Download citation
Download citation
link to html
The assembly of metal–organic frameworks (MOFs) with metal ions and organic ligands is currently attracting considerable attention in crystal engineering and materials science due to their intriguing architectures and potential applications. A new three-dimensional MOF, namely poly[[di­aqua­(μ8-para-terphenyl-3,3′,5,5′-tetra­carboxyl­ato)dizinc(II)] di­methyl­formamide disolvate monohydrate], {[Zn2(C22H10O8)(H2O)2]·2C3H7NO·H2O}n, was synthesized by the self-assembly of Zn(NO3)2·6H2O and para-terphenyl-3,3′,5,5′-tetra­carb­oxy­lic acid (H4TPTC) under solvothermal conditions. The compound was structurally characterized by FT–IR spectroscopy, elemental analysis and single-crystal X-ray diffraction analysis. Each ZnII ion is located in a square-pyramidal geometry and is coordinated by four carboxyl­ate O atoms from four different TPTC4− ligands. Pairs of adjacent equivalent ZnII ions are bridged by four carboxyl­ate groups, forming [Zn2(O2CR)4] (R = terphen­yl) paddle-wheel units. One aqua ligand binds to each ZnII centre along the paddle-wheel axis. Each [Zn2(O2CR)4] paddle wheel is further linked to four terphenyl connectors to give a three-dimensional framework with NBO-type topology. The thermal stability and solid-state photoluminescence properties of the title compound have also been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961900189X/sk3719sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961900189X/sk3719Isup2.hkl
Contains datablock I

CCDC reference: 1894907

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Poly[[diaqua(µ8-para-terphenyl-3,3',5,5'-tetracarboxylato)dizinc(II)] dimethylformamide disolvate monohydrate] top
Crystal data top
[Zn2(C22H10O8)(H2O)2]·2C3H7NO·H2ODx = 0.712 Mg m3
Mr = 569.12Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3m:HCell parameters from 5433 reflections
a = 19.170 (6) Åθ = 2.5–23.5°
c = 37.51 (2) ŵ = 0.93 mm1
V = 11936 (10) Å3T = 296 K
Z = 9Block, colourless
F(000) = 25740.19 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2195 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.042
phi and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scanh = 2321
Tmin = 0.843, Tmax = 0.881k = 2321
21157 measured reflectionsl = 4538
2715 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0958P)2 + 6.732P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2715 reflectionsΔρmax = 0.28 e Å3
94 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.47587 (2)0.95175 (2)1.03318 (2)0.03741 (18)
O10.51609 (13)0.88673 (12)1.00689 (5)0.0637 (5)
O20.55427 (14)0.96206 (12)0.95778 (5)0.0676 (6)
O30.45154 (10)0.90309 (19)1.08089 (7)0.0829 (10)
H11A0.4656690.9313381.0994560.124*
H11B0.4257590.8515181.0829660.124*
C10.54271 (17)0.90229 (15)0.97558 (7)0.0514 (6)
C20.56237 (18)0.84360 (16)0.95816 (7)0.0536 (7)
C30.5922 (2)0.85795 (17)0.92329 (8)0.0613 (8)
H3A0.6019850.9049320.9117400.074*
C40.6074 (3)0.80368 (15)0.90572 (12)0.0663 (12)
C50.5488 (2)0.77438 (12)0.97530 (10)0.0530 (9)
H5A0.5302110.7651040.9986990.064*
C60.6382 (3)0.81908 (17)0.86841 (12)0.0707 (13)
C70.6884 (7)0.7938 (6)0.8561 (2)0.088 (3)0.5
H7A0.7072500.7682300.8732800.106*0.5
C80.6135 (6)0.8565 (5)0.84427 (19)0.079 (2)0.5
H8A0.5776300.8754900.8525000.095*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0463 (2)0.0304 (2)0.0302 (2)0.01521 (12)0.00199 (7)0.00399 (14)
O10.0853 (14)0.0571 (12)0.0593 (12)0.0435 (11)0.0150 (11)0.0007 (9)
O20.1007 (16)0.0565 (12)0.0642 (12)0.0532 (12)0.0125 (12)0.0020 (10)
O30.120 (2)0.072 (2)0.0412 (15)0.0360 (10)0.0094 (7)0.0187 (14)
C10.0594 (16)0.0402 (14)0.0553 (16)0.0253 (13)0.0023 (12)0.0032 (12)
C20.0713 (18)0.0451 (14)0.0510 (15)0.0339 (14)0.0091 (13)0.0018 (11)
C30.092 (2)0.0467 (15)0.0566 (17)0.0434 (16)0.0174 (15)0.0094 (12)
C40.100 (3)0.0604 (17)0.052 (2)0.0500 (17)0.022 (2)0.0111 (11)
C50.069 (2)0.0512 (15)0.0452 (19)0.0343 (12)0.0068 (18)0.0034 (9)
C60.115 (4)0.0589 (16)0.057 (3)0.058 (2)0.025 (2)0.0123 (12)
C70.153 (8)0.098 (6)0.063 (4)0.100 (6)0.035 (5)0.031 (4)
C80.123 (6)0.090 (5)0.065 (4)0.083 (5)0.032 (4)0.024 (4)
Geometric parameters (Å, º) top
Zn1—O31.963 (3)C2—C51.377 (3)
Zn1—O1i2.020 (2)C2—C31.398 (4)
Zn1—O12.020 (2)C3—C41.380 (3)
Zn1—O2ii2.0330 (19)C3—H3A0.9300
Zn1—O2iii2.033 (2)C4—C61.490 (6)
Zn1—Zn1ii2.9601 (15)C5—H5A0.9300
O1—C11.255 (3)C6—C71.357 (8)
O2—C11.247 (3)C6—C81.377 (8)
O3—H11A0.8396C7—H7A0.9803
O3—H11B0.8596C8—H8A0.9758
C1—C21.503 (4)
O3—Zn1—O1i103.01 (10)O2—C1—O1125.7 (3)
O3—Zn1—O1103.01 (9)O2—C1—C2117.4 (2)
O1i—Zn1—O187.27 (13)O1—C1—C2117.0 (2)
O3—Zn1—O2ii97.91 (9)C5—C2—C3119.2 (3)
O1i—Zn1—O2ii88.90 (10)C5—C2—C1121.4 (3)
O1—Zn1—O2ii159.06 (9)C3—C2—C1119.4 (2)
O3—Zn1—O2iii97.91 (9)C4—C3—C2121.2 (3)
O1i—Zn1—O2iii159.06 (9)C4—C3—H3A119.4
O1—Zn1—O2iii88.90 (10)C2—C3—H3A119.4
O2ii—Zn1—O2iii87.35 (14)C3—C4—C3iv118.5 (4)
O3—Zn1—Zn1ii171.53 (10)C3—C4—C6120.75 (19)
O1i—Zn1—Zn1ii83.03 (7)C3iv—C4—C6120.75 (19)
O1—Zn1—Zn1ii83.03 (7)C2—C5—C2iv120.7 (3)
O2ii—Zn1—Zn1ii76.07 (6)C2—C5—H5A119.7
O2iii—Zn1—Zn1ii76.07 (6)C2iv—C5—H5A119.7
C1—O1—Zn1123.05 (18)C7—C6—C8116.9 (5)
C1—O2—Zn1ii131.74 (19)C7—C6—C4122.0 (4)
Zn1—O3—H11A121.7C8—C6—C4121.0 (4)
Zn1—O3—H11B119.5C6—C7—H7A117.5
H11A—O3—H11B118.8C6—C8—H8A118.4
Zn1ii—O2—C1—O19.1 (5)C1—C2—C3—C4176.9 (3)
Zn1ii—O2—C1—C2170.9 (2)C2—C3—C4—C3iv0.2 (7)
Zn1—O1—C1—O26.3 (4)C2—C3—C4—C6179.2 (4)
Zn1—O1—C1—C2173.79 (19)C3—C2—C5—C2iv1.6 (6)
O2—C1—C2—C5177.6 (3)C1—C2—C5—C2iv175.9 (2)
O1—C1—C2—C52.5 (5)C3—C4—C6—C7147.6 (7)
O2—C1—C2—C30.1 (4)C3iv—C4—C6—C733.4 (9)
O1—C1—C2—C3180.0 (3)C3—C4—C6—C835.6 (9)
C5—C2—C3—C40.7 (6)C3iv—C4—C6—C8143.4 (6)
Symmetry codes: (i) x+y, y, z; (ii) x+1, y+2, z+2; (iii) xy+1, y+2, z+2; (iv) x, xy+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds