 (3)C9—N1—C13—C120.1 (4)
C3—C4—C5—O3145.0 (2)Zn1—N1—C13—C12174.9 (2)
C6—C4—C5—O333.3 (4)C11—C12—C13—N10.3 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+3, z+1; (v) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3iii0.932.513.390 (3)157
C9—H9···O5vi0.932.633.345 (3)134
O5—H5B···O4vii0.821.992.781 (3)163
O5—H5A···O4viii0.822.012.793 (3)159
O5—H5A···O3viii0.822.653.300 (3)137
Symmetry codes: (iii) x+2, y+1, z+1; (vi) x+1, y+3, z; (vii) x, y+1, z; (viii) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds