Download citation
Download citation
link to html
The compounds N'-benzyl­idene-N-methyl­pyrazine-2-carbohydrazide, C13H12N4O, (IIa), N'-(2-meth­oxy­benzyl­idene)-N-methyl­pyrazine-2-carbohydrazide, C14H14N4O2, (IIb), N'-(4-cyano­benzyl­idene)-N-methyl­pyrazine-2-carbohydrazide dihydrate, C14H11N5O·2H2O, (IIc), N-methyl-N'-(2-nitro­benzyl­idene)­pyrazine-2-carbohydrazide, C13H11N5O3, (IId), and N-methyl-N'-(4-nitro­benzyl­idene)­pyrazine-2-carbohydrazide, C13H11N5O3, (IIe), have dihedral angles between the pyrazine rings and the benzene rings in the range 55-78°. These methyl­ated pyrazine-2-carbohydrazides have supra­molecular structures which are formed by weak C-H...O/N hydrogen bonds, with the exception of (IIc) which is hydrated. There are [pi]-[pi] stacking inter­actions in all five compounds. Three of these structures are compared with their nonmethyl­ated counterparts, which have dihedral angles between the pyrazine rings and the benzene rings in the range 0-6°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113010056/sk3484sup1.cif
Contains datablocks global, IIa, IIb, IIc, IIe, IId

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010056/sk3484IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010056/sk3484IIbsup3.hkl
Contains datablock IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010056/sk3484IIcsup4.hkl
Contains datablock IIc

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010056/sk3484IIdsup5.hkl
Contains datablock IId

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010056/sk3484IIesup6.hkl
Contains datablock IIe

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010056/sk3484IIasup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010056/sk3484IIbsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010056/sk3484IIcsup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010056/sk3484IIdsup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010056/sk3484IIesup11.cml
Supplementary material

CCDC references: 950375; 950376; 950377; 950378; 950379

Comment top

Pyrazine derivatives exhibit a wide range of biological activities. Recent studies have revealed that pyrazine-2-carbohydrazides, (I) (see scheme; Vergara et al., 2009; Lima et al., 2011), have moderate antituberculosis properties. Crystal structures of various of the pyrazine-2-carbohydrazides have been reported (Baddeley et al., 2009; Howie et al., 2010a,b,c; Howie, de Souza et al., 2010; de Souza et al., 2011). In continuation of these studies, the synthesis and antituberculosis activities of a series of methylated pyrazine-2-carbohydrazide derivatives, (II) (see scheme), have been studied. It is worth noting that methylation of (I) occurred at the imine N atom rather than at the pyridine N atom. However, none of the compounds (II) were found to exhibit antituberculosis properties (de Souza, 2013).

A recently reported study of mono- and diesters of 3-(pyrazin-2-ylcarbonyl)dithiocarbazic acid suggested that the planarity of pyrazinyl derivatives may be a prerequisite for tubercolostatic activity (Szczesio et al., 2011; Orlewska et al., 2001). This prompted crystal structure determinations of the five title methylated pyrazine-2-carbohydrazide derivatives, namely N'-benzylidene-N-methylpyrazine-2-carbohydrazide, (IIa) (Fig. 1), N'-(2-methoxybenzylidene)-N-methylpyrazine-2-carbohydrazide, (IIb) (Fig. 2), N'-(4-cyanobenzylidene)-N-methylpyrazine-2-carbohydrazide dihydrate, (IIc) (Fig. 3), N'-(2-nitrobenzylidene)-N-methylpyrazine-2-carbohydrazide, (IId) (Fig. 4), and N'-(4-nitrobenzylidene)-N-methylpyrazine-2-carbohydrazide, (IIe) (Fig. 5). A comparative analysis of the structures of these inactive compounds on the one hand with, on the other, those of moderately active N'-benzylidenepyrazine-2-carbohydrazide, (Ib) (de Souza et al., 2011), N'-(4-methoxybenzylidene)methylpyrazine-2-carbohydrazide, (Ic) (Howie et al., 2010a), and N'-(2-nitrobenzylidene)pyrazine-2-carbohydrazide, (Id) (Howie et al., 2010a), will be a useful contribution to the understanding of the correlation between structure and activity.

As will be shown, derivatives (IIa)–(IIe) are not planar, unlike the analogous compounds (Ib)–(Id). A search of the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002) (see Supplementary materials, 27 structures), revealed that pyrazine-2-carbohydrazides of type (I) exhibit a preference for conformations having the carbonyl group trans to the H—N(pyrazinamide), shown as conformation E1 in Fig. 6. Furthermore, a short intramolecular pyrazine–hydrazide ortho-N···H—N' contact is observed for the majority of these structures [see, for example, Baddeley et al. (2009), Howie et al., 2010a,b,c; Howie, de Souza et al. (2010) and de Souza et al. (2011)]. These two effects constrain the relative positions of the pyrazinyl N atoms with respect to the hydrazinyl group. Hyperconjugation from the heteroaryl ring to the benzene ring via the hydrazinyl unit has been suggested as the main contributor to the near planarity of type (I) compounds and this is reinforced by the intramolecular N—H···N hydrogen bond (Szczesio et al., 2011). However, this planarity can be dramatically influenced by the nature and position of the substituents on the benzene ring (see Supplementary materials).

As expected, the substitution of a methyl group on N2 in the pyrazine-2-carbohydrazide system induces significant structural change. The major changes are in the relative positions of the pyrazine ring and carbonyl groups and the nonplanarity of the methylated compounds. The methyl group precludes the formation of the intramolecular hydrogen bond observed in the compounds of type (I) and imposes steric hindrance near the pyrazine ring, with the result that the conformation of compounds of type (II) is E(2) (Fig. 6), in contrast with the E(1) conformation assumed by the nonmethylated compounds (I). The overall planarity is lost, probably due to the loss of hyperconjugation within the C(O)NMeNC group. The deviations from planarity of (IIa)–(IIe) arise fundamentally from the rotation of the pyrazine ring about the C(py)—C(O) axis (py is pyrazine). Various torsion and other angles determined for (I) and (II) are listed in Table 1. The molecule of (Ib) (de Souza et al., 2011) is planar and lies on a crystallographic mirror plane, while that of (Ic) (Howie et al., 2010a) is nearly so [θ = 5.82 (7)°]. In contrast, θ values for (II) are in the range 55–78° (Table 1). The rotation of the pyrazine ring about the C22—C2 axis is the main contributor to the nonplanarity of the methylated compounds, since the benzene rings are largely coplanar with the CNNC spacer group. Compound (IIa) exhibits the largest dihedral angle and the greatest deviation of atom C2 from the mean plane through the pyrazine ring. The angle the pyrazine ring makes with the C22—C2 bond is probably due to the participation of atom C25 as a donor in an intermolecular hydrogen bond.

Compound (IIb) exhibits conformational disorder. The pyrazine ring is rotated anticlockwise by 71.10 (3)° for the major component and clockwise by 67.14 (3)° for the minor one. It is interesting to note that atom N21 of the major component participates as an acceptor in a weak N···H—C intermolecular interaction, while the equivalent interaction is absent in the minor component.

Compound (IIc) crystallizes as a dihydrate. The asymmetric unit was selected such that the three molecules form a hydrogen-bonded unit. The water molecules are involved in hydrogen-bonded chains with atoms N21.

In compound (IId), the plane of the benzene ring is practically coplanar with the plane of the CNNC spacer group, the dihedral angle being 5.3 (3)°. The dihedral angle between the plane of the CNNC spacer group and the mean plane of the pyrazine ring is 53.0 (2)°, a clockwise rotation around the C2—C22 axis. The nitro group is twisted out of the plane of the benzene ring by 45.8 (4)°. In spite of this, there is a short contact between atoms O121 and H1 of 2.40Å, with an angle at atom H1 of 112°. The twist of this nitro group may result as a compromise between this weak intramolecular interaction and a weak intermolecuar interaction involving atom O122 of the nitro group.

In isomeric compound (IIe), the dihedral angle between the benzene-ring mean plane and the CNNC spacer group is 8.26 (17)°, and the dihedral angle between the CNNC spacer group and the mean plane of the pyrazine ring is 59.65 (17)°, again a clockwise rotation around the C2—C22 axis. In contrast with (IId), the nitro substituent is twisted out of the plane of the benzene ring plane by only 7.1 (2)°.

Only in hydrated (IIc) are strong hydrogen bonds present. For the other compounds studied here, the intermolecular arrangements are formed by weak C—H..O/N hydrogen bonds and ππ stacking interactions.

For compound (IIa), a weak C25–H25···O2(x, y - 1, z) hydrogen bond links the molecules into a C(7) chain (Bernstein et al., 1995), which runs parallel to the b axis (Table 2 and Fig. 7). There is a ππ short contact between the pyrazine rings, lying across the centre of symmetry at (1/2, 1/2, 1/2); the centroid-to-centroid distance is 3.6631 (7) Å, the perpendicular distance between the rings is 3.6415 (5) Å and the slippage is 0.395 Å.

In compound (IIb), the intermolecular short contacts (Table 3) involve atom C13 as a donor and atom N21 of the major disordered pyrazine ring as an acceptor. There are no similar contacts for the minor component. This suggests that this interaction does not play any significant part in the supramolecular structure of this compound. The other short intermolecular contacts involve the methyl H atoms (Table 3). There is a ππ short contact between the pyrazine rings, which stack above each other with unit translation along the a axis; for the major component, the centroid-to-centroid distance is 4.032 (7) Å, the perpendicular distance between the rings is 3.600 (3) Å and the slippage is 1.816 Å, while for minor component, the centroid-to-centroid distance is 4.033 (8) Å, the perpendicular distance between the rings is 3.164 (4) Å and the slippage is 2.500 Å. The benzene rings also stack above each other with unit translation along the a axis; the centroid-to-centroid distance is 4.032 (6) Å, the perpendicular distance between the rings is 3.4489 (9) Å and the slippage is 2.088 Å.

For compound (IIc), water molecule O1W links the molecules into a C22(7) chain via O1W—H1WB···N21 (within the defined asymmetric unit) and O1W—H1WA···O2(x, y - 1,z) hydrogen bonds. This chain runs parallel to the b axis. The O2W water molecules are linked into a C2 chain by an O2—H2WB···O2W(-x + 1, y - 1/2, -z + 1/2) hydrogen bond. This chain of water molecules links two antiparallel chains together to form a ribbon which runs parallel to the b axis (Table 4 and Fig. 8). These chains are linked into a three-dimensional structure by weak C13—H13···O1W(x, -y + 1/2, z + 1/2) and C26—H26···N141(x, -y + 1/2, -z + 1/2) hydrogen bonds (Table 4). There is a ππ short contact between the pyrazine rings, which stack above each other along the b axis; the centroid-to-centroid distance between these pyrazine rings is 3.9517 (15) Å, the perpendicular distance between the rings is 3.5627 (10) Å and the slippage is 1.710 Å. The benzene rings also stack above each other with unit translation along the a axis; the centroid-to-centroid distance is 3.9516 (15) Å, the perpendicular distance between the rings is 3.4128 (10) Å and the slippage is 2.088 Å.

For compound (IId), a weak C14—H14···O2(x + 1, y, z - 1) hydrogen bond links the molecules into a C(10) chain, which is formed by unit translations along the a and c axes; this chain and a centrosymetrically antiparallel chain are linked by a C13—H13···O122(-x + 2, -y + 1, -z) hydrogen bond and its centrosymetrically related bond, so forming an R22(14) ring, linking the molecules into ribbons which lie parallel to (101) (Fig. 9 and Table 5). There is a ππ short contact between the pyrazine rings, which stack above each other along the a axis; the centroid-to-centroid distance is 3.797 (2) Å, the perpendicular distance between the rings is 3.3838 (15) Å and the slippage is 1.723 Å. The benzene rings also stack above each other with unit translation along the a axis; the centroid-to-centroid distance is 3.797 (2) Å, the perpendicular distance between the rings is 3.5009 (14) Å and the slippage is 2.471 Å,

For compound (IIe), a C15—H15···O2(x - 1/2, -y + 1/2, z + 1/2) hydrogen bond links the molecules into a C(9) chain. The molecules are linked across a centre of symmetry at (1/2, 1/2, 1/2) by a C23—H23···O2 hydrogen bond. These two interactions combine the molecules into a double-sided sheet which runs parallel to the (101) plane (Fig. 10 and Table 6). The pyrazine rings stack above each other across a centre of symmetry at (1/2, 0, 1/2); the centroid-to-centroid distance is 4.1331 (7) Å, the perpendicular distance between the rings is 3.4738 (11) Å and the slippage is 2.240 Å.

Mention is made of the CSD search results being available in the Supplementary materials, but we do not currently have such a document. Please supply it.

Related literature top

For related literature, see: Allen (2002); Baddeley et al. (2009); Bernstein et al. (1995); Howie et al. (2010, 2010a, 2010b); Howie, Lima, Kaiser, da Silva, de Souza, Wardell & Wardell (2010c); Howie, Lima, Kaiser, de Souza, Wardell & Wardell (2010c); Lima et al. (2011); Orlewska et al. (2001); Souza et al. (2011); Szczesio et al. (2011); Vergara et al. (2009); de Souza (2013).

Experimental top

A reaction mixture of the appropriate N'-[(E)-benzylidene]-2-pyrazinecarbohydrazide derivative (0.75 mmol; Vergara et al., 2009; Lima et al., 2011), Na2CO3 (ca 4 mmol) and MeI (3 mmol) in acetone (4 ml) was heated at 313 K for 18 h under a nitrogen atmosphere. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to leave a residue, which was added to ice–water. The solid which separated was collected and washed with cold Et2O (3 × 10 ml), yielding the N-methylpyrazine-2-carbohydrazide derivative as a colourless crystalline solid. Further recrystallizations of the N-methylpyrazine-2-carbohydrazides were carried out from appropriate solvents. A consistant recrystallization solvent, which could provide suitable crystals for the X-ray study for the five derivatives reported here, was not found. All the solvents used were specially dried. [Double negative removed - OK?]

Compound (IIa) (yield 54%, m.p. 391–393 K) was recrystallized from EtOH for the X-ray analysis, (IIb) (yield 63%, 378–380 K) from MeOCH2CH2OH, (IIc) (yield 73%, m.p. 383–384 K) from dimethyl [Text missing?], (IId) ([Yield?], m.p. 424–425 K) from EtOH and (IIe) ([Yield?], m.p. 458–460 K) from EtOH.

Refinement top

In all five title compounds, H atoms were treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. In (IIc), the water H atoms were located in a difference map and allowed to ride at these positions, with Uiso(H) = 1.5Ueq(O). The positions of the H atoms, methyl groups and water molecules were checked on difference maps during the refinement and after the refinement was complete.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011) for (IIa), (IIb), (IIc), (IIe); COLLECT (Nonius, 2000) for (IId). Cell refinement: CrystalClear-SM Expert (Rigaku, 2011) for (IIa), (IIb), (IIc), (IIe); SCALEPACK (Otwinowski & Minor, 1997) for (IId). Data reduction: CrystalClear-SM Expert (Rigaku, 2011) for (IIa), (IIb), (IIc), (IIe); DENZO and SCALEPACK (Otwinowski & Minor, 1997) for (IId). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (IIa), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (IIb), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines indicate the hydrogen bond linking the two molecules in the asymmetric unit [Please check - looks more like the minor orientation of the molecule].
[Figure 3] Fig. 3. The molecular structure of (IIc), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonding to the solvent water molecules. [Added text OK?]
[Figure 4] Fig. 4. The molecular structure of (IId), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The molecular structure of (IIe), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. The conformations of N'-[(E)-2-aryl]pyrazine-2-carbohydrazides, where E(1) and E(2) are the trans and cis arrangements of the CO and H—N2 bonds, respectively. The E(1) form is preferred by N'-[2-aryl]pyrazinecarbohydrazides (de Souza et al., 2011; Howie et al., 2010a) and the E(2) form is adopted by the N-methyl-N'-(2-aryl)pyrazinecarbohydrazides characterized in this study.
[Figure 7] Fig. 7. Part of the crystal structure of (IIa), showing the chain which runs parallel to the b axis. Atoms labelled with an asterisk (*) or a hash symbol (#) are at the symmetry positions (x, y-1, z) and (x, y+1, z), respectively. H atoms not involved in hydrogen bonding (dahsed lines) have been omitted.
[Figure 8] Fig. 8. A stereoview showing the structure [Of what? (IIc)?] formed by the rings generated by the water chain, which runs parallel to the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 9] Fig. 9. A stereoview showing the ribbon structure [Of what? (IId)?] formed by the linking of centrosymmetric dimers. This ribbon runs parallel to the (101) plane. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 10] Fig. 10. A stereoview of the double-sided sheet [Of what? (IIe)?] which runs parallel to the (101) plane. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
(IIa) N'-Benzylidene-N-methylpyrazine-2-carbohydrazide top
Crystal data top
C13H12N4OZ = 2
Mr = 240.27F(000) = 252
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.4961 (3) ÅCell parameters from 6254 reflections
b = 7.6923 (3) Åθ = 3.2–27.4°
c = 10.8821 (7) ŵ = 0.09 mm1
α = 73.421 (5)°T = 120 K
β = 84.844 (6)°Block, orange
γ = 88.530 (6)°0.56 × 0.43 × 0.23 mm
V = 598.97 (5) Å3
Data collection top
Rigaku R-AXIS conversion
diffractometer
2712 independent reflections
Radiation source: Sealed tube2270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.2°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 99
Tmin = 0.952, Tmax = 0.980l = 1414
7672 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.0688P]
where P = (Fo2 + 2Fc2)/3
2712 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H12N4Oγ = 88.530 (6)°
Mr = 240.27V = 598.97 (5) Å3
Triclinic, P1Z = 2
a = 7.4961 (3) ÅMo Kα radiation
b = 7.6923 (3) ŵ = 0.09 mm1
c = 10.8821 (7) ÅT = 120 K
α = 73.421 (5)°0.56 × 0.43 × 0.23 mm
β = 84.844 (6)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
2712 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
2270 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.980Rint = 0.016
7672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.17Δρmax = 0.31 e Å3
2712 reflectionsΔρmin = 0.21 e Å3
164 parameters
Special details top

Experimental. Compound (IIa): 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.85 (, s, H3), 8.69 (1H, s, H5), 8.66 (1H, s, H6), 7.81 (1H, NCH), 7.39–7.33 (5H, m, phenyl), 3.62 (3H, s, NCH3); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 167.5, 150.2, 144.9, 144.7, 143.8, 141.1, 133.8, 130.2, 128.8, 127.3, 28.5; IR (KBr, ν, cm-1): 1676 (CO), 1606 (–NC–CH3). LC/MS: m/z [M]-: 240.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59462 (13)0.82450 (11)0.15785 (9)0.0353 (2)
N10.71743 (12)0.48356 (12)0.42370 (9)0.0222 (2)
N20.65947 (12)0.65306 (12)0.35592 (9)0.0233 (2)
N210.51069 (14)0.38869 (14)0.21804 (10)0.0300 (2)
N240.78603 (14)0.37332 (14)0.02828 (10)0.0313 (3)
C10.75771 (14)0.46307 (16)0.53921 (10)0.0239 (2)
H10.74790.56330.57400.029*
C20.62923 (15)0.67640 (15)0.23037 (11)0.0244 (2)
C110.81848 (14)0.28776 (16)0.61799 (10)0.0237 (2)
C120.87332 (16)0.27812 (17)0.73924 (11)0.0299 (3)
H120.87000.38380.76800.036*
C130.93248 (17)0.11570 (19)0.81768 (12)0.0338 (3)
H130.97130.11090.89930.041*
C140.93520 (16)0.03992 (18)0.77750 (12)0.0321 (3)
H140.97530.15140.83160.039*
C150.87901 (16)0.03243 (17)0.65759 (12)0.0295 (3)
H150.87990.13930.63030.035*
C160.82177 (15)0.13007 (16)0.57781 (11)0.0256 (3)
H160.78470.13450.49570.031*
C220.64153 (15)0.51242 (15)0.18023 (10)0.0223 (2)
C230.77724 (16)0.50456 (16)0.08704 (11)0.0277 (3)
H230.86730.59550.06390.033*
C250.65355 (16)0.25194 (16)0.06350 (11)0.0267 (3)
H250.65180.15780.02300.032*
C260.51892 (16)0.25938 (17)0.15723 (12)0.0302 (3)
H260.42830.16900.17960.036*
C270.65016 (16)0.80741 (16)0.40887 (12)0.0285 (3)
H27A0.60180.91280.34680.043*
H27B0.77050.83570.42620.043*
H27C0.57190.77750.48920.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0499 (6)0.0231 (5)0.0324 (5)0.0007 (4)0.0118 (4)0.0049 (3)
N10.0209 (5)0.0222 (5)0.0234 (5)0.0011 (3)0.0015 (3)0.0066 (4)
N20.0255 (5)0.0208 (5)0.0245 (5)0.0013 (4)0.0028 (4)0.0079 (4)
N210.0280 (5)0.0304 (5)0.0331 (5)0.0066 (4)0.0022 (4)0.0124 (4)
N240.0354 (6)0.0316 (6)0.0280 (5)0.0056 (4)0.0015 (4)0.0111 (4)
C10.0231 (5)0.0262 (6)0.0248 (5)0.0027 (4)0.0009 (4)0.0111 (4)
C20.0230 (5)0.0233 (6)0.0266 (6)0.0028 (4)0.0034 (4)0.0061 (4)
C110.0189 (5)0.0298 (6)0.0229 (5)0.0031 (4)0.0002 (4)0.0084 (4)
C120.0324 (6)0.0348 (7)0.0241 (6)0.0039 (5)0.0024 (5)0.0105 (5)
C130.0345 (7)0.0422 (7)0.0230 (6)0.0044 (5)0.0060 (5)0.0052 (5)
C140.0264 (6)0.0333 (7)0.0300 (6)0.0015 (5)0.0025 (5)0.0018 (5)
C150.0259 (6)0.0288 (6)0.0333 (6)0.0015 (5)0.0005 (5)0.0087 (5)
C160.0228 (5)0.0314 (6)0.0237 (5)0.0016 (4)0.0022 (4)0.0094 (5)
C220.0248 (5)0.0220 (5)0.0199 (5)0.0009 (4)0.0067 (4)0.0040 (4)
C230.0305 (6)0.0261 (6)0.0261 (6)0.0076 (5)0.0003 (4)0.0067 (5)
C250.0313 (6)0.0255 (6)0.0254 (6)0.0007 (4)0.0072 (4)0.0089 (4)
C260.0273 (6)0.0286 (6)0.0368 (6)0.0074 (5)0.0020 (5)0.0122 (5)
C270.0307 (6)0.0254 (6)0.0331 (6)0.0008 (5)0.0044 (5)0.0138 (5)
Geometric parameters (Å, º) top
O2—C21.2233 (14)C13—C141.3858 (19)
N1—C11.2841 (14)C13—H130.9500
N1—N21.3830 (13)C14—C151.3921 (17)
N2—C21.3652 (14)C14—H140.9500
N2—C271.4579 (13)C15—C161.3858 (17)
N21—C221.3376 (15)C15—H150.9500
N21—C261.3402 (15)C16—H160.9500
N24—C251.3341 (15)C22—C231.3833 (16)
N24—C231.3378 (15)C23—H230.9500
C1—C111.4628 (16)C25—C261.3811 (17)
C1—H10.9500C25—H250.9500
C2—C221.5084 (15)C26—H260.9500
C11—C121.3984 (15)C27—H27A0.9800
C11—C161.4008 (16)C27—H27B0.9800
C12—C131.3846 (18)C27—H27C0.9800
C12—H120.9500
C1—N1—N2117.51 (9)C16—C15—C14120.36 (11)
C2—N2—N1116.86 (9)C16—C15—H15119.8
C2—N2—C27120.23 (9)C14—C15—H15119.8
N1—N2—C27122.54 (9)C15—C16—C11120.10 (10)
C22—N21—C26115.12 (10)C15—C16—H16119.9
C25—N24—C23115.75 (10)C11—C16—H16119.9
N1—C1—C11121.02 (10)N21—C22—C23122.18 (10)
N1—C1—H1119.5N21—C22—C2118.63 (10)
C11—C1—H1119.5C23—C22—C2118.84 (10)
O2—C2—N2122.49 (10)N24—C23—C22122.30 (10)
O2—C2—C22119.42 (10)N24—C23—H23118.9
N2—C2—C22118.09 (9)C22—C23—H23118.9
C12—C11—C16119.02 (11)N24—C25—C26121.81 (10)
C12—C11—C1118.09 (10)N24—C25—H25119.1
C16—C11—C1122.89 (10)C26—C25—H25119.1
C13—C12—C11120.51 (11)N21—C26—C25122.81 (10)
C13—C12—H12119.7N21—C26—H26118.6
C11—C12—H12119.7C25—C26—H26118.6
C12—C13—C14120.21 (11)N2—C27—H27A109.5
C12—C13—H13119.9N2—C27—H27B109.5
C14—C13—H13119.9H27A—C27—H27B109.5
C13—C14—C15119.79 (11)N2—C27—H27C109.5
C13—C14—H14120.1H27A—C27—H27C109.5
C15—C14—H14120.1H27B—C27—H27C109.5
C1—N1—N2—C2175.51 (10)C12—C11—C16—C150.11 (17)
C1—N1—N2—C272.55 (15)C1—C11—C16—C15179.28 (10)
N2—N1—C1—C11179.41 (9)C26—N21—C22—C231.31 (16)
N1—N2—C2—O2172.75 (10)C26—N21—C22—C2171.88 (10)
C27—N2—C2—O20.38 (17)O2—C2—C22—N21107.86 (13)
N1—N2—C2—C226.53 (14)N2—C2—C22—N2172.83 (14)
C27—N2—C2—C22179.66 (9)O2—C2—C22—C2365.56 (15)
N1—C1—C11—C12175.16 (10)N2—C2—C22—C23113.74 (12)
N1—C1—C11—C165.65 (17)C25—N24—C23—C221.21 (17)
C16—C11—C12—C130.94 (17)N21—C22—C23—N240.31 (18)
C1—C11—C12—C13179.85 (10)C2—C22—C23—N24172.87 (10)
C11—C12—C13—C141.04 (19)C23—N24—C25—C261.67 (17)
C12—C13—C14—C150.31 (19)C22—N21—C26—C250.85 (17)
C13—C14—C15—C160.52 (18)N24—C25—C26—N210.68 (19)
C14—C15—C16—C110.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.952.593.1823 (16)121
Symmetry code: (i) x, y1, z.
(IIb) N'-(2-Methoxybenzylidene)-N-methylpyrazine-2-carbohydrazide top
Crystal data top
C14H14N4O2Z = 2
Mr = 270.29F(000) = 284
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 4.032 (5) ÅCell parameters from 1623 reflections
b = 10.628 (15) Åθ = 2.4–31.2°
c = 15.034 (19) ŵ = 0.10 mm1
α = 94.08 (3)°T = 100 K
β = 90.36 (3)°Block, brown
γ = 92.07 (3)°0.18 × 0.13 × 0.12 mm
V = 642.2 (15) Å3
Data collection top
Rigaku Saturn724+
diffractometer
2246 independent reflections
Radiation source: Rotating anode1859 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.2°
profile data from ω–scansh = 34
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1212
Tmin = 0.983, Tmax = 0.988l = 1717
4990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.0839P]
where P = (Fo2 + 2Fc2)/3
2246 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.18 e Å3
6 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H14N4O2γ = 92.07 (3)°
Mr = 270.29V = 642.2 (15) Å3
Triclinic, P1Z = 2
a = 4.032 (5) ÅMo Kα radiation
b = 10.628 (15) ŵ = 0.10 mm1
c = 15.034 (19) ÅT = 100 K
α = 94.08 (3)°0.18 × 0.13 × 0.12 mm
β = 90.36 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
2246 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1859 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.988Rint = 0.033
4990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0556 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.10Δρmax = 0.18 e Å3
2246 reflectionsΔρmin = 0.26 e Å3
185 parameters
Special details top

Experimental. Compound (IIb): 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.85 (1H, s, H3), 8.69 (1H, s, H5), 8.64 (1H, s, H6), 8.23 (1H, s, NCH), 7.35–7.30 (2H, m, H4' and H5'), 6.90–6.82 (2H, m, H3' and H6'), 3.88 (3H, s, OCH3), 3.62 (3H, s, NCH3); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 167.6, 158.2, 150.5, 145.1, 144.7, 143.9, 137.5, 131.6, 126.1, 122.4, 121.0, 111.1, 55.6, 28.8; IR (KBr, ν, cm-1): 1680 (CO), 1600 (–NC–CH3). LC/MS: m/z [M + H]+: 271.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.8377 (4)0.40652 (13)0.38061 (9)0.0375 (4)
O120.0014 (4)0.97966 (14)0.37116 (11)0.0457 (5)
N10.4082 (4)0.65216 (15)0.29794 (10)0.0274 (4)
N20.5864 (4)0.59046 (15)0.35931 (10)0.0274 (4)
C10.3178 (5)0.76459 (18)0.31972 (13)0.0296 (5)
H10.36060.80170.37820.035*
C20.6893 (5)0.47329 (18)0.33125 (12)0.0284 (5)
C110.1489 (5)0.83521 (18)0.25415 (14)0.0312 (5)
C120.0030 (5)0.94854 (18)0.28078 (16)0.0367 (5)
C130.1466 (6)1.0204 (2)0.21866 (19)0.0460 (6)
H130.24641.09740.23740.055*
C140.1441 (6)0.9796 (2)0.12891 (19)0.0471 (6)
H140.24171.02890.08610.056*
C150.0005 (5)0.8673 (2)0.10160 (16)0.0417 (6)
H150.00010.83890.04020.050*
C160.1455 (5)0.79676 (19)0.16372 (14)0.0347 (5)
H160.24530.72010.14430.042*
C270.6666 (5)0.6458 (2)0.44850 (12)0.0340 (5)
H27A0.80870.58930.47900.051*
H27B0.46140.65770.48220.051*
H27C0.78360.72760.44430.051*
C220.6213 (5)0.42870 (17)0.23544 (12)0.0258 (4)
C250.5341 (5)0.34126 (19)0.06766 (13)0.0317 (5)
H250.49430.30800.00810.038*
C230.749 (3)0.4998 (11)0.1676 (9)0.0271 (13)0.527 (9)
H230.86720.57760.18180.032*0.527 (9)
C260.419 (2)0.2706 (9)0.1407 (4)0.0271 (13)0.527 (9)
H260.30430.19170.12790.032*0.527 (9)
N210.4691 (17)0.3124 (6)0.2250 (3)0.0282 (13)0.527 (9)
N240.702 (2)0.4571 (6)0.0834 (6)0.0282 (13)0.527 (9)
N21A0.779 (3)0.4873 (10)0.1712 (8)0.0282 (13)0.473 (9)
N24A0.376 (2)0.2812 (8)0.1252 (4)0.0282 (13)0.473 (9)
C23A0.420 (2)0.3263 (9)0.2109 (5)0.0271 (13)0.473 (9)
H23A0.30590.28460.25610.032*0.473 (9)
C26A0.742 (3)0.4378 (8)0.0867 (8)0.0271 (13)0.473 (9)
H26A0.86650.47280.04050.032*0.473 (9)
C1210.1477 (7)1.0963 (2)0.4016 (2)0.0682 (9)
H12A0.13181.10740.46680.102*
H12B0.38161.09410.38320.102*
H12C0.02951.16680.37550.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0508 (10)0.0342 (8)0.0286 (8)0.0079 (7)0.0002 (7)0.0066 (6)
O120.0437 (9)0.0239 (8)0.0672 (11)0.0052 (7)0.0078 (8)0.0161 (7)
N10.0256 (9)0.0229 (9)0.0333 (9)0.0010 (6)0.0042 (7)0.0004 (7)
N20.0311 (9)0.0247 (9)0.0260 (9)0.0004 (7)0.0017 (7)0.0016 (6)
C10.0263 (10)0.0239 (10)0.0374 (11)0.0035 (8)0.0093 (8)0.0038 (8)
C20.0307 (11)0.0283 (11)0.0264 (10)0.0009 (8)0.0048 (8)0.0031 (8)
C110.0242 (10)0.0215 (10)0.0474 (12)0.0032 (8)0.0089 (9)0.0009 (8)
C120.0276 (11)0.0194 (10)0.0622 (14)0.0026 (8)0.0083 (10)0.0031 (10)
C130.0318 (12)0.0197 (11)0.0870 (19)0.0006 (9)0.0094 (12)0.0069 (11)
C140.0351 (12)0.0328 (13)0.0756 (17)0.0032 (10)0.0025 (11)0.0220 (12)
C150.0337 (12)0.0368 (13)0.0557 (14)0.0024 (9)0.0055 (10)0.0127 (10)
C160.0301 (11)0.0262 (11)0.0481 (13)0.0011 (8)0.0090 (9)0.0054 (9)
C270.0387 (12)0.0363 (12)0.0255 (10)0.0044 (9)0.0010 (8)0.0051 (8)
C220.0293 (10)0.0194 (10)0.0292 (10)0.0063 (8)0.0042 (8)0.0025 (8)
C250.0399 (12)0.0273 (11)0.0282 (10)0.0080 (9)0.0018 (8)0.0006 (8)
C230.036 (2)0.022 (2)0.0249 (18)0.0044 (17)0.0028 (16)0.0102 (14)
C260.036 (2)0.022 (2)0.0249 (18)0.0044 (17)0.0028 (16)0.0102 (14)
N210.042 (2)0.0186 (17)0.0245 (16)0.0060 (15)0.0020 (14)0.0014 (15)
N240.042 (2)0.0186 (17)0.0245 (16)0.0060 (15)0.0020 (14)0.0014 (15)
N21A0.042 (2)0.0186 (17)0.0245 (16)0.0060 (15)0.0020 (14)0.0014 (15)
N24A0.042 (2)0.0186 (17)0.0245 (16)0.0060 (15)0.0020 (14)0.0014 (15)
C23A0.036 (2)0.022 (2)0.0249 (18)0.0044 (17)0.0028 (16)0.0102 (14)
C26A0.036 (2)0.022 (2)0.0249 (18)0.0044 (17)0.0028 (16)0.0102 (14)
C1210.0519 (16)0.0407 (15)0.106 (2)0.0179 (12)0.0098 (15)0.0408 (15)
Geometric parameters (Å, º) top
O2—C21.230 (3)C27—H27C0.9800
O12—C121.375 (3)C22—N21A1.337 (13)
O12—C1211.439 (3)C22—N211.359 (7)
N1—C11.283 (3)C22—C23A1.362 (9)
N1—N21.382 (3)C22—C231.402 (14)
N2—C21.366 (3)C25—N24A1.273 (7)
N2—C271.455 (3)C25—C26A1.315 (10)
C1—C111.460 (3)C25—N241.388 (8)
C1—H10.9500C25—C261.443 (8)
C2—C221.504 (3)C25—H250.9500
C11—C161.391 (3)C23—N241.324 (10)
C11—C121.405 (3)C23—H230.9500
C12—C131.385 (4)C26—N211.324 (7)
C13—C141.388 (4)C26—H260.9500
C13—H130.9500N21A—C26A1.346 (10)
C14—C151.385 (4)N24A—C23A1.351 (8)
C14—H140.9500C23A—H23A0.9500
C15—C161.379 (3)C26A—H26A0.9500
C15—H150.9500C121—H12A0.9800
C16—H160.9500C121—H12B0.9800
C27—H27A0.9800C121—H12C0.9800
C27—H27B0.9800
C12—O12—C121117.3 (2)N21—C22—C23126.6 (5)
C1—N1—N2118.49 (17)C23A—C22—C23117.6 (7)
C2—N2—N1116.06 (16)N21A—C22—C2118.9 (5)
C2—N2—C27121.02 (16)N21—C22—C2113.6 (3)
N1—N2—C27122.91 (17)C23A—C22—C2122.9 (3)
N1—C1—C11119.65 (19)C23—C22—C2119.3 (5)
N1—C1—H1120.2N24A—C25—C26A124.7 (6)
C11—C1—H1120.2N24A—C25—N24126.0 (4)
O2—C2—N2122.42 (18)C26A—C25—C26117.4 (6)
O2—C2—C22120.34 (18)N24—C25—C26120.9 (5)
N2—C2—C22117.22 (16)N24A—C25—H25113.4
C16—C11—C12117.9 (2)C26A—C25—H25121.8
C16—C11—C1121.83 (19)N24—C25—H25119.6
C12—C11—C1120.3 (2)C26—C25—H25119.6
O12—C12—C13123.8 (2)N24—C23—C22119.1 (8)
O12—C12—C11115.3 (2)N24—C23—H23120.4
C13—C12—C11120.9 (2)C22—C23—H23120.4
C12—C13—C14119.7 (2)N21—C26—C25122.0 (5)
C12—C13—H13120.1N21—C26—H26119.0
C14—C13—H13120.1C25—C26—H26119.0
C15—C14—C13120.2 (2)C26—N21—C22114.0 (4)
C15—C14—H14119.9C23—N24—C25117.2 (5)
C13—C14—H14119.9C22—N21A—C26A118.0 (7)
C16—C15—C14119.8 (2)C25—N24A—C23A115.6 (5)
C16—C15—H15120.1N24A—C23A—C22123.0 (5)
C14—C15—H15120.1N24A—C23A—H23A118.5
C15—C16—C11121.6 (2)C22—C23A—H23A118.5
C15—C16—H16119.2C25—C26A—N21A120.4 (7)
C11—C16—H16119.2C25—C26A—H26A119.8
N2—C27—H27A109.5N21A—C26A—H26A119.8
N2—C27—H27B109.5O12—C121—H12A109.5
H27A—C27—H27B109.5O12—C121—H12B109.5
N2—C27—H27C109.5H12A—C121—H12B109.5
H27A—C27—H27C109.5O12—C121—H12C109.5
H27B—C27—H27C109.5H12A—C121—H12C109.5
N21A—C22—N21125.2 (5)H12B—C121—H12C109.5
N21A—C22—C23A118.0 (6)
C1—N1—N2—C2177.12 (16)N21—C22—C23—N245.1 (8)
C1—N1—N2—C272.1 (3)C23A—C22—C23—N247.8 (13)
N2—N1—C1—C11175.87 (15)C2—C22—C23—N24176.8 (4)
N1—N2—C2—O2176.87 (17)N24A—C25—C26—N21120 (4)
C27—N2—C2—O23.9 (3)C26A—C25—C26—N2111.9 (11)
N1—N2—C2—C224.6 (2)N24—C25—C26—N210.2 (6)
C27—N2—C2—C22174.65 (16)C25—C26—N21—C223.1 (6)
N1—C1—C11—C1614.3 (3)N21A—C22—N21—C2614.9 (10)
N1—C1—C11—C12168.73 (18)C23A—C22—N21—C2649 (2)
C121—O12—C12—C132.3 (3)C23—C22—N21—C265.6 (7)
C121—O12—C12—C11178.69 (19)C2—C22—N21—C26177.7 (3)
C16—C11—C12—O12177.98 (17)C22—C23—N24—C251.6 (8)
C1—C11—C12—O124.9 (3)N24A—C25—N24—C2311.7 (8)
C16—C11—C12—C131.0 (3)C26A—C25—N24—C2376 (4)
C1—C11—C12—C13176.06 (18)C26—C25—N24—C230.6 (6)
O12—C12—C13—C14178.22 (19)N21—C22—N21A—C26A11.1 (12)
C11—C12—C13—C140.7 (3)C23A—C22—N21A—C26A3.2 (7)
C12—C13—C14—C150.2 (3)C23—C22—N21A—C26A92 (8)
C13—C14—C15—C160.7 (3)C2—C22—N21A—C26A173.1 (4)
C14—C15—C16—C110.4 (3)C26A—C25—N24A—C23A3.0 (7)
C12—C11—C16—C150.5 (3)N24—C25—N24A—C23A10.6 (10)
C1—C11—C16—C15176.56 (18)C26—C25—N24A—C23A56 (3)
O2—C2—C22—N21A111.5 (6)C25—N24A—C23A—C220.3 (7)
N2—C2—C22—N21A67.1 (6)N21A—C22—C23A—N24A0.6 (7)
O2—C2—C22—N2152.5 (4)N21—C22—C23A—N24A123 (3)
N2—C2—C22—N21128.9 (4)C23—C22—C23A—N24A9.2 (12)
O2—C2—C22—C23A64.6 (6)C2—C22—C23A—N24A175.6 (4)
N2—C2—C22—C23A116.8 (5)N24A—C25—C26A—N21A5.9 (7)
O2—C2—C22—C23120.2 (6)N24—C25—C26A—N21A95 (4)
N2—C2—C22—C2358.4 (6)C26—C25—C26A—N21A16.2 (9)
N21A—C22—C23—N2487 (7)C22—N21A—C26A—C255.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N21i0.952.613.514 (8)159
Symmetry code: (i) x1, y+1, z.
(IIc) N'-(4-Cyanobenzylidene)-N-methylpyrazine-2-carbohydrazide dihydrate top
Crystal data top
C14H11N5O·2H2OF(000) = 632
Mr = 301.31Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5437 reflections
a = 19.395 (3) Åθ = 3.1–27.5°
b = 3.9517 (5) ŵ = 0.10 mm1
c = 23.270 (3) ÅT = 120 K
β = 124.890 (9)°Lath, yellow
V = 1462.9 (3) Å30.56 × 0.23 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS conversion
diffractometer
3341 independent reflections
Radiation source: Sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω scansh = 2525
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 45
Tmin = 0.946, Tmax = 0.992l = 3030
12564 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.248 w = 1/[σ2(Fo2) + (0.1408P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
3341 reflectionsΔρmax = 0.40 e Å3
202 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (7)
Crystal data top
C14H11N5O·2H2OV = 1462.9 (3) Å3
Mr = 301.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.395 (3) ŵ = 0.10 mm1
b = 3.9517 (5) ÅT = 120 K
c = 23.270 (3) Å0.56 × 0.23 × 0.08 mm
β = 124.890 (9)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
2189 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.992Rint = 0.053
12564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.23Δρmax = 0.40 e Å3
3341 reflectionsΔρmin = 0.33 e Å3
202 parameters
Special details top

Experimental. Compound (IIc): 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.84 (1H, s, H3), 8.70 (2H, s, H5 and H6), 7.80 (1H, s, NCH), 7.61 (2H, J = 8.0 Hz, H2' and H6'), 7.47 (2H, J = 8.0 Hz, H3' and H5'), 3.63 (3H, s, NCH3); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 157.8, 150.0, 145.2, 144.9, 143.9, 138.7, 138.3, 132.7, 127.7, 118.5, 113.5, 28.9; IR (KBr, ν, cm-1): 2232 (CN), 1683 (CO), 1608 (–NC–CH3). LC/MS: m/z [M + H]+: 266.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.39035 (9)1.2988 (4)0.41661 (8)0.0470 (5)
N10.30755 (10)0.9113 (5)0.49844 (9)0.0357 (5)
N20.36554 (10)1.0804 (5)0.49269 (9)0.0370 (5)
N210.23766 (11)0.9867 (5)0.30927 (9)0.0394 (5)
N240.10404 (12)1.2139 (6)0.31377 (10)0.0483 (6)
N1410.04799 (12)0.0201 (5)0.60153 (9)0.0466 (5)
C10.32763 (13)0.8270 (6)0.55927 (11)0.0373 (5)
H10.38230.87540.59960.045*
C20.34103 (13)1.1709 (6)0.42715 (11)0.0368 (5)
C110.26632 (12)0.6565 (6)0.56652 (10)0.0351 (5)
C120.29262 (13)0.5177 (6)0.63124 (10)0.0390 (6)
H120.34990.53670.66950.047*
C130.23719 (13)0.3541 (6)0.64061 (11)0.0387 (5)
H130.25600.26090.68490.046*
C140.15273 (13)0.3263 (6)0.58410 (11)0.0361 (5)
C150.12524 (13)0.4653 (6)0.51940 (10)0.0373 (5)
H150.06790.44620.48120.045*
C160.18116 (13)0.6307 (6)0.51062 (11)0.0363 (5)
H160.16200.72780.46650.044*
C220.25017 (12)1.1206 (6)0.36732 (11)0.0356 (5)
C230.18423 (13)1.2354 (6)0.36886 (12)0.0419 (6)
H230.19621.33420.41090.050*
C250.09194 (14)1.0692 (7)0.25688 (12)0.0494 (7)
H250.03611.04210.21660.059*
C260.15733 (14)0.9580 (6)0.25457 (11)0.0449 (6)
H260.14520.85710.21270.054*
C270.45005 (13)1.1569 (6)0.55350 (11)0.0431 (6)
H27A0.48021.28810.53870.065*
H27B0.48030.94530.57530.065*
H27C0.44651.28860.58740.065*
C1410.09456 (13)0.1544 (6)0.59335 (11)0.0394 (6)
O1W0.35816 (10)0.6041 (5)0.29459 (8)0.0515 (5)
H1WA0.36900.46500.33450.077*
H1WB0.32540.78630.29410.077*
O2W0.49138 (13)0.6383 (11)0.28335 (12)0.1346 (15)
H2WA0.44990.61470.29040.202*
H2WB0.47010.49640.25030.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0315 (8)0.0599 (11)0.0496 (10)0.0051 (7)0.0231 (7)0.0029 (8)
N10.0289 (9)0.0376 (10)0.0404 (10)0.0008 (7)0.0198 (8)0.0030 (8)
N20.0265 (8)0.0419 (11)0.0408 (10)0.0033 (7)0.0183 (8)0.0033 (8)
N210.0369 (10)0.0420 (11)0.0404 (10)0.0028 (8)0.0228 (8)0.0017 (8)
N240.0318 (10)0.0682 (14)0.0425 (10)0.0048 (9)0.0199 (8)0.0063 (9)
N1410.0374 (11)0.0518 (13)0.0448 (11)0.0006 (9)0.0202 (9)0.0032 (9)
C10.0308 (10)0.0417 (13)0.0352 (10)0.0033 (9)0.0164 (9)0.0032 (9)
C20.0300 (10)0.0381 (12)0.0431 (11)0.0016 (8)0.0213 (9)0.0012 (9)
C110.0312 (10)0.0376 (12)0.0365 (11)0.0061 (8)0.0195 (9)0.0015 (9)
C120.0290 (10)0.0466 (14)0.0359 (11)0.0051 (9)0.0154 (9)0.0014 (9)
C130.0355 (11)0.0404 (12)0.0362 (11)0.0033 (9)0.0182 (9)0.0005 (9)
C140.0335 (10)0.0354 (12)0.0389 (11)0.0028 (8)0.0205 (9)0.0018 (9)
C150.0316 (10)0.0406 (13)0.0373 (11)0.0046 (9)0.0183 (9)0.0010 (9)
C160.0325 (10)0.0386 (12)0.0346 (10)0.0025 (9)0.0173 (9)0.0013 (9)
C220.0316 (10)0.0355 (11)0.0389 (11)0.0009 (8)0.0198 (9)0.0005 (9)
C230.0335 (11)0.0523 (14)0.0416 (11)0.0052 (9)0.0225 (10)0.0026 (10)
C250.0316 (11)0.0669 (17)0.0418 (12)0.0029 (10)0.0165 (10)0.0054 (11)
C260.0431 (13)0.0505 (15)0.0389 (11)0.0080 (10)0.0222 (10)0.0049 (10)
C270.0286 (10)0.0492 (14)0.0446 (12)0.0037 (9)0.0169 (10)0.0042 (10)
C1410.0355 (11)0.0395 (12)0.0364 (11)0.0056 (9)0.0166 (9)0.0006 (9)
O1W0.0424 (9)0.0672 (12)0.0487 (9)0.0053 (8)0.0283 (8)0.0012 (8)
O2W0.0439 (12)0.301 (5)0.0627 (14)0.0041 (18)0.0324 (11)0.0090 (19)
Geometric parameters (Å, º) top
O2—C21.224 (3)C13—H130.9500
N1—C11.279 (3)C14—C151.391 (3)
N1—N21.379 (2)C14—C1411.435 (3)
N2—C21.360 (3)C15—C161.378 (3)
N2—C271.458 (3)C15—H150.9500
N21—C221.337 (3)C16—H160.9500
N21—C261.339 (3)C22—C231.377 (3)
N24—C251.334 (3)C23—H230.9500
N24—C231.337 (3)C25—C261.372 (3)
N141—C1411.154 (3)C25—H250.9500
C1—C111.458 (3)C26—H260.9500
C1—H10.9500C27—H27A0.9800
C2—C221.509 (3)C27—H27B0.9800
C11—C121.396 (3)C27—H27C0.9800
C11—C161.404 (3)O1W—H1WA0.9935
C12—C131.375 (3)O1W—H1WB0.9568
C12—H120.9500O2W—H2WA0.9136
C13—C141.400 (3)O2W—H2WB0.8438
C1—N1—N2118.99 (18)C14—C15—H15120.0
C2—N2—N1117.06 (16)C15—C16—C11120.37 (19)
C2—N2—C27120.75 (18)C15—C16—H16119.8
N1—N2—C27122.18 (17)C11—C16—H16119.8
C22—N21—C26115.71 (19)N21—C22—C23121.49 (19)
C25—N24—C23115.25 (19)N21—C22—C2115.18 (18)
N1—C1—C11119.76 (19)C23—C22—C2122.99 (19)
N1—C1—H1120.1N24—C23—C22122.8 (2)
C11—C1—H1120.1N24—C23—H23118.6
O2—C2—N2121.41 (19)C22—C23—H23118.6
O2—C2—C22120.23 (18)N24—C25—C26122.3 (2)
N2—C2—C22118.33 (18)N24—C25—H25118.9
C12—C11—C16118.7 (2)C26—C25—H25118.9
C12—C11—C1119.17 (18)N21—C26—C25122.3 (2)
C16—C11—C1122.09 (18)N21—C26—H26118.8
C13—C12—C11121.29 (19)C25—C26—H26118.8
C13—C12—H12119.4N2—C27—H27A109.5
C11—C12—H12119.4N2—C27—H27B109.5
C12—C13—C14119.28 (19)H27A—C27—H27B109.5
C12—C13—H13120.4N2—C27—H27C109.5
C14—C13—H13120.4H27A—C27—H27C109.5
C15—C14—C13120.2 (2)H27B—C27—H27C109.5
C15—C14—C141120.13 (18)N141—C141—C14178.9 (2)
C13—C14—C141119.63 (18)H1WA—O1W—H1WB102.2
C16—C15—C14120.06 (19)H2WA—O2W—H2WB94.2
C16—C15—H15120.0
C1—N1—N2—C2178.76 (19)C14—C15—C16—C110.8 (3)
C1—N1—N2—C272.0 (3)C12—C11—C16—C151.3 (3)
N2—N1—C1—C11178.30 (18)C1—C11—C16—C15179.5 (2)
N1—N2—C2—O2174.4 (2)C26—N21—C22—C233.0 (3)
C27—N2—C2—O24.8 (3)C26—N21—C22—C2176.47 (19)
N1—N2—C2—C227.5 (3)O2—C2—C22—N2146.1 (3)
C27—N2—C2—C22173.25 (19)N2—C2—C22—N21135.8 (2)
N1—C1—C11—C12169.8 (2)O2—C2—C22—C23127.3 (2)
N1—C1—C11—C1611.0 (3)N2—C2—C22—C2350.8 (3)
C16—C11—C12—C130.9 (3)C25—N24—C23—C220.7 (4)
C1—C11—C12—C13179.9 (2)N21—C22—C23—N241.6 (4)
C11—C12—C13—C140.0 (3)C2—C22—C23—N24174.6 (2)
C12—C13—C14—C150.5 (3)C23—N24—C25—C261.6 (4)
C12—C13—C14—C141179.7 (2)C22—N21—C26—C252.1 (3)
C13—C14—C15—C160.1 (3)N24—C25—C26—N210.1 (4)
C141—C14—C15—C16179.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N210.962.082.963 (2)153
O2W—H2WA···O1W0.911.842.745 (3)172
O1W—H1WA···O2i0.991.832.807 (2)167
O2W—H2WB···O2Wii0.841.962.649 (3)138
C13—H13···O1Wiii0.952.593.465 (3)152
C26—H26···N141iv0.952.623.480 (3)150
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
(IId) N-Methyl-N'-(2-nitrobenzylidene)pyrazine-2-carbohydrazide top
Crystal data top
C13H11N5O3F(000) = 592
Mr = 285.27Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14894 reflections
a = 3.7974 (2) Åθ = 2.9–27.5°
b = 33.3126 (17) ŵ = 0.11 mm1
c = 10.0959 (5) ÅT = 120 K
β = 99.027 (2)°Lath, yellow
V = 1261.33 (11) Å30.40 × 0.10 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Vertically mounted graphite crystal monochromatorRint = 0.071
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.2°
CCD scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3939
Tmin = 0.957, Tmax = 0.998l = 1111
11176 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0855P)2 + 1.4865P]
where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H11N5O3V = 1261.33 (11) Å3
Mr = 285.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7974 (2) ŵ = 0.11 mm1
b = 33.3126 (17) ÅT = 120 K
c = 10.0959 (5) Å0.40 × 0.10 × 0.02 mm
β = 99.027 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1563 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.998Rint = 0.071
11176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
2168 reflectionsΔρmin = 0.32 e Å3
191 parameters
Special details top

Experimental. Compound (IId): 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.84 (1H, s, H3), 8.69 (2H, m, H5 and H6), 8.39 (1H, s, NCH), 8.02(1H, d, NCH), 7.57–7.48 (3H, m), 3.65 (3H, s, NCH3); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 167.8, 150.0, 148.4, 145.1, 144.8, 143.9, 136.8, 133.6, 130.4, 128.8, 128.3, 125.0, 29.1; IR (KBr, ν, cm-1): 1672 (CO), 1597 (–NC–CH3). LC/MS: m/z [M + Na]-: 281.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.3911 (7)0.65099 (7)0.7717 (2)0.0403 (7)
O1211.0540 (8)0.51292 (8)0.3594 (3)0.0452 (8)
O1220.7448 (8)0.49513 (8)0.1686 (3)0.0519 (8)
N10.6819 (7)0.62022 (8)0.4785 (3)0.0265 (7)
N20.5626 (7)0.61611 (8)0.5997 (3)0.0273 (7)
N120.9002 (8)0.52058 (9)0.2455 (3)0.0350 (8)
C10.7285 (8)0.58864 (10)0.4111 (3)0.0255 (8)
H10.69220.56260.44520.031*
C20.4829 (9)0.65095 (10)0.6602 (3)0.0289 (8)
C110.8402 (8)0.59398 (10)0.2788 (3)0.0248 (8)
C120.9069 (8)0.56205 (10)0.1962 (3)0.0263 (8)
C130.9867 (9)0.56702 (11)0.0685 (3)0.0320 (9)
H131.02230.54430.01520.038*
C141.0141 (9)0.60516 (11)0.0193 (3)0.0325 (8)
H141.07370.60920.06760.039*
C150.9528 (10)0.63778 (11)0.0990 (4)0.0347 (9)
H150.97420.66430.06630.042*
C160.8617 (9)0.63219 (10)0.2247 (4)0.0312 (8)
H160.81250.65490.27550.037*
N210.3203 (8)0.69483 (10)0.4634 (3)0.0375 (8)
C220.5046 (9)0.69004 (10)0.5885 (3)0.0268 (8)
C230.6829 (9)0.72100 (10)0.6577 (3)0.0283 (8)
H230.80810.71630.74540.034*
N240.6860 (9)0.75790 (10)0.6050 (3)0.0455 (9)
C250.4941 (11)0.76297 (12)0.4819 (4)0.0408 (10)
H250.47940.78900.44300.049*
C260.3203 (10)0.73189 (12)0.4112 (4)0.0351 (9)
H260.19690.73660.32320.042*
C270.5144 (9)0.57723 (10)0.6605 (3)0.0316 (8)
H27A0.43520.58120.74740.047*
H27B0.74100.56260.67350.047*
H27C0.33450.56170.60150.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0600 (18)0.0346 (16)0.0289 (15)0.0014 (12)0.0152 (13)0.0012 (12)
O1210.0686 (19)0.0348 (16)0.0322 (15)0.0115 (13)0.0081 (13)0.0045 (12)
O1220.087 (2)0.0298 (16)0.0413 (17)0.0150 (15)0.0180 (16)0.0102 (13)
N10.0307 (15)0.0264 (16)0.0218 (15)0.0015 (12)0.0021 (12)0.0032 (12)
N20.0364 (16)0.0253 (16)0.0211 (15)0.0010 (12)0.0070 (12)0.0011 (12)
N120.0507 (19)0.0271 (17)0.0290 (17)0.0007 (14)0.0119 (15)0.0038 (14)
C10.0280 (17)0.0245 (18)0.0235 (18)0.0007 (14)0.0021 (14)0.0002 (14)
C20.0341 (19)0.031 (2)0.0216 (18)0.0004 (15)0.0036 (15)0.0010 (15)
C110.0257 (16)0.0269 (19)0.0208 (17)0.0004 (13)0.0009 (13)0.0016 (14)
C120.0288 (18)0.0238 (19)0.0261 (18)0.0013 (14)0.0035 (14)0.0015 (14)
C130.039 (2)0.033 (2)0.0239 (18)0.0020 (16)0.0033 (15)0.0058 (15)
C140.0332 (19)0.039 (2)0.0265 (18)0.0000 (16)0.0078 (15)0.0029 (16)
C150.044 (2)0.027 (2)0.034 (2)0.0013 (16)0.0066 (17)0.0057 (16)
C160.038 (2)0.0241 (19)0.032 (2)0.0019 (15)0.0067 (16)0.0013 (15)
N210.0359 (17)0.045 (2)0.0310 (17)0.0018 (14)0.0032 (13)0.0005 (15)
C220.0289 (17)0.0293 (19)0.0225 (17)0.0014 (14)0.0053 (14)0.0022 (14)
C230.0356 (19)0.0279 (19)0.0209 (17)0.0000 (15)0.0024 (14)0.0012 (15)
N240.060 (2)0.037 (2)0.041 (2)0.0051 (16)0.0131 (17)0.0024 (16)
C250.052 (2)0.032 (2)0.041 (2)0.0042 (18)0.0155 (19)0.0076 (18)
C260.036 (2)0.043 (2)0.0254 (19)0.0013 (16)0.0036 (16)0.0092 (17)
C270.039 (2)0.028 (2)0.0283 (19)0.0007 (16)0.0073 (15)0.0017 (15)
Geometric parameters (Å, º) top
O2—C21.230 (4)C14—H140.9500
O121—N121.232 (4)C15—C161.379 (5)
O122—N121.235 (4)C15—H150.9500
N1—C11.280 (4)C16—H160.9500
N1—N21.377 (4)N21—C261.343 (5)
N2—C21.367 (4)N21—C221.353 (4)
N2—C271.457 (4)C22—C231.365 (5)
N12—C121.470 (4)C23—N241.340 (5)
C1—C111.474 (5)C23—H230.9500
C1—H10.9500N24—C251.350 (5)
C2—C221.498 (5)C25—C261.367 (5)
C11—C161.393 (5)C25—H250.9500
C11—C121.399 (4)C26—H260.9500
C12—C131.380 (5)C27—H27A0.9800
C13—C141.374 (5)C27—H27B0.9800
C13—H130.9500C27—H27C0.9800
C14—C151.393 (5)
C1—N1—N2118.9 (3)C16—C15—H15119.5
C2—N2—N1116.0 (3)C14—C15—H15119.5
C2—N2—C27121.0 (3)C15—C16—C11121.5 (3)
N1—N2—C27122.9 (3)C15—C16—H16119.2
O121—N12—O122123.7 (3)C11—C16—H16119.2
O121—N12—C12118.7 (3)C26—N21—C22116.3 (3)
O122—N12—C12117.7 (3)N21—C22—C23122.1 (3)
N1—C1—C11117.8 (3)N21—C22—C2119.6 (3)
N1—C1—H1121.1C23—C22—C2118.0 (3)
C11—C1—H1121.1N24—C23—C22121.7 (3)
O2—C2—N2121.6 (3)N24—C23—H23119.2
O2—C2—C22119.1 (3)C22—C23—H23119.2
N2—C2—C22119.3 (3)C23—N24—C25116.3 (3)
C16—C11—C12115.7 (3)N24—C25—C26122.2 (4)
C16—C11—C1120.6 (3)N24—C25—H25118.9
C12—C11—C1123.6 (3)C26—C25—H25118.9
C13—C12—C11123.5 (3)N21—C26—C25121.4 (3)
C13—C12—N12116.5 (3)N21—C26—H26119.3
C11—C12—N12119.9 (3)C25—C26—H26119.3
C14—C13—C12119.3 (3)N2—C27—H27A109.5
C14—C13—H13120.4N2—C27—H27B109.5
C12—C13—H13120.4H27A—C27—H27B109.5
C13—C14—C15118.9 (3)N2—C27—H27C109.5
C13—C14—H14120.6H27A—C27—H27C109.5
C15—C14—H14120.6H27B—C27—H27C109.5
C16—C15—C14121.0 (3)
C1—N1—N2—C2173.5 (3)N12—C12—C13—C14176.9 (3)
C1—N1—N2—C275.2 (4)C12—C13—C14—C151.3 (5)
N2—N1—C1—C11177.2 (3)C13—C14—C15—C160.8 (5)
N1—N2—C2—O2176.3 (3)C14—C15—C16—C112.4 (5)
C27—N2—C2—O25.0 (5)C12—C11—C16—C151.7 (5)
N1—N2—C2—C224.2 (4)C1—C11—C16—C15177.6 (3)
C27—N2—C2—C22174.5 (3)C26—N21—C22—C230.4 (5)
N1—C1—C11—C165.8 (5)C26—N21—C22—C2172.9 (3)
N1—C1—C11—C12178.7 (3)O2—C2—C22—N21124.9 (4)
C16—C11—C12—C130.5 (5)N2—C2—C22—N2154.6 (4)
C1—C11—C12—C13175.2 (3)O2—C2—C22—C2348.7 (5)
C16—C11—C12—N12178.4 (3)N2—C2—C22—C23131.8 (3)
C1—C11—C12—N125.9 (5)N21—C22—C23—N240.2 (5)
O121—N12—C12—C13133.6 (3)C2—C22—C23—N24173.6 (3)
O122—N12—C12—C1345.1 (4)C22—C23—N24—C252.0 (5)
O121—N12—C12—C1145.3 (4)C23—N24—C25—C263.2 (6)
O122—N12—C12—C11135.9 (3)C22—N21—C26—C250.8 (5)
C11—C12—C13—C142.0 (5)N24—C25—C26—N212.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O122i0.952.543.439 (5)157
C14—H14···O2ii0.952.583.428 (4)150
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z1.
(IIe) N-Methyl-N'-(4-nitrobenzylidene)pyrazine-2-carbohydrazide top
Crystal data top
C13H11N5O3F(000) = 1184
Mr = 285.27Dx = 1.442 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 3733 reflections
a = 17.510 (2) Åθ = 3.1–27.4°
b = 10.5421 (11) ŵ = 0.11 mm1
c = 14.9638 (14) ÅT = 120 K
β = 107.887 (8)°Prism, orange
V = 2628.7 (5) Å30.42 × 0.24 × 0.16 mm
Z = 8
Data collection top
Rigaku R-AXIS conversion
diffractometer
3000 independent reflections
Radiation source: Sealed tube2610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω scansh = 2222
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1313
Tmin = 0.956, Tmax = 0.983l = 1918
7284 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0773P)2 + 2.8776P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H11N5O3V = 2628.7 (5) Å3
Mr = 285.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.510 (2) ŵ = 0.11 mm1
b = 10.5421 (11) ÅT = 120 K
c = 14.9638 (14) Å0.42 × 0.24 × 0.16 mm
β = 107.887 (8)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
2610 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.983Rint = 0.042
7284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
3000 reflectionsΔρmin = 0.26 e Å3
191 parameters
Special details top

Experimental. Compound (IIe): 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 8.85 (1H, s, H3), 8.70 (2H, m, H5 and H6), 8.17 (2H, d, J = 8.0Hz, H3' and H5'), 7.84 (1H, s, NCH), 7.52 (2H, d, J = 8.0Hz, H2' and H6'), 3.64 (3H, s, NCH3); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 167.7, 149.8, 148.4, 145.2, 144.8, 143.8, 139.9, 138.1, 128.8, 127.8, 124.2, 28.9.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.57061 (8)0.47908 (13)0.45169 (10)0.0343 (3)
O1410.86046 (10)0.34850 (14)0.71616 (12)0.0430 (4)
O1420.95959 (9)0.26236 (14)0.82272 (11)0.0400 (4)
N10.69672 (9)0.24637 (14)0.58377 (11)0.0289 (4)
N20.67240 (9)0.36628 (15)0.55006 (11)0.0288 (4)
N140.89617 (10)0.25541 (15)0.75878 (12)0.0330 (4)
N210.57793 (10)0.16583 (15)0.41024 (12)0.0331 (4)
N240.42373 (10)0.15461 (17)0.43127 (13)0.0374 (4)
C10.76619 (11)0.23431 (18)0.64385 (13)0.0293 (4)
H10.79790.30710.66770.035*
C20.59832 (11)0.37657 (17)0.48461 (13)0.0284 (4)
C110.79675 (11)0.10698 (18)0.67581 (13)0.0291 (4)
C120.75341 (11)0.00272 (18)0.63833 (13)0.0296 (4)
H120.70150.00470.59390.035*
C130.78555 (12)0.12142 (19)0.66549 (14)0.0319 (4)
H130.75660.19600.63980.038*
C140.86118 (11)0.12919 (18)0.73113 (13)0.0294 (4)
C150.90534 (11)0.02318 (19)0.77173 (13)0.0303 (4)
H150.95630.03140.81780.036*
C160.87229 (11)0.09528 (19)0.74256 (14)0.0306 (4)
H160.90150.16950.76840.037*
C220.54957 (11)0.25722 (17)0.45338 (12)0.0282 (4)
C230.47319 (11)0.25233 (18)0.46330 (14)0.0320 (4)
H230.45570.32040.49370.038*
C250.45238 (13)0.0629 (2)0.38884 (16)0.0393 (5)
H250.41950.00880.36510.047*
C260.52813 (12)0.06823 (19)0.37812 (15)0.0362 (4)
H260.54530.00050.34700.043*
C270.72305 (12)0.47763 (18)0.58082 (14)0.0319 (4)
H27A0.69580.55260.54690.048*
H27B0.77410.46520.56780.048*
H27C0.73330.49000.64840.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0341 (7)0.0258 (7)0.0408 (8)0.0033 (5)0.0084 (6)0.0002 (6)
O1410.0461 (9)0.0295 (7)0.0499 (9)0.0008 (6)0.0097 (7)0.0035 (7)
O1420.0357 (8)0.0374 (8)0.0425 (8)0.0062 (6)0.0054 (6)0.0064 (6)
N10.0289 (8)0.0252 (8)0.0337 (8)0.0017 (6)0.0115 (6)0.0012 (6)
N20.0281 (8)0.0237 (8)0.0340 (8)0.0004 (6)0.0088 (6)0.0011 (6)
N140.0337 (8)0.0294 (9)0.0370 (9)0.0028 (7)0.0127 (7)0.0021 (7)
N210.0332 (8)0.0292 (8)0.0372 (9)0.0006 (6)0.0114 (7)0.0054 (7)
N240.0305 (8)0.0345 (9)0.0467 (10)0.0022 (7)0.0110 (7)0.0065 (7)
C10.0283 (9)0.0291 (9)0.0319 (9)0.0019 (7)0.0112 (7)0.0006 (7)
C20.0302 (9)0.0255 (9)0.0309 (9)0.0013 (7)0.0113 (7)0.0025 (7)
C110.0282 (9)0.0315 (9)0.0299 (9)0.0003 (7)0.0124 (7)0.0001 (7)
C120.0245 (8)0.0326 (10)0.0305 (9)0.0012 (7)0.0068 (7)0.0005 (7)
C130.0310 (9)0.0311 (10)0.0346 (9)0.0022 (7)0.0118 (8)0.0022 (8)
C140.0303 (9)0.0290 (9)0.0307 (9)0.0015 (7)0.0119 (7)0.0016 (7)
C150.0264 (9)0.0335 (10)0.0298 (9)0.0002 (7)0.0071 (7)0.0008 (7)
C160.0293 (9)0.0289 (9)0.0330 (9)0.0034 (7)0.0087 (7)0.0021 (7)
C220.0288 (9)0.0257 (9)0.0275 (8)0.0019 (7)0.0050 (7)0.0004 (7)
C230.0289 (9)0.0280 (9)0.0373 (10)0.0030 (7)0.0076 (7)0.0042 (7)
C250.0351 (10)0.0329 (10)0.0475 (12)0.0044 (8)0.0095 (9)0.0077 (9)
C260.0373 (10)0.0290 (10)0.0427 (11)0.0002 (8)0.0128 (8)0.0089 (8)
C270.0325 (9)0.0273 (9)0.0354 (10)0.0030 (7)0.0096 (8)0.0012 (8)
Geometric parameters (Å, º) top
O2—C21.224 (2)C12—C131.381 (3)
O141—N141.231 (2)C12—H120.9500
O142—N141.225 (2)C13—C141.388 (3)
N1—C11.278 (3)C13—H130.9500
N1—N21.379 (2)C14—C151.388 (3)
N2—C21.369 (2)C15—C161.389 (3)
N2—C271.458 (2)C15—H150.9500
N14—C141.470 (2)C16—H160.9500
N21—C221.337 (2)C22—C231.391 (3)
N21—C261.339 (3)C23—H230.9500
N24—C251.336 (3)C25—C261.385 (3)
N24—C231.336 (3)C25—H250.9500
C1—C111.470 (3)C26—H260.9500
C1—H10.9500C27—H27A0.9800
C2—C221.512 (3)C27—H27B0.9800
C11—C161.397 (3)C27—H27C0.9800
C11—C121.402 (3)
C1—N1—N2117.97 (16)C15—C14—N14118.52 (17)
C2—N2—N1116.92 (15)C14—C15—C16117.64 (17)
C2—N2—C27120.87 (15)C14—C15—H15121.2
N1—N2—C27122.20 (15)C16—C15—H15121.2
O142—N14—O141123.44 (17)C15—C16—C11121.04 (18)
O142—N14—C14118.25 (16)C15—C16—H16119.5
O141—N14—C14118.30 (16)C11—C16—H16119.5
C22—N21—C26115.43 (17)N21—C22—C23122.45 (17)
C25—N24—C23115.58 (17)N21—C22—C2119.39 (16)
N1—C1—C11119.52 (17)C23—C22—C2117.89 (16)
N1—C1—H1120.2N24—C23—C22121.90 (17)
C11—C1—H1120.2N24—C23—H23119.0
O2—C2—N2121.95 (17)C22—C23—H23119.0
O2—C2—C22119.60 (17)N24—C25—C26122.57 (19)
N2—C2—C22118.44 (16)N24—C25—H25118.7
C16—C11—C12119.38 (17)C26—C25—H25118.7
C16—C11—C1118.91 (17)N21—C26—C25122.05 (18)
C12—C11—C1121.66 (17)N21—C26—H26119.0
C13—C12—C11120.53 (17)C25—C26—H26119.0
C13—C12—H12119.7N2—C27—H27A109.5
C11—C12—H12119.7N2—C27—H27B109.5
C12—C13—C14118.41 (18)H27A—C27—H27B109.5
C12—C13—H13120.8N2—C27—H27C109.5
C14—C13—H13120.8H27A—C27—H27C109.5
C13—C14—C15122.98 (18)H27B—C27—H27C109.5
C13—C14—N14118.50 (17)
C1—N1—N2—C2178.94 (16)C13—C14—C15—C161.8 (3)
C1—N1—N2—C270.1 (3)N14—C14—C15—C16178.07 (16)
N2—N1—C1—C11175.23 (15)C14—C15—C16—C111.0 (3)
N1—N2—C2—O2178.58 (16)C12—C11—C16—C150.5 (3)
C27—N2—C2—O22.4 (3)C1—C11—C16—C15176.98 (17)
N1—N2—C2—C220.8 (2)C26—N21—C22—C230.8 (3)
C27—N2—C2—C22178.22 (15)C26—N21—C22—C2174.73 (17)
N1—C1—C11—C16179.05 (17)O2—C2—C22—N21118.3 (2)
N1—C1—C11—C123.5 (3)N2—C2—C22—N2162.3 (2)
C16—C11—C12—C131.3 (3)O2—C2—C22—C2355.9 (2)
C1—C11—C12—C13176.12 (17)N2—C2—C22—C23123.49 (19)
C11—C12—C13—C140.6 (3)C25—N24—C23—C220.4 (3)
C12—C13—C14—C151.0 (3)N21—C22—C23—N240.9 (3)
C12—C13—C14—N14178.83 (16)C2—C22—C23—N24174.98 (18)
O142—N14—C14—C13173.56 (17)C23—N24—C25—C260.3 (3)
O141—N14—C14—C136.8 (3)C22—N21—C26—C250.2 (3)
O142—N14—C14—C156.6 (3)N24—C25—C26—N210.4 (4)
O141—N14—C14—C15173.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.423.325 (2)159
C23—H23···O2ii0.952.363.290 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

(IIa)(IIb)(IIc)(IId)
Crystal data
Chemical formulaC13H12N4OC14H14N4O2C14H11N5O·2H2OC13H11N5O3
Mr240.27270.29301.31285.27
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/cMonoclinic, P21/c
Temperature (K)120100120120
a, b, c (Å)7.4961 (3), 7.6923 (3), 10.8821 (7)4.032 (5), 10.628 (15), 15.034 (19)19.395 (3), 3.9517 (5), 23.270 (3)3.7974 (2), 33.3126 (17), 10.0959 (5)
α, β, γ (°)73.421 (5), 84.844 (6), 88.530 (6)94.08 (3), 90.36 (3), 92.07 (3)90, 124.890 (9), 9090, 99.027 (2), 90
V3)598.97 (5)642.2 (15)1462.9 (3)1261.33 (11)
Z2244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.100.100.11
Crystal size (mm)0.56 × 0.43 × 0.230.18 × 0.13 × 0.120.56 × 0.23 × 0.080.40 × 0.10 × 0.02
Data collection
DiffractometerRigaku R-AXIS conversion
diffractometer
Rigaku Saturn724+
diffractometer
Rigaku R-AXIS conversion
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.9800.983, 0.9880.946, 0.9920.957, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7672, 2712, 2270 4990, 2246, 1859 12564, 3341, 2189 11176, 2168, 1563
Rint0.0160.0330.0530.071
(sin θ/λ)max1)0.6490.5950.6500.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.119, 1.17 0.055, 0.159, 1.10 0.063, 0.248, 1.23 0.080, 0.196, 1.10
No. of reflections2712224633412168
No. of parameters164185202191
No. of restraints0600
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.210.18, 0.260.40, 0.330.32, 0.32


(IIe)
Crystal data
Chemical formulaC13H11N5O3
Mr285.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)17.510 (2), 10.5421 (11), 14.9638 (14)
α, β, γ (°)90, 107.887 (8), 90
V3)2628.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.24 × 0.16
Data collection
DiffractometerRigaku R-AXIS conversion
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.956, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7284, 3000, 2610
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.169, 1.08
No. of reflections3000
No. of parameters191
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), OSCAIL (McArdle et al., 2004) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.952.593.1823 (16)121
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N21i0.952.613.514 (8)159
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (IIc) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N210.962.082.963 (2)153
O2W—H2WA···O1W0.911.842.745 (3)172
O1W—H1WA···O2i0.991.832.807 (2)167
O2W—H2WB···O2Wii0.841.962.649 (3)138
C13—H13···O1Wiii0.952.593.465 (3)152
C26—H26···N141iv0.952.623.480 (3)150
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (IId) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O122i0.952.543.439 (5)157
C14—H14···O2ii0.952.583.428 (4)150
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) for (IIe) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.423.325 (2)159
C23—H23···O2ii0.952.363.290 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Comparison of selected geometric parameters (°) top
θ is the dihedral angle between pyrazine ring and the phenyl ring, ϕ1 and ϕ2 are the torsion angles N21—C22—C2—N2 and N1—C1—C11—C12, respectively, and ϕ3 is the angular deviation of atom C2 from the mean plane of the pyrazine ring. In (Ib), the molecule sits on a mirror plane.
CompoundR1θϕ1ϕ2ϕ3
(IIa)H77.46 (6)72.83 (14)175.16 (10)6.77 (8)
(IIb)oOCH3 (major)58.1 (3)-128.9 (4)168.73 (18)3.2 (3)
oOCH3 (minor)69.5 (3)67.1 (6)n/a'4.1 (3)
(IIc)[pCN].2H2O55.43 (12)-135.8 (2)169.8 (2)4.06 (14)
(IId)oNO248.51(1754.6 (5)178.7 (3)6.3 (2)
(IIe)pNO255.39 (9)-62.3 (2)3.5 (3)4.59 (13)
(Ib)oOCH30.00.00.00.0
(Ic)(pCN5.82 (7)-3.76 (18)176.21 (17)1.56 (9)
(Id)(oNO20.54 (5)-12.72 (15)-169.90 (10)1.49 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds