Download citation
Download citation
link to html
The complex (2,2′-bi­quinoline-κ2N,N′)(carbamoyl­cyano­nitro­somethanide-κ2N,O)chlorido­copper(II) aceto­nitrile monosolvate, [Cu(C3H2N3O2)Cl(C18H12N2)]·CH3CN or [Cu(ccnm)Cl(biq)]·acn (acn is aceto­nitrile, biq is 2,2′-bi­quinoline and ccnm is carbamoyl­cyano­nitro­somethanide), (I), was prepared as a result of nucleophilic addition of water to the di­cyano­nitro­somethanide ion in the presence of CuII and biq. IR spectroscopy confirmed the presence of ccnm, biq and acn in (I). The solid-state structure consists of the neutral complex containing ccnm and biq ligands, coordinated to the CuII atom in a bidendate chelating manner, and a chloride ligand, resulting in a distorted tetra­gonal pyramidal coordination of CuII. The asymmetric unit is supplemented by one mol­ecule of solvated acn which, along with the nitrile group of ccnm, serves as an acceptor in inter­molecular hydrogen bonding, creating infinite chains along the b axis. Magnetic measurements revealed a paramagnetic behaviour with a very small Weiss temperature Θ = −0.32 K and high anisotropy of the g tensor (gx = 2.036, gy = 2.120 and gz = 2.205).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618005697/sk3686sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618005697/sk3686Isup2.hkl
Contains datablock I

CCDC reference: 1836379

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) in WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2009).

(2,2'-Biquinoline-κ2N,N')(carbamoylcyanonitrosomethanide-\ κ2N,O)chloridocopper(II) acetonitrile monosolvate top
Crystal data top
[Cu(C3H2N3O2)Cl(C18H12N2)]·C2H3NF(000) = 1036
Mr = 508.42Dx = 1.504 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.8203 (1) ÅCell parameters from 21847 reflections
b = 9.1276 (1) Åθ = 4.2–67.7°
c = 21.1575 (1) ŵ = 2.75 mm1
β = 100.468 (1)°T = 120 K
V = 2244.71 (3) Å3Plate, dark green
Z = 40.31 × 0.11 × 0.03 mm
Data collection top
Rigaku Xcalibur AtlasS2 Gemini ultra
diffractometer
4034 independent reflections
Radiation source: fine-focus sealed X-ray tube3765 reflections with I > 2σ(I)
Detector resolution: 5.1783 pixels mm-1Rint = 0.030
ω scansθmax = 67.6°, θmin = 3.8°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2017), based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.593, Tmax = 0.927k = 1010
40629 measured reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.4117P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4034 reflectionsΔρmax = 0.29 e Å3
318 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84543 (2)0.67370 (2)0.62482 (2)0.01704 (8)
Cl10.98942 (3)0.52820 (4)0.67748 (2)0.02252 (10)
O20.74668 (9)0.61544 (13)0.68669 (5)0.0218 (2)
O10.74223 (10)0.96188 (13)0.58230 (5)0.0254 (3)
N200.94414 (10)0.75413 (14)0.56619 (6)0.0168 (3)
N100.77747 (11)0.55355 (14)0.53480 (6)0.0180 (3)
N10.74096 (11)0.85218 (15)0.61833 (6)0.0183 (3)
N20.59380 (13)0.67900 (19)0.73050 (7)0.0266 (3)
N30.51050 (12)1.04133 (16)0.66124 (7)0.0286 (3)
C210.93414 (13)0.69337 (17)0.50823 (7)0.0175 (3)
C221.02823 (13)0.85627 (17)0.58589 (7)0.0175 (3)
C271.10787 (13)0.89555 (18)0.54590 (7)0.0190 (3)
N40.37291 (14)0.82051 (19)0.74661 (9)0.0387 (4)
C10.66365 (13)0.84313 (18)0.65695 (7)0.0185 (3)
C120.69170 (13)0.45126 (18)0.52100 (8)0.0204 (3)
C110.83902 (13)0.58648 (17)0.48996 (7)0.0185 (3)
C20.66930 (13)0.70659 (18)0.69295 (7)0.0199 (3)
C170.66875 (14)0.37865 (19)0.46055 (8)0.0243 (3)
C291.01142 (13)0.72761 (18)0.46644 (7)0.0204 (3)
H291.00360.68190.42550.024*
C30.58020 (13)0.95479 (18)0.65906 (7)0.0209 (3)
C281.09693 (13)0.82663 (18)0.48539 (8)0.0207 (3)
H281.14950.84940.45780.025*
C231.03632 (13)0.92393 (19)0.64663 (7)0.0216 (3)
H230.98380.89800.67390.026*
C261.19398 (13)1.00064 (19)0.56815 (8)0.0225 (3)
H261.24821.02680.54200.027*
C241.11937 (14)1.0264 (2)0.66624 (8)0.0253 (4)
H241.12341.07260.70680.030*
C190.81741 (14)0.5229 (2)0.42781 (8)0.0251 (4)
H190.86070.55220.39630.030*
C251.19955 (14)1.0645 (2)0.62684 (8)0.0256 (4)
H251.25761.13500.64140.031*
C130.62539 (14)0.41411 (19)0.56798 (8)0.0250 (4)
H130.63870.46270.60830.030*
C40.29640 (15)0.7813 (2)0.76818 (8)0.0276 (4)
C50.19909 (16)0.7316 (2)0.79585 (10)0.0299 (4)
C180.73392 (15)0.4194 (2)0.41403 (8)0.0279 (4)
H180.71960.37450.37280.033*
C160.58372 (15)0.2677 (2)0.45003 (9)0.0311 (4)
H160.56970.21680.41020.037*
C140.54218 (15)0.3085 (2)0.55557 (9)0.0307 (4)
H140.49750.28540.58730.037*
C150.52189 (15)0.2332 (2)0.49628 (10)0.0333 (4)
H150.46510.15850.48870.040*
H2N20.5987 (17)0.600 (3)0.7498 (10)0.027 (5)*
H1N20.5418 (19)0.736 (3)0.7336 (10)0.034 (6)*
H1C50.2262 (19)0.673 (3)0.8336 (11)0.042 (6)*
H3C50.154 (2)0.816 (3)0.8048 (11)0.046 (6)*
H2C50.149 (2)0.667 (3)0.7654 (12)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01632 (12)0.01982 (14)0.01701 (13)0.00012 (8)0.00846 (9)0.00151 (8)
Cl10.02012 (18)0.0268 (2)0.02202 (18)0.00297 (15)0.00760 (14)0.00255 (15)
O20.0196 (5)0.0246 (6)0.0236 (5)0.0032 (5)0.0106 (4)0.0058 (5)
O10.0299 (6)0.0217 (6)0.0279 (6)0.0013 (5)0.0138 (5)0.0074 (5)
N200.0157 (6)0.0191 (7)0.0165 (6)0.0022 (5)0.0052 (5)0.0013 (5)
N100.0166 (6)0.0182 (7)0.0197 (6)0.0015 (5)0.0044 (5)0.0008 (5)
N10.0187 (6)0.0198 (7)0.0178 (6)0.0028 (5)0.0069 (5)0.0000 (5)
N20.0239 (8)0.0306 (9)0.0295 (8)0.0051 (7)0.0163 (6)0.0095 (7)
N30.0281 (8)0.0245 (8)0.0369 (8)0.0007 (6)0.0156 (6)0.0017 (6)
C210.0175 (7)0.0189 (8)0.0170 (7)0.0042 (6)0.0055 (6)0.0021 (6)
C220.0161 (7)0.0186 (8)0.0185 (7)0.0025 (6)0.0047 (6)0.0036 (6)
C270.0172 (7)0.0203 (8)0.0206 (7)0.0039 (6)0.0066 (6)0.0056 (6)
N40.0338 (9)0.0378 (10)0.0497 (10)0.0097 (7)0.0212 (8)0.0090 (8)
C10.0178 (7)0.0208 (8)0.0184 (7)0.0006 (6)0.0071 (6)0.0020 (6)
C120.0169 (7)0.0186 (8)0.0252 (8)0.0027 (6)0.0019 (6)0.0019 (6)
C110.0179 (7)0.0190 (8)0.0193 (7)0.0042 (6)0.0050 (6)0.0003 (6)
C20.0171 (7)0.0263 (9)0.0170 (7)0.0016 (6)0.0051 (6)0.0002 (6)
C170.0190 (8)0.0238 (9)0.0283 (8)0.0035 (7)0.0003 (6)0.0023 (7)
C290.0238 (8)0.0224 (8)0.0169 (7)0.0050 (6)0.0091 (6)0.0020 (6)
C30.0213 (8)0.0217 (9)0.0218 (8)0.0052 (7)0.0093 (6)0.0021 (6)
C280.0216 (8)0.0227 (9)0.0212 (8)0.0040 (6)0.0128 (6)0.0055 (6)
C230.0207 (8)0.0272 (9)0.0180 (7)0.0009 (7)0.0069 (6)0.0007 (6)
C260.0180 (7)0.0247 (9)0.0262 (8)0.0005 (6)0.0076 (6)0.0058 (7)
C240.0255 (8)0.0302 (9)0.0196 (8)0.0027 (7)0.0024 (6)0.0016 (7)
C190.0235 (8)0.0318 (10)0.0209 (8)0.0019 (7)0.0066 (6)0.0032 (7)
C250.0209 (8)0.0272 (9)0.0276 (8)0.0051 (7)0.0018 (7)0.0029 (7)
C130.0228 (8)0.0252 (9)0.0270 (8)0.0011 (7)0.0046 (7)0.0031 (7)
C40.0287 (9)0.0257 (9)0.0290 (9)0.0082 (7)0.0067 (7)0.0003 (7)
C50.0263 (9)0.0303 (10)0.0348 (10)0.0002 (8)0.0098 (8)0.0008 (8)
C180.0262 (8)0.0334 (10)0.0230 (8)0.0031 (7)0.0016 (7)0.0085 (7)
C160.0248 (9)0.0289 (10)0.0365 (10)0.0012 (7)0.0027 (7)0.0065 (8)
C140.0239 (9)0.0297 (10)0.0380 (10)0.0041 (7)0.0044 (7)0.0084 (8)
C150.0256 (9)0.0247 (10)0.0462 (11)0.0055 (7)0.0025 (8)0.0025 (8)
Geometric parameters (Å, º) top
Cu1—O21.9785 (10)C11—C191.418 (2)
Cu1—N201.9912 (12)C17—C181.406 (3)
Cu1—N12.0337 (14)C17—C161.416 (2)
Cu1—N102.2179 (13)C29—C281.361 (2)
Cu1—Cl12.2832 (4)C29—H290.9500
O2—C21.261 (2)C28—H280.9500
O1—N11.2602 (17)C23—C241.365 (2)
N20—C211.331 (2)C23—H230.9500
N20—C221.371 (2)C26—C251.363 (2)
N10—C111.331 (2)C26—H260.9500
N10—C121.370 (2)C24—C251.415 (2)
N1—C11.334 (2)C24—H240.9500
N2—C21.322 (2)C19—C181.359 (3)
N2—H2N20.82 (2)C19—H190.9500
N2—H1N20.82 (2)C25—H250.9500
N3—C31.148 (2)C13—C141.368 (2)
C21—C291.417 (2)C13—H130.9500
C21—C111.486 (2)C4—C51.455 (3)
C22—C231.413 (2)C5—H1C50.97 (2)
C22—C271.421 (2)C5—H3C50.98 (2)
C27—C281.411 (2)C5—H2C50.99 (2)
C27—C261.416 (2)C18—H180.9500
N4—C41.142 (2)C16—C151.360 (3)
C1—C31.425 (2)C16—H160.9500
C1—C21.456 (2)C14—C151.412 (3)
C12—C131.414 (2)C14—H140.9500
C12—C171.422 (2)C15—H150.9500
O2—Cu1—N20173.84 (5)C16—C17—C12119.27 (16)
O2—Cu1—N180.56 (5)C28—C29—C21119.42 (15)
N20—Cu1—N194.59 (5)C28—C29—H29120.3
O2—Cu1—N10105.67 (5)C21—C29—H29120.3
N20—Cu1—N1079.00 (5)N3—C3—C1177.75 (17)
N1—Cu1—N10102.55 (5)C29—C28—C27120.28 (14)
O2—Cu1—Cl189.88 (3)C29—C28—H28119.9
N20—Cu1—Cl192.82 (4)C27—C28—H28119.9
N1—Cu1—Cl1152.69 (4)C24—C23—C22120.13 (14)
N10—Cu1—Cl1104.66 (4)C24—C23—H23119.9
C2—O2—Cu1114.74 (10)C22—C23—H23119.9
C21—N20—C22120.09 (13)C25—C26—C27120.39 (15)
C21—N20—Cu1117.14 (11)C25—C26—H26119.8
C22—N20—Cu1122.39 (10)C27—C26—H26119.8
C11—N10—C12118.77 (13)C23—C24—C25120.76 (15)
C11—N10—Cu1109.93 (10)C23—C24—H24119.6
C12—N10—Cu1131.18 (10)C25—C24—H24119.6
O1—N1—C1120.28 (13)C18—C19—C11119.01 (16)
O1—N1—Cu1127.12 (10)C18—C19—H19120.5
C1—N1—Cu1112.58 (10)C11—C19—H19120.5
C2—N2—H2N2118.1 (14)C26—C25—C24120.33 (16)
C2—N2—H1N2121.6 (15)C26—C25—H25119.8
H2N2—N2—H1N2120 (2)C24—C25—H25119.8
N20—C21—C29121.57 (15)C14—C13—C12120.33 (16)
N20—C21—C11116.71 (13)C14—C13—H13119.8
C29—C21—C11121.72 (14)C12—C13—H13119.8
N20—C22—C23119.94 (13)N4—C4—C5179.8 (2)
N20—C22—C27120.83 (14)C4—C5—H1C5109.7 (14)
C23—C22—C27119.23 (14)C4—C5—H3C5109.1 (14)
C28—C27—C26123.07 (14)H1C5—C5—H3C5112.9 (19)
C28—C27—C22117.79 (15)C4—C5—H2C5110.4 (14)
C26—C27—C22119.14 (14)H1C5—C5—H2C5106.3 (19)
N1—C1—C3122.00 (14)H3C5—C5—H2C5108.4 (19)
N1—C1—C2113.70 (14)C19—C18—C17120.19 (15)
C3—C1—C2124.21 (14)C19—C18—H18119.9
N10—C12—C13119.78 (14)C17—C18—H18119.9
N10—C12—C17121.48 (15)C15—C16—C17120.76 (17)
C13—C12—C17118.73 (15)C15—C16—H16119.6
N10—C11—C19122.64 (15)C17—C16—H16119.6
N10—C11—C21116.67 (13)C13—C14—C15120.89 (17)
C19—C11—C21120.69 (14)C13—C14—H14119.6
O2—C2—N2121.27 (16)C15—C14—H14119.6
O2—C2—C1118.36 (13)C16—C15—C14119.97 (17)
N2—C2—C1120.37 (15)C16—C15—H15120.0
C18—C17—C16122.89 (16)C14—C15—H15120.0
C18—C17—C12117.84 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Cl1i0.952.673.4989 (17)146
C13—H13···O20.952.363.230 (2)153
N2—H2N2···N3ii0.82 (2)2.53 (2)3.061 (2)123.8 (17)
N2—H2N2···N4ii0.82 (2)2.57 (2)3.321 (3)151.3 (18)
N2—H1N2···N40.82 (2)2.20 (2)2.987 (2)161 (2)
C5—H1C5···O1ii0.97 (2)2.60 (2)3.541 (2)163.6 (18)
C5—H3C5···Cl1iii0.98 (2)2.65 (3)3.615 (2)173.0 (19)
C5—H2C5···Cl1iv0.99 (2)2.71 (3)3.688 (2)171.0 (19)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds