Download citation
Download citation
link to html
A second polymorph of the hydro­chloride salt of the recreational drug ethyl­one, C12H16NO3+·Cl-, is reported [systematic name: (±)-2-ethyl­ammonio-1-(3,4-methyl­ene­dioxy­phen­yl)propane-1-one chloride]. This polymorph, denoted form (A), appears in crystallizations performed above 308 K. The originally reported form (B) [Wood et al. (2015). Acta Cryst. C71, 32-38] crystallizes preferentially at room temperature. The conformations of the cations in the two forms differ by a 180° rotation about the C-C bond linking the side chain to the aromatic ring. Hydrogen bonding links the cations and anions in both forms into similar extended chains in which any one chain contains only a single enanti­omer of the chiral cation, but the packing of the ions is different. In form (A), the aromatic rings of adjacent chains inter­leave, but pack equally well if neighbouring chains contain the same or opposite enanti­omorph of the cation. The consequence of this is then near perfect inversion twinning in the structure. In form (B), neighbouring chains are always inverted, leading to a centrosymmetric space group. The question as to why the polymorphs crystallize at slightly different temperatures has been examined by density functional theory (DFT) and lattice energy calculations and a consideration of packing compactness. The free energy ([Delta]G) of the crystal lattice for polymorph (A) lies some 52 kJ mol-1 above that of polymorph (B).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615004295/sk3581sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615004295/sk3581Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229615004295/sk3581Isup3.cdx
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615004295/sk3581Isup4.cml
Supplementary material

CCDC reference: 1051738

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPII (Johnson, 1976), Mercury (Macrae et al., 2008) and CrystalStructure (Rigaku, 2007); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2015).

[1-(1,3-Benzodioxol-5-yl)-1-oxopropan-2-yl]ethanaminium chloride top
Crystal data top
C12H16NO3+·ClDx = 1.366 Mg m3
Mr = 257.71Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3179 reflections
a = 6.90225 (16) Åθ = 6.4–73.0°
b = 7.13000 (16) ŵ = 2.69 mm1
c = 25.4692 (5) ÅT = 160 K
V = 1253.42 (5) Å3Needle, pale yellow
Z = 40.30 × 0.06 × 0.03 mm
F(000) = 544
Data collection top
Oxford Diffraction SuperNova (dual radiation)
diffractometer
2421 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2286 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.3801 pixels mm-1θmax = 74.8°, θmin = 3.5°
ω scansh = 88
Absorption correction: gaussian
(CrysAlisPro; Agilent, 2014)
k = 88
Tmin = 0.707, Tmax = 0.923l = 3131
7202 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.1079P)2 + 1.0836P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.74 e Å3
2421 reflectionsΔρmin = 0.34 e Å3
157 parametersAbsolute structure: Refined as an inversion twin using 929 Friedel pairs
0 restraintsAbsolute structure parameter: 0.50 (5)
Special details top

Experimental. Solvent used: 50:50 v.v. MeOH-H2O Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 2184 Seconds exposure per frame: 5.0–75.0 Degrees rotation per frame: 0.5 Crystal-detector distance (mm): 55.0 Client: Stan Cameron Sample code: ethlone hydrochloride (L1407)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin using 929 Friedel pairs

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0103 (2)0.35002 (17)0.80071 (4)0.0414 (4)
O10.1371 (7)0.1702 (6)0.58409 (15)0.0469 (10)
O20.0680 (8)0.4897 (6)0.40324 (15)0.0494 (11)
O30.0217 (6)0.8065 (5)0.41849 (13)0.0424 (9)
N10.1330 (7)0.2704 (6)0.68548 (16)0.0335 (9)
H10.08320.29450.71790.040*
H20.10480.14910.67740.040*
C10.0643 (8)0.4676 (8)0.54772 (19)0.0337 (11)
C20.0773 (9)0.3968 (8)0.4959 (2)0.0393 (12)
H210.09920.26760.48890.047*
C30.0565 (8)0.5253 (8)0.45632 (19)0.0360 (12)
C40.0302 (7)0.7116 (7)0.46539 (19)0.0333 (11)
C50.0214 (7)0.7849 (7)0.51485 (18)0.0319 (10)
H50.00590.91560.52060.038*
C60.0361 (7)0.6590 (7)0.55644 (18)0.0323 (10)
H60.02680.70420.59140.039*
C70.0879 (8)0.3315 (8)0.59123 (19)0.0343 (10)
C80.0363 (8)0.3947 (7)0.64665 (17)0.0311 (11)
H80.08110.52670.65200.037*
C90.1808 (9)0.3853 (9)0.6540 (2)0.0436 (14)
H910.22470.25570.64930.065*
H920.24420.46600.62800.065*
H930.21410.42810.68940.065*
C100.3466 (8)0.2923 (8)0.6877 (2)0.0389 (12)
H1010.37920.42440.69570.047*
H1020.40310.26080.65300.047*
C110.4327 (9)0.1655 (9)0.7293 (2)0.0441 (13)
H1110.39450.03550.72240.066*
H1120.38500.20360.76400.066*
H1130.57420.17550.72850.066*
C120.0225 (9)0.6636 (8)0.37870 (19)0.0437 (12)
H1210.10620.65620.36170.052*
H1220.12030.69340.35150.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0673 (8)0.0288 (6)0.0282 (5)0.0097 (6)0.0067 (6)0.0024 (4)
O10.075 (3)0.033 (2)0.0327 (18)0.004 (2)0.0023 (18)0.0044 (16)
O20.080 (3)0.043 (2)0.0249 (17)0.005 (2)0.0033 (18)0.0025 (16)
O30.059 (2)0.042 (2)0.0267 (16)0.006 (2)0.0019 (16)0.0035 (14)
N10.046 (2)0.027 (2)0.0273 (18)0.0010 (18)0.0011 (17)0.0015 (16)
C10.037 (2)0.036 (3)0.028 (2)0.005 (2)0.0015 (19)0.001 (2)
C20.051 (3)0.037 (3)0.030 (2)0.006 (2)0.003 (2)0.003 (2)
C30.040 (3)0.042 (3)0.026 (2)0.006 (2)0.0033 (19)0.002 (2)
C40.033 (2)0.037 (3)0.030 (2)0.008 (2)0.0016 (18)0.0057 (19)
C50.033 (2)0.029 (2)0.034 (2)0.002 (2)0.003 (2)0.0005 (18)
C60.035 (2)0.034 (2)0.028 (2)0.004 (2)0.0006 (17)0.0041 (19)
C70.043 (2)0.032 (3)0.028 (2)0.005 (2)0.0032 (19)0.001 (2)
C80.046 (3)0.021 (2)0.026 (2)0.003 (2)0.0004 (19)0.0007 (16)
C90.048 (3)0.050 (4)0.033 (3)0.000 (3)0.004 (2)0.001 (2)
C100.043 (3)0.040 (3)0.033 (2)0.005 (2)0.001 (2)0.002 (2)
C110.050 (3)0.044 (3)0.038 (3)0.005 (3)0.004 (2)0.009 (2)
C120.059 (3)0.044 (3)0.027 (2)0.005 (3)0.000 (2)0.000 (2)
Geometric parameters (Å, º) top
O1—C71.213 (7)C5—H50.9500
O2—C31.378 (6)C6—H60.9500
O2—C121.424 (7)C7—C81.524 (7)
O3—C41.374 (6)C8—C91.511 (8)
O3—C121.437 (6)C8—H81.0000
N1—C101.484 (7)C9—H910.9800
N1—C81.486 (6)C9—H920.9800
N1—H10.9100C9—H930.9800
N1—H20.9100C10—C111.515 (8)
C1—C61.396 (7)C10—H1010.9900
C1—C21.417 (7)C10—H1020.9900
C1—C71.482 (7)C11—H1110.9800
C2—C31.369 (8)C11—H1120.9800
C2—H210.9500C11—H1130.9800
C3—C41.360 (8)C12—H1210.9900
C4—C51.365 (7)C12—H1220.9900
C5—C61.392 (7)
C3—O2—C12104.9 (4)N1—C8—C7109.6 (4)
C4—O3—C12105.3 (4)C9—C8—C7109.5 (4)
C10—N1—C8114.1 (4)N1—C8—H8109.4
C10—N1—H1108.7C9—C8—H8109.4
C8—N1—H1108.7C7—C8—H8109.4
C10—N1—H2108.7C8—C9—H91109.5
C8—N1—H2108.7C8—C9—H92109.5
H1—N1—H2107.6H91—C9—H92109.5
C6—C1—C2120.4 (5)C8—C9—H93109.5
C6—C1—C7122.5 (4)H91—C9—H93109.5
C2—C1—C7117.2 (5)H92—C9—H93109.5
C3—C2—C1116.1 (5)N1—C10—C11110.7 (4)
C3—C2—H21121.9N1—C10—H101109.5
C1—C2—H21121.9C11—C10—H101109.5
C4—C3—C2122.9 (5)N1—C10—H102109.5
C4—C3—O2110.7 (5)C11—C10—H102109.5
C2—C3—O2126.3 (5)H101—C10—H102108.1
C3—C4—C5122.4 (5)C10—C11—H111109.5
C3—C4—O3109.8 (4)C10—C11—H112109.5
C5—C4—O3127.7 (5)H111—C11—H112109.5
C4—C5—C6116.9 (5)C10—C11—H113109.5
C4—C5—H5121.6H111—C11—H113109.5
C6—C5—H5121.6H112—C11—H113109.5
C5—C6—C1121.3 (4)O2—C12—O3108.0 (4)
C5—C6—H6119.4O2—C12—H121110.1
C1—C6—H6119.4O3—C12—H121110.1
O1—C7—C1122.7 (5)O2—C12—H122110.1
O1—C7—C8119.0 (5)O3—C12—H122110.1
C1—C7—C8118.2 (5)H121—C12—H122108.4
N1—C8—C9109.7 (4)
C6—C1—C2—C31.3 (8)C2—C1—C6—C50.4 (8)
C7—C1—C2—C3179.5 (5)C7—C1—C6—C5177.6 (5)
C1—C2—C3—C41.8 (8)C6—C1—C7—O1170.2 (5)
C1—C2—C3—O2178.5 (5)C2—C1—C7—O17.9 (8)
C12—O2—C3—C47.2 (6)C6—C1—C7—C813.5 (7)
C12—O2—C3—C2175.8 (6)C2—C1—C7—C8168.3 (5)
C2—C3—C4—C50.4 (9)C10—N1—C8—C9170.5 (4)
O2—C3—C4—C5177.5 (5)C10—N1—C8—C769.3 (5)
C2—C3—C4—O3177.6 (5)O1—C7—C8—N123.9 (7)
O2—C3—C4—O30.5 (7)C1—C7—C8—N1159.8 (4)
C12—O3—C4—C36.4 (6)O1—C7—C8—C996.4 (6)
C12—O3—C4—C5175.8 (5)C1—C7—C8—C979.9 (6)
C3—C4—C5—C61.4 (8)C8—N1—C10—C11178.2 (4)
O3—C4—C5—C6179.1 (5)C3—O2—C12—O310.9 (6)
C4—C5—C6—C11.8 (7)C4—O3—C12—O210.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.912.243.149 (4)174
N1—H2···Cl1i0.912.303.134 (5)153
Symmetry code: (i) x, y1/2, z+3/2.
Relative free energies for polymorphs (A) and (B), as well as the rotational transition state TS(AB) in the gas phase (298 K, 1 atm) and applying SCRF-PCM for methanol and water (298 K, 1 atm)a top
ComputationΔG (kJ mol-1)
A, gas phase0
AB, gas phase34
B, gas phase35
A, MeOH0
AB, MeOH31
B, MeOH14
A, HOH0
AB, HOH30
B, HOH12
(a) Computations done at 288 K and 318 K yielded essentially the same relative energies.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds