Download citation
Download citation
link to html
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4'-di­methyl-2,2'-bipyridine ligand via its two N atoms [mean Ni-N = 2.056 (2) Å] and by four aqua ligands [mean Ni-O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water mol­ecule. Even though the individual constituents are rather featureless, they generate an extremely complex supra­molecular structure consisting of a central hydrogen-bonded two-dimensional hydro­philic nucleus made up of complex cations, sulfate anions and coordinated and solvent water mol­ecules, with pendant hydro­phobic 4,4'-dimethyl-2,2'-bipyridine ligands which inter­act laterally with their neighbours via [pi]-[pi] inter­actions. The structure is compared with closely related analogues in the literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113005088/sk3478sup1.cif
Contains datablocks IIa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113005088/sk3478IIasup2.hkl
Contains datablock IIa

CCDC reference: 934598

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), RPLUTO (CCDC, 2007) and PLATON (Spek, 2009).

Tetraaqua(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')nickel(II) sulfate monohydrate top
Crystal data top
[Ni(C12H12N2)(H2O)4]SO4·H2OF(000) = 896
Mr = 429.09Dx = 1.642 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3870 reflections
a = 11.8007 (3) Åθ = 2.7–25.2°
b = 11.7095 (3) ŵ = 1.29 mm1
c = 13.6967 (3) ÅT = 150 K
β = 113.530 (12)°Prism, light blue
V = 1735.24 (17) Å30.48 × 0.18 × 0.14 mm
Z = 4
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
3599 reflections with I > 2σ(I)
ω scans, thick slicesRint = 0.014
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
θmax = 27.8°, θmin = 1.9°
Tmin = 0.76, Tmax = 0.84h = 1515
14064 measured reflectionsk = 1514
3811 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.8214P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max = 0.008
258 parametersΔρmax = 0.54 e Å3
15 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.881378 (16)0.496228 (14)0.221537 (14)0.01282 (8)
N10.99139 (11)0.59788 (11)0.17338 (10)0.0155 (2)
N20.97379 (11)0.37435 (11)0.17329 (9)0.0143 (2)
C10.99794 (15)0.71205 (13)0.17923 (12)0.0191 (3)
H10.94130.75190.20030.023*
C21.08334 (15)0.77449 (13)0.15595 (13)0.0212 (3)
H21.08540.85540.16210.025*
C31.16645 (14)0.71816 (13)0.12344 (12)0.0197 (3)
C41.15978 (14)0.59903 (13)0.11793 (12)0.0185 (3)
H41.21510.55730.09660.022*
C51.07257 (13)0.54165 (13)0.14363 (11)0.0159 (3)
C61.06101 (13)0.41472 (13)0.14155 (11)0.0151 (3)
C71.13319 (14)0.34198 (13)0.10983 (12)0.0180 (3)
H71.19410.37250.08820.022*
C81.11601 (14)0.22372 (13)0.10986 (12)0.0187 (3)
C91.02545 (15)0.18412 (13)0.14215 (12)0.0200 (3)
H91.01050.10450.14320.024*
C100.95702 (14)0.26143 (13)0.17279 (12)0.0176 (3)
H100.89530.23290.19450.021*
C111.25956 (16)0.78285 (14)0.09601 (14)0.0250 (3)
H11A1.31850.72910.08720.037*0.50
H11B1.30390.83660.15340.037*0.50
H11C1.21710.82500.02950.037*0.50
H11D1.24120.86470.09290.037*0.50
H11E1.25580.75720.02670.037*0.50
H11F1.34260.76890.15060.037*0.50
C121.19356 (16)0.14301 (14)0.07717 (14)0.0260 (3)
H12A1.24660.18680.05110.039*0.50
H12B1.13960.09270.02050.039*0.50
H12C1.24510.09690.13860.039*0.50
H12D1.17420.06420.08900.039*0.50
H12E1.28130.15820.11960.039*0.50
H12F1.17580.15400.00150.039*0.50
S10.46711 (3)0.28090 (3)0.00349 (3)0.01434 (10)
O10.44429 (10)0.33060 (9)0.10842 (8)0.0192 (2)
O20.59885 (10)0.28740 (9)0.06801 (8)0.0191 (2)
O30.39200 (10)0.34164 (9)0.04476 (8)0.0193 (2)
O40.42903 (10)0.15839 (9)0.01878 (8)0.0183 (2)
O1W1.02352 (11)0.49105 (9)0.37309 (9)0.0167 (2)
H1WA1.0124 (17)0.4397 (10)0.4106 (12)0.020*
H1WB1.0407 (17)0.5513 (9)0.4098 (12)0.020*
O2W0.73828 (10)0.48140 (9)0.07310 (9)0.0165 (2)
H2WA0.6904 (13)0.4267 (10)0.0664 (14)0.020*
H2WB0.6956 (14)0.5380 (10)0.0415 (14)0.020*
O3W0.77982 (9)0.38622 (9)0.27347 (8)0.0163 (2)
H3WA0.7084 (10)0.4105 (15)0.2607 (12)0.020*
H3WB0.8139 (13)0.3730 (15)0.3392 (8)0.020*
O4W0.79553 (10)0.63138 (9)0.26225 (9)0.0197 (2)
H4WA0.7307 (12)0.6573 (14)0.2157 (10)0.024*
H4WB0.8260 (15)0.6806 (13)0.3111 (10)0.024*
O5W0.54228 (11)0.46991 (10)0.22121 (9)0.0217 (2)
H5WA0.5423 (17)0.5323 (9)0.1903 (13)0.026*
H5WB0.4957 (15)0.4261 (11)0.1729 (11)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01226 (12)0.01313 (12)0.01317 (12)0.00039 (6)0.00518 (9)0.00047 (6)
N10.0149 (6)0.0167 (6)0.0149 (6)0.0005 (5)0.0060 (5)0.0010 (5)
N20.0129 (6)0.0166 (6)0.0124 (5)0.0015 (5)0.0038 (4)0.0006 (5)
C10.0204 (7)0.0171 (7)0.0209 (7)0.0007 (6)0.0093 (6)0.0004 (6)
C20.0250 (8)0.0159 (7)0.0229 (8)0.0025 (6)0.0097 (6)0.0002 (6)
C30.0200 (7)0.0233 (8)0.0148 (7)0.0048 (6)0.0059 (6)0.0009 (6)
C40.0167 (7)0.0220 (7)0.0181 (7)0.0016 (6)0.0083 (6)0.0020 (6)
C50.0156 (7)0.0181 (7)0.0125 (6)0.0001 (6)0.0039 (5)0.0014 (5)
C60.0137 (6)0.0175 (7)0.0129 (6)0.0001 (5)0.0041 (5)0.0006 (5)
C70.0161 (7)0.0205 (7)0.0183 (7)0.0002 (6)0.0079 (6)0.0004 (6)
C80.0189 (7)0.0200 (8)0.0174 (7)0.0040 (6)0.0074 (6)0.0007 (6)
C90.0240 (8)0.0151 (7)0.0212 (7)0.0009 (6)0.0094 (6)0.0009 (6)
C100.0185 (7)0.0186 (7)0.0167 (7)0.0009 (6)0.0083 (6)0.0003 (6)
C110.0250 (8)0.0263 (8)0.0256 (8)0.0085 (6)0.0122 (7)0.0008 (6)
C120.0275 (8)0.0225 (8)0.0332 (9)0.0055 (7)0.0177 (7)0.0018 (7)
S10.01558 (18)0.01209 (17)0.01343 (18)0.00009 (13)0.00376 (13)0.00039 (12)
O10.0211 (5)0.0182 (5)0.0167 (5)0.0003 (4)0.0058 (4)0.0031 (4)
O20.0156 (5)0.0190 (5)0.0190 (5)0.0003 (4)0.0030 (4)0.0006 (4)
O30.0193 (5)0.0180 (5)0.0207 (5)0.0022 (4)0.0081 (4)0.0003 (4)
O40.0227 (5)0.0128 (5)0.0166 (5)0.0018 (4)0.0050 (4)0.0004 (4)
O1W0.0182 (6)0.0157 (5)0.0148 (5)0.0010 (4)0.0052 (4)0.0014 (4)
O2W0.0146 (5)0.0160 (5)0.0165 (5)0.0009 (4)0.0037 (4)0.0015 (4)
O3W0.0141 (5)0.0184 (5)0.0149 (5)0.0003 (4)0.0042 (4)0.0019 (4)
O4W0.0167 (5)0.0178 (5)0.0201 (5)0.0045 (4)0.0027 (4)0.0048 (4)
O5W0.0248 (6)0.0186 (5)0.0203 (5)0.0022 (5)0.0076 (5)0.0011 (4)
Geometric parameters (Å, º) top
Ni1—N12.0545 (12)C11—H11A0.9800
Ni1—N22.0587 (12)C11—H11B0.9800
Ni1—O2W2.0673 (11)C11—H11C0.9800
Ni1—O3W2.0694 (11)C11—H11D0.9800
Ni1—O4W2.0719 (11)C11—H11E0.9800
Ni1—O1W2.0847 (12)C11—H11F0.9800
N1—C11.3397 (19)C12—H12A0.9800
N1—C51.3524 (19)C12—H12B0.9800
N2—C101.3366 (19)C12—H12C0.9800
N2—C61.3524 (18)C12—H12D0.9800
C1—C21.381 (2)C12—H12E0.9800
C1—H10.9500C12—H12F0.9800
C2—C31.394 (2)S1—O21.4717 (11)
C2—H20.9500S1—O11.4724 (11)
C3—C41.397 (2)S1—O31.4819 (11)
C3—C111.501 (2)S1—O41.4928 (10)
C4—C51.387 (2)O1W—H1WA0.834 (9)
C4—H40.9500O1W—H1WB0.842 (9)
C5—C61.492 (2)O2W—H2WA0.834 (9)
C6—C71.391 (2)O2W—H2WB0.841 (9)
C7—C81.400 (2)O3W—H3WA0.839 (9)
C7—H70.9500O3W—H3WB0.841 (9)
C8—C91.389 (2)O4W—H4WA0.833 (9)
C8—C121.503 (2)O4W—H4WB0.847 (9)
C9—C101.385 (2)O5W—H5WA0.844 (9)
C9—H90.9500O5W—H5WB0.845 (9)
C10—H100.9500
N1—Ni1—N279.34 (5)H11B—C11—H11C109.5
N1—Ni1—O2W96.07 (5)C3—C11—H11D109.5
N2—Ni1—O2W87.45 (5)H11A—C11—H11D141.1
N1—Ni1—O3W176.28 (4)H11B—C11—H11D56.3
N2—Ni1—O3W97.61 (5)H11C—C11—H11D56.3
O2W—Ni1—O3W85.87 (4)C3—C11—H11E109.5
N1—Ni1—O4W94.78 (5)H11A—C11—H11E56.3
N2—Ni1—O4W173.98 (5)H11B—C11—H11E141.1
O2W—Ni1—O4W91.93 (4)H11C—C11—H11E56.3
O3W—Ni1—O4W88.31 (5)H11D—C11—H11E109.5
N1—Ni1—O1W88.63 (5)C3—C11—H11F109.5
N2—Ni1—O1W88.89 (4)H11A—C11—H11F56.3
O2W—Ni1—O1W173.41 (4)H11B—C11—H11F56.3
O3W—Ni1—O1W89.19 (4)H11C—C11—H11F141.1
O4W—Ni1—O1W92.28 (4)H11D—C11—H11F109.5
C1—N1—C5118.22 (13)H11E—C11—H11F109.5
C1—N1—Ni1126.00 (10)C8—C12—H12A109.5
C5—N1—Ni1115.41 (10)C8—C12—H12B109.5
C10—N2—C6118.31 (13)H12A—C12—H12B109.5
C10—N2—Ni1126.23 (10)C8—C12—H12C109.5
C6—N2—Ni1115.44 (10)H12A—C12—H12C109.5
N1—C1—C2122.98 (14)H12B—C12—H12C109.5
N1—C1—H1118.5C8—C12—H12D109.5
C2—C1—H1118.5H12A—C12—H12D141.1
C1—C2—C3119.62 (14)H12B—C12—H12D56.3
C1—C2—H2120.2H12C—C12—H12D56.3
C3—C2—H2120.2C8—C12—H12E109.5
C2—C3—C4117.25 (14)H12A—C12—H12E56.3
C2—C3—C11121.33 (14)H12B—C12—H12E141.1
C4—C3—C11121.43 (14)H12C—C12—H12E56.3
C5—C4—C3120.09 (14)H12D—C12—H12E109.5
C5—C4—H4120.0C8—C12—H12F109.5
C3—C4—H4120.0H12A—C12—H12F56.3
N1—C5—C4121.82 (14)H12B—C12—H12F56.3
N1—C5—C6114.86 (12)H12C—C12—H12F141.1
C4—C5—C6123.32 (13)H12D—C12—H12F109.5
N2—C6—C7121.72 (13)H12E—C12—H12F109.5
N2—C6—C5114.69 (12)O2—S1—O1111.23 (6)
C7—C6—C5123.59 (13)O2—S1—O3109.84 (6)
C6—C7—C8119.92 (14)O1—S1—O3109.68 (6)
C6—C7—H7120.0O2—S1—O4108.78 (6)
C8—C7—H7120.0O1—S1—O4108.38 (6)
C9—C8—C7117.41 (13)O3—S1—O4108.88 (6)
C9—C8—C12121.48 (14)Ni1—O1W—H1WA111.9 (12)
C7—C8—C12121.11 (14)Ni1—O1W—H1WB118.4 (12)
C10—C9—C8119.60 (14)H1WA—O1W—H1WB107.1 (13)
C10—C9—H9120.2Ni1—O2W—H2WA115.1 (12)
C8—C9—H9120.2Ni1—O2W—H2WB121.8 (12)
N2—C10—C9123.03 (14)H2WA—O2W—H2WB107.9 (13)
N2—C10—H10118.5Ni1—O3W—H3WA112.9 (12)
C9—C10—H10118.5Ni1—O3W—H3WB112.8 (12)
C3—C11—H11A109.5H3WA—O3W—H3WB107.3 (12)
C3—C11—H11B109.5Ni1—O4W—H4WA118.1 (12)
H11A—C11—H11B109.5Ni1—O4W—H4WB129.3 (12)
C3—C11—H11C109.5H4WA—O4W—H4WB109.1 (13)
H11A—C11—H11C109.5H5WA—O5W—H5WB105.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.83 (1)2.00 (1)2.7959 (15)160 (2)
O1W—H1WB···O4ii0.84 (1)1.87 (1)2.6913 (15)164 (2)
O2W—H2WA···O20.83 (1)1.96 (1)2.7895 (15)171 (2)
O2W—H2WB···O3iii0.84 (1)1.86 (1)2.6985 (15)172 (2)
O3W—H3WA···O5W0.84 (1)1.94 (1)2.7800 (16)176 (2)
O3W—H3WB···O4i0.84 (1)1.91 (1)2.7329 (14)165 (2)
O4W—H4WA···O1iii0.83 (1)2.01 (1)2.8082 (15)162 (2)
O4W—H4WB···O2ii0.85 (1)1.98 (1)2.8253 (15)176 (2)
O5W—H5WA···O1iii0.84 (1)2.00 (1)2.8397 (16)172 (2)
O5W—H5WB···O30.85 (1)1.96 (1)2.7963 (15)171 (2)
C11—H11E···O2iv0.982.583.393 (2)140
C12—H12A···O3v0.982.523.453 (2)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x+1, y, z.
Compararison of reported compounds with the general formula Tr(Lx)(H2O)4.nH2O (Tr is a transition metal) top
Ligand codes: L1 is 2,2'-bipyridine; L2 is 5,5'-dimethyl-2,2'-bipyridine; L3 is 4,4'-dimethyl-2,2'-bipyridine; L4 is 1,10-phenanthroline; L5 is 1,10-phenanthroline-5,6-dione; L6 is 1H-imidazo[4,5-f][1,10]phenanthroline.
CompoundTrLxnSpace groupZa (Å)b (Å)c (Å)α (°)β (°)γ (°)V3)
(Ia)NiL10Pbca812.3035 (7)11.6560 (7)20.7112 (10)9090902970.2 (3)
(Ib)CdL10P21/c410.262 (2)12.073 (2)12.357 (3)9092.47 (3)901529.5 (10)
(Ic)ZnL20P21/c49.565 (2)9.605 (2)18.477 (3)90102.45 (9)901657.5 (14)
(IIa)NiL31P21/n411.8007 (3)11.7095 (3)13.6967 (3)90113.531 (12)901735.24 (17)
(IIIa)ZnL42Pbca88.906 (1)18.295 (2)21.855 (3)9090903560.9 (15)
(IIIb)MnL42Pbca88.877 (1)18.508 (3)22.098 (3)9090903630.602 (14)
(IIIc)CdL42Pbca88.8398 (9)18.700 (2)22.349 (2)9090903694.3 (11)
(IIId)CoL42Pbca88.856 (1)18.318 (3)21.918 (5)9090903555.6 (17)
(IIIe)MnL52C2/m49.6237 (4)13.9117 (6)13.8744 (6)9097.32 (2)901842.4 (2)
(IIIf)NiL12P127.793 (3)9.351 (3)11.476 (4)87.40 (2)96.50 (2)102.37 (2)811.4 (19)
(IIIg)NiL62P127.266 (2)11.112 (3)12.913 (4)75.676 (4)77.393 (5)71.423 (5)946.4 (15)
Supplementary Table S4. Hydrogen-bonded chains in (IIa), involving up to three different primary hydrogen bonds between groups of atoms Gri top
The interactions have the form of Gr1···Gr2···Gr3···Gr1* open chains, with Gr1* some symmetry equivalent of Gr1 and where `···' denotes hydrogen bonding.
No.Descriptor*Gr1Gr2Gr3
1C2,2(8)(H1WA-O1W-Ni1-O2W-H2WA)(O2-S1-O4)
2C2,2(8)(H1WB-O1W-Ni1-O2W-H2WA)(O2-S1-O4)
3C2,2(8)(H2WA-O2W-Ni1-O3W-H3WB)(O4-S1-O2)i
4C2,2(8)(H2WB-O2W-Ni1-O3W-H3WB)(O4-S1-O3)i
5C1,2(6)(H2WA-O2W-Ni1-O4W-H4WB)O2ii
6C2,2(8)(H2WB-O2W-Ni1-O4W-H4WB)(O2-S1-O3)ii
7C2,2(8)(H3WB-O3W-Ni1-O4W-H4WA)(O1-S1-O4)iii
8C2,2(8)(H1WA-O1W-Ni1-O4W-H4WA)(O1-S1-O4)iii
9C2,2(8)(H1WB-O1W-Ni1-O4W-H4WA)(O1-S1-O4)iii
10C2,2(8)(H1WA-O1W-Ni1-O2W-H2WB)(O3-S1-O4)iii
11C2,2(8)(H1WB-O1W-Ni1-O2W-H2WB)(O3-S1-O4)iii
12C2,2(6)(H4WB-O4W-H4WA)(O1-S1-O2)iii
13C3,3(8)(H3WB-O3W-H3WA)(O5W-H5WB)(O3-S1-O4)
14C3,3(10)(H1WA-O1W-Ni1-O3W-H3WA)(O5W-H5WB)(O3-S1-O4)
15C3,3(10)(H1WB-O1W-Ni1-O3W-H3WA)(O5W-H5WB)(O3-S1-O4)
16C3,3(10)(H4WB-O4W-Ni1-O3W-H3WA)(O5W-H5WB)(O3-S1-O2)
17C3,3(10)(H4WB-O4W-Ni1-O3W-H3WA)(O5W-H5WA)(O1-S1-O2)iii
18C3,3(8)(H3WB-O3W-H3WA)(O5W-H5WA)(O1-S1-O4)iii
19C3,3(10)(H1WA-O1W-Ni1-O3W-H3WA)(O5W-H5WA)(O1-S1-O4)iii
20C3,3(10)(H1WB-O1W-Ni1-O3W-H3WA)(O5W-H5WA)(O1-S1-O4)iii
Notes: (*) for an introduction to graph-set analysis and notation, see Bernstein et al. (1995) and Etter et al. (1990). For a graph-set code Xad(n), X is the structure code (C = chain and R = ring), a is the total number of acceptors involved, d is the total number of donors involved and n is the total number of bonds involved.

Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z; (iv) -x + 2, -y + 1, -z + 1.
Supplementary Table S5. Hydrogen-bonded rings in (IIa), involving up to three different primary hydrogen bonds between groups of atoms Gri top
The interactions have the form of Gr1···Gr2···Gr3···Gr1 closed loops, where `···' denotes hydrogen bonding.
No.Descriptor*Gr1Gr2Gr3Gr4Gr5Gr6
1R1,2(6)(H1WA-O1W-Ni1-O3W-H3WB)(O4)i
2R2,2(8)(H1WB-O1W-Ni1-O4W-H4WB)(O2-S1-O4)ii
3R2,2(8)(H2WB-O2W-Ni1-O4W-H4WA)(O1-S1-O3)iii
4R3,3(8)(H4WA-O4W-Ni1-O3W-H3WA)(O5W-H5WA)(O1)iii
5R3,3(10)(H2WB-O2W-Ni1-O3W-H3WA)(O5W-H5WA)(O1-S1-O3)iii
6R3,3(10)(H2WA-O2W-Ni1-O3W-H3WA)(O5W-H5WB)(O3-S1-O2)
7R2,4(8)(H1WB-O1W-H1WA)(O4)i(H1WB-O1W-H1WA)iv(O4)ii
8R2,4(12)(H1WB-O1W-Ni1-O3W-H3WB)(O4)i(H1WB-O1W-Ni1-O3W-H3WB)iv(O4)ii
9R4,4(12)(H2WB-O2W-H2WA)(O2-S1-O3)(H2WB-O2W-H2WA)iii(O2-S1-O3)iii
10R4,4(12)(H5WB-O5W-H5WA)(O1-S1-O3)iii(H5WB-O5W-H5WA)iii(O1-S1-O3)
11R4,4(16)(H2WA-O2W-Ni1-O4W-H4WA)(O1-S1-O2)iii(H2WA-O2W-Ni1-O4W-H4WA)iii(O1-S1-O2)
12R4,4(16)(H3WB-O3W-Ni1-O4W-H4WB)(O2-S1-O4)ii(H3WB-O3W-Ni1-O4W-H4WB)iv(O2-S1-O4)i
13R4,4(16)(H1WA-O1W-Ni1-O4W-H4WB)(O2-S1-O4)ii(H1WA-O1W-Ni1-O4W-H4WB)iv(O2-S1-O4)i
14R4,6(16)(H2WB-O2W-Ni1-O3W-H3WA)(O5W-H5WB)(O3)(H2WB-O2W-Ni1-O3W-H3WA)iii(O5W-H5WB)iii(O3)iii
15R6,6(20)(H2WA-O2W-Ni1-O3W-H3WA)(O5W-H5WA)(O1-S1-O2)iii(H2WA-O2W-Ni1-O3W-H3WA)iii(O5W-H5WA)iii(O1–S1-O2)
16R6,6(20)(H4WA-O4W-Ni1-O3W-H3WA)(O5W-H5WB)(O3-S1-O1)(H4WA-O4W-Ni1-O3W-H3WA)iii(O5W-H5WB)iii(O3-S1-O1)iii
Notes: (*) for an introduction to graph-set analysis and notation, see Bernstein et al. (1995) and Etter et al. (1990). For a graph-set code Xad(n), X is the structure code (C = chain and R = ring), a is the total number of acceptors involved, d is the total number of donors involved and n is the total number of bonds involved.

Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds