Download citation
Download citation
link to html
Due to their strong coordination ability and the diversities of their coordination modes, N-heterocyclic organic compounds are used extensively as ligands for the construction of complexes with fascinating structures and potential applications in many fields. Two new complexes, namely bis­{1-[(benzotriazol-1-yl)meth­yl]-1H-imidazole-[kappa]N3}di­bromido­zinc(II), [ZnBr2(C10H9N5)2], (I), and bis­{1-[(benzotriazol-1-yl)meth­yl]-1H-imidazole-[kappa]N3}di­iodido­zinc(II), [ZnI2(C10H9N5)2], (II), have been synthesized by reaction of the unsymmetrical N-heterocyclic ligand 1-[(benzotriazol-1-yl)meth­yl]-1H-imidazole (bmi) with Zn(acetate)2 in the presence of KBr or KI. Single-crystal X-ray diffraction analysis shows that both complexes exhibit a mononuclear structure, in which the bmi ligands coordinate to the central metal ion in a monodentate mode. In the solid state, both complexes possess a three-dimensional network formed by hydrogen bonds and [pi]-[pi] inter­actions. In addition, the IR spectroscopic properties, PXRD patterns and fluorescence properties of both complexes have been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616016430/sk3637sup1.cif
Contains datablocks I, II, Huang

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616016430/sk3637Isup4.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616016430/sk3637IIsup5.hkl
Contains datablock II

CCDC references: 1510011; 1510010

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Bis{1-[(benzotriazol-1-yl)methyl]-1H-imidazole-κN3}dibromidozinc(II) top
Crystal data top
[ZnBr2(C10H9N5)2]Dx = 1.801 Mg m3
Mr = 623.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5172 reflections
a = 11.498 (2) Åθ = 2.1–27.8°
b = 11.715 (2) ŵ = 4.58 mm1
c = 17.071 (3) ÅT = 293 K
V = 2299.4 (8) Å3Prism, colourless
Z = 40.17 × 0.16 × 0.12 mm
F(000) = 1232
Data collection top
Rigaku Saturn
diffractometer
2271 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.044
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
h = 1314
Tmin = 0.742, Tmax = 1.000k = 1014
14163 measured reflectionsl = 1621
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.2668P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2271 reflectionsΔρmax = 0.45 e Å3
150 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.36417 (5)0.25000.03343 (17)
Br10.06408 (4)0.46925 (3)0.13951 (2)0.04817 (15)
N10.1306 (3)0.2646 (2)0.29102 (15)0.0345 (7)
N20.2490 (3)0.1814 (2)0.37410 (14)0.0324 (6)
N30.2304 (3)0.0759 (2)0.49422 (15)0.0338 (7)
N40.2355 (3)0.0394 (2)0.48559 (18)0.0458 (8)
N50.1587 (3)0.0850 (2)0.53165 (19)0.0471 (8)
C10.1668 (3)0.2613 (3)0.36456 (19)0.0341 (8)
H1A0.13900.30820.40430.041*
C20.1949 (3)0.1836 (3)0.2520 (2)0.0403 (9)
H2A0.18960.16760.19880.048*
C30.2663 (3)0.1314 (3)0.3027 (2)0.0417 (9)
H3A0.31780.07250.29150.050*
C40.3044 (3)0.1492 (3)0.44837 (19)0.0366 (8)
H4A0.37710.11020.43760.044*
H4B0.32210.21760.47810.044*
C50.1482 (3)0.1042 (3)0.54808 (18)0.0331 (8)
C60.1113 (3)0.2074 (3)0.58013 (19)0.0378 (8)
H6A0.14340.27680.56490.045*
C70.0256 (4)0.2008 (4)0.6349 (2)0.0475 (10)
H7A0.00020.26770.65880.057*
C80.0260 (4)0.0971 (4)0.6568 (2)0.0537 (11)
H8A0.08700.09720.69250.064*
C90.0119 (4)0.0037 (4)0.6266 (2)0.0515 (11)
H9A0.02090.07270.64200.062*
C100.1019 (3)0.0002 (3)0.5716 (2)0.0376 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0363 (4)0.0307 (3)0.0333 (3)0.0000.0025 (2)0.000
Br10.0489 (3)0.0499 (3)0.0458 (3)0.00021 (19)0.00781 (18)0.01271 (18)
N10.0373 (18)0.0321 (16)0.0340 (16)0.0024 (13)0.0031 (13)0.0019 (12)
N20.0313 (17)0.0323 (15)0.0337 (16)0.0021 (13)0.0015 (12)0.0018 (13)
N30.0394 (19)0.0254 (14)0.0367 (16)0.0033 (13)0.0054 (13)0.0008 (12)
N40.058 (2)0.0309 (17)0.0489 (19)0.0090 (16)0.0114 (17)0.0016 (14)
N50.058 (2)0.0282 (16)0.055 (2)0.0007 (16)0.0144 (17)0.0021 (15)
C10.036 (2)0.0305 (18)0.0360 (19)0.0001 (15)0.0006 (15)0.0019 (15)
C20.041 (2)0.046 (2)0.0340 (19)0.0018 (18)0.0025 (17)0.0060 (17)
C30.041 (2)0.042 (2)0.042 (2)0.0104 (18)0.0038 (17)0.0080 (17)
C40.033 (2)0.039 (2)0.039 (2)0.0039 (16)0.0045 (15)0.0000 (16)
C50.033 (2)0.0332 (19)0.0334 (18)0.0017 (15)0.0082 (15)0.0043 (15)
C60.042 (2)0.0301 (18)0.042 (2)0.0027 (16)0.0018 (17)0.0022 (15)
C70.051 (3)0.049 (2)0.042 (2)0.010 (2)0.0014 (18)0.0007 (18)
C80.041 (3)0.075 (3)0.045 (2)0.001 (2)0.0017 (18)0.007 (2)
C90.047 (3)0.058 (3)0.050 (2)0.018 (2)0.014 (2)0.023 (2)
C100.040 (2)0.0327 (19)0.041 (2)0.0030 (16)0.0141 (17)0.0056 (16)
Geometric parameters (Å, º) top
Zn1—N12.026 (3)C2—C31.341 (5)
Zn1—N1i2.026 (3)C2—H2A0.9300
Zn1—Br12.3698 (6)C3—H3A0.9300
Zn1—Br1i2.3699 (6)C4—H4A0.9700
N1—C11.323 (4)C4—H4B0.9700
N1—C21.374 (4)C5—C101.389 (5)
N2—C11.340 (4)C5—C61.393 (5)
N2—C31.366 (4)C6—C71.361 (5)
N2—C41.469 (4)C6—H6A0.9300
N3—N41.360 (4)C7—C81.403 (6)
N3—C51.360 (4)C7—H7A0.9300
N3—C41.440 (4)C8—C91.359 (6)
N4—N51.298 (4)C8—H8A0.9300
N5—C101.374 (5)C9—C101.398 (6)
C1—H1A0.9300C9—H9A0.9300
N1—Zn1—N1i109.71 (16)N2—C3—H3A126.5
N1—Zn1—Br1110.10 (8)N3—C4—N2111.4 (3)
N1i—Zn1—Br1104.74 (8)N3—C4—H4A109.3
N1—Zn1—Br1i104.74 (8)N2—C4—H4A109.3
N1i—Zn1—Br1i110.10 (8)N3—C4—H4B109.3
Br1—Zn1—Br1i117.41 (3)N2—C4—H4B109.3
C1—N1—C2105.7 (3)H4A—C4—H4B108.0
C1—N1—Zn1125.3 (2)N3—C5—C10104.4 (3)
C2—N1—Zn1128.9 (2)N3—C5—C6133.5 (3)
C1—N2—C3107.1 (3)C10—C5—C6122.0 (3)
C1—N2—C4126.2 (3)C7—C6—C5116.2 (3)
C3—N2—C4126.6 (3)C7—C6—H6A121.9
N4—N3—C5110.2 (3)C5—C6—H6A121.9
N4—N3—C4120.5 (3)C6—C7—C8122.5 (4)
C5—N3—C4129.3 (3)C6—C7—H7A118.7
N5—N4—N3108.3 (3)C8—C7—H7A118.7
N4—N5—C10109.0 (3)C9—C8—C7121.1 (4)
N1—C1—N2111.0 (3)C9—C8—H8A119.5
N1—C1—H1A124.5C7—C8—H8A119.5
N2—C1—H1A124.5C8—C9—C10117.6 (4)
C3—C2—N1109.3 (3)C8—C9—H9A121.2
C3—C2—H2A125.3C10—C9—H9A121.2
N1—C2—H2A125.3N5—C10—C5108.1 (3)
C2—C3—N2106.9 (3)N5—C10—C9131.5 (4)
C2—C3—H3A126.5C5—C10—C9120.4 (4)
C5—N3—N4—N50.5 (4)C4—N3—C5—C10178.1 (3)
C4—N3—N4—N5178.4 (3)N4—N3—C5—C6177.4 (4)
N3—N4—N5—C100.2 (4)C4—N3—C5—C63.8 (6)
C2—N1—C1—N21.0 (4)N3—C5—C6—C7178.9 (4)
Zn1—N1—C1—N2175.7 (2)C10—C5—C6—C71.1 (5)
C3—N2—C1—N10.2 (4)C5—C6—C7—C81.9 (6)
C4—N2—C1—N1176.4 (3)C6—C7—C8—C93.3 (6)
C1—N1—C2—C31.4 (4)C7—C8—C9—C101.6 (6)
Zn1—N1—C2—C3175.2 (3)N4—N5—C10—C50.2 (4)
N1—C2—C3—N21.3 (4)N4—N5—C10—C9179.0 (4)
C1—N2—C3—C20.6 (4)N3—C5—C10—N50.5 (4)
C4—N2—C3—C2177.3 (3)C6—C5—C10—N5177.8 (3)
N4—N3—C4—N289.6 (4)N3—C5—C10—C9178.8 (3)
C5—N3—C4—N289.0 (4)C6—C5—C10—C92.8 (5)
C1—N2—C4—N378.5 (4)C8—C9—C10—N5179.4 (4)
C3—N2—C4—N397.5 (4)C8—C9—C10—C51.4 (6)
N4—N3—C5—C100.6 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br1ii0.973.013.951 (4)163
C4—H4B···N5iii0.972.503.449 (5)167
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z.
(II) Bis{1-[(benzotriazol-1-yl)methyl]-1H-imidazole-κN3}diiodidozinc(II) top
Crystal data top
[ZnI2(C10H9N5)2]Dx = 1.952 Mg m3
Mr = 717.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 6875 reflections
a = 11.729 (2) Åθ = 1.7–28.0°
b = 11.853 (2) ŵ = 3.56 mm1
c = 17.563 (4) ÅT = 293 K
V = 2441.7 (8) Å3Prism, colourless
Z = 40.16 × 0.13 × 0.08 mm
F(000) = 1376
Data collection top
Rigaku Saturn
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.033
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
h = 1414
Tmin = 0.813, Tmax = 1.000k = 1214
14216 measured reflectionsl = 1321
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0216P)2 + 3.1101P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2400 reflectionsΔρmax = 0.48 e Å3
150 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.13958 (5)0.25000.03295 (14)
I10.07239 (2)0.02815 (2)0.36520 (2)0.04549 (10)
N10.1276 (2)0.2374 (2)0.20866 (16)0.0351 (6)
N20.2447 (3)0.3164 (2)0.12729 (15)0.0343 (6)
N30.2266 (3)0.4231 (2)0.01187 (16)0.0361 (7)
N40.2339 (3)0.5370 (3)0.02233 (19)0.0506 (9)
N50.1625 (3)0.5859 (3)0.0232 (2)0.0565 (10)
C10.1626 (3)0.2395 (3)0.13763 (19)0.0369 (8)
H1A0.13390.19330.09930.044*
C20.1920 (3)0.3170 (3)0.2461 (2)0.0467 (9)
H2A0.18690.33370.29770.056*
C30.2636 (4)0.3670 (3)0.1966 (2)0.0478 (10)
H3A0.31540.42430.20710.057*
C40.2979 (3)0.3478 (3)0.0548 (2)0.0400 (8)
H4A0.37060.38390.06470.048*
H4B0.31220.28020.02510.048*
C50.1478 (3)0.3994 (3)0.04272 (19)0.0359 (8)
C60.1064 (4)0.5050 (3)0.0647 (2)0.0452 (10)
C70.0211 (4)0.5127 (4)0.1207 (2)0.0611 (14)
H7A0.00890.58190.13530.073*
C80.0156 (4)0.4150 (5)0.1524 (3)0.0633 (13)
H8A0.07240.41770.18920.076*
C90.0293 (4)0.3101 (4)0.1314 (2)0.0574 (11)
H9A0.00310.24550.15580.069*
C100.1101 (3)0.3002 (3)0.0764 (2)0.0450 (9)
H10A0.13890.23030.06200.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0337 (3)0.0335 (3)0.0317 (3)0.0000.0007 (2)0.000
I10.04298 (16)0.05144 (18)0.04206 (15)0.00149 (12)0.00946 (11)0.01041 (11)
N10.0351 (16)0.0359 (16)0.0343 (15)0.0035 (13)0.0021 (12)0.0005 (13)
N20.0355 (16)0.0330 (15)0.0344 (15)0.0068 (13)0.0040 (12)0.0018 (13)
N30.0437 (18)0.0248 (14)0.0399 (16)0.0059 (13)0.0101 (14)0.0014 (13)
N40.066 (2)0.0301 (17)0.056 (2)0.0105 (16)0.0207 (18)0.0060 (15)
N50.071 (3)0.0332 (19)0.065 (2)0.0056 (18)0.026 (2)0.0072 (18)
C10.041 (2)0.0325 (19)0.0366 (18)0.0052 (16)0.0020 (16)0.0028 (16)
C20.048 (2)0.056 (2)0.0353 (19)0.0120 (19)0.0009 (17)0.0099 (18)
C30.048 (2)0.052 (2)0.044 (2)0.0146 (19)0.0017 (18)0.0121 (19)
C40.034 (2)0.042 (2)0.044 (2)0.0075 (16)0.0074 (16)0.0032 (17)
C50.037 (2)0.033 (2)0.0381 (18)0.0008 (15)0.0106 (15)0.0047 (15)
C60.046 (2)0.039 (2)0.051 (2)0.0071 (18)0.0232 (19)0.0119 (19)
C70.058 (3)0.066 (3)0.060 (3)0.028 (2)0.022 (2)0.028 (2)
C80.049 (3)0.091 (4)0.049 (2)0.010 (3)0.001 (2)0.011 (3)
C90.056 (3)0.065 (3)0.051 (2)0.008 (2)0.002 (2)0.001 (2)
C100.046 (2)0.040 (2)0.048 (2)0.0040 (18)0.0015 (18)0.0004 (18)
Geometric parameters (Å, º) top
Zn1—N1i2.028 (3)C2—C31.346 (5)
Zn1—N12.028 (3)C2—H2A0.9300
Zn1—I1i2.5610 (5)C3—H3A0.9300
Zn1—I12.5611 (5)C4—H4A0.9700
N1—C11.313 (4)C4—H4B0.9700
N1—C21.377 (4)C5—C101.389 (5)
N2—C11.339 (4)C5—C61.396 (5)
N2—C31.375 (4)C6—C71.405 (7)
N2—C41.465 (4)C7—C81.355 (7)
N3—C51.361 (5)C7—H7A0.9300
N3—N41.365 (4)C8—C91.399 (7)
N3—C41.438 (5)C8—H8A0.9300
N4—N51.295 (5)C9—C101.359 (6)
N5—C61.374 (6)C9—H9A0.9300
C1—H1A0.9300C10—H10A0.9300
N1i—Zn1—N1110.27 (16)N2—C3—H3A126.9
N1i—Zn1—I1i109.45 (8)N3—C4—N2111.5 (3)
N1—Zn1—I1i104.87 (8)N3—C4—H4A109.3
N1i—Zn1—I1104.87 (8)N2—C4—H4A109.3
N1—Zn1—I1109.45 (8)N3—C4—H4B109.3
I1i—Zn1—I1117.91 (3)N2—C4—H4B109.3
C1—N1—C2105.7 (3)H4A—C4—H4B108.0
C1—N1—Zn1125.5 (2)N3—C5—C10133.7 (3)
C2—N1—Zn1128.8 (2)N3—C5—C6104.3 (3)
C1—N2—C3107.0 (3)C10—C5—C6122.0 (4)
C1—N2—C4126.7 (3)N5—C6—C5108.2 (4)
C3—N2—C4126.1 (3)N5—C6—C7131.8 (4)
C5—N3—N4110.0 (3)C5—C6—C7120.0 (4)
C5—N3—C4129.5 (3)C8—C7—C6117.2 (4)
N4—N3—C4120.5 (3)C8—C7—H7A121.4
N5—N4—N3108.6 (3)C6—C7—H7A121.4
N4—N5—C6108.9 (3)C7—C8—C9122.1 (4)
N1—C1—N2111.5 (3)C7—C8—H8A118.9
N1—C1—H1A124.3C9—C8—H8A118.9
N2—C1—H1A124.3C10—C9—C8121.7 (5)
C3—C2—N1109.6 (3)C10—C9—H9A119.1
C3—C2—H2A125.2C8—C9—H9A119.1
N1—C2—H2A125.2C9—C10—C5116.9 (4)
C2—C3—N2106.2 (3)C9—C10—H10A121.6
C2—C3—H3A126.9C5—C10—H10A121.6
C5—N3—N4—N50.4 (4)C4—N3—C5—C101.3 (6)
C4—N3—N4—N5179.3 (3)N4—N3—C5—C60.5 (4)
N3—N4—N5—C60.0 (4)C4—N3—C5—C6179.4 (3)
C2—N1—C1—N20.6 (4)N4—N5—C6—C50.3 (4)
Zn1—N1—C1—N2177.1 (2)N4—N5—C6—C7179.4 (4)
C3—N2—C1—N10.0 (4)N3—C5—C6—N50.5 (4)
C4—N2—C1—N1175.3 (3)C10—C5—C6—N5177.9 (3)
C1—N1—C2—C30.9 (5)N3—C5—C6—C7179.3 (3)
Zn1—N1—C2—C3176.7 (3)C10—C5—C6—C72.3 (5)
N1—C2—C3—N20.9 (5)N5—C6—C7—C8178.8 (4)
C1—N2—C3—C20.6 (4)C5—C6—C7—C81.5 (6)
C4—N2—C3—C2175.9 (4)C6—C7—C8—C90.5 (6)
C5—N3—C4—N293.0 (4)C7—C8—C9—C101.9 (7)
N4—N3—C4—N288.3 (4)C8—C9—C10—C51.1 (6)
C1—N2—C4—N378.9 (4)N3—C5—C10—C9178.9 (4)
C3—N2—C4—N395.4 (4)C6—C5—C10—C91.0 (6)
N4—N3—C5—C10177.6 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···I1ii0.973.174.112 (4)165
C4—H4B···N5iii0.972.473.424 (5)167
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds