Download citation
Download citation
link to html
The asymmetric unit of the title dimeric compounds, [Ln2(C4H5O2)6(H2O)4]·C5H5N5·7H2O, with Ln = Dy, (I), and Sm, (II), consists of an LnIII cation, three crotonate (but-2-enoate) anions and two coordinated water mol­ecules forming the neutral complex, cocrystallized with half of an external adenine mol­ecule and 3.5 water mol­ecules. The metal complex has crystallographic inversion symmetry. The LnO9 coordination polyhedra are connected through the sharing of a single edge to form isolated dimeric units, with Ln...Ln separations of 4.1766 (12) Å for (I) and 4.2340 (12) Å for (II). The unbound adenine mol­ecule and one of the solvent water mol­ecules are disordered around an inversion centre into two overlapping, equally populated, units. The structure is sustained by a complex hydrogen-bonding scheme involving all possible O-H and N-H groups as donors, and crotonate and water O and adenine N atoms as acceptors. The system is compared with recently published related compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112007263/sk3428sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112007263/sk3428Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112007263/sk3428IIsup3.hkl
Contains datablock II

CCDC references: 873882; 873883

Comment top

Homonuclear systems with ligands that serve as molecular bridges between metal centres have received considerable attention through the years (Fujita et al., 1994; Lu & Babb, 2001; Thompson, 2002). A point of interest in these systems is the possibility of introducing extra ligands as bridges and thus obtaining grid structures and/or clusters, which are appealing not only structurally but also for their potential application in ion exchange, catalysis, molecular absorption, optical, electronic and magnetic areas (Ma et al., 2000; Wang et al., 2002; Xu et al., 2002; Benelli & Gatteschi, 2002; Pan et al., 2004). We have for some time focused our attention on the efficiency of crotonic acid (Hcrot) to couple LnIII ions and as a result we have described the synthesis and structural and magnetic characterization of a number of lanthanide complexes displaying these types of bridges. In parallel, our investigation of carboxylate complexes has showed that the incorporation of some purine derivatives, like 2,6-diaminopurine (dap), might facilitate crystallization, either through their inclusion as neutral co-crystallization agents (Atria et al., 2009) or as counterions (Atria, Morel et al., 2011), or even as coordinating ligands (Atria, Corsini et al., 2011; Atria, Garland & Baggio, 2011). We also tried adenine (ade), and the first outcome with this ligand [a La complex with a one-dimensional structure, {La(crot)3(H2O)2.(ade).H2O}n, (III)] has been described recently (Atria et al., 2012).

We present herein another example of the crotonate–adenine system, viz. the title Ln dimers (Ln = Dy, Sm), formulated as Ln2(crot)6(H2O)4.ade.7H2O, with Ln = Dy in (I) and Ln = Sm in (II). The two structures are isomorphous and accordingly we shall discuss only one of them in detail, (I), with only marginal reference to the second, (II).

Fig. 1 shows the centrosymmetric dimeric unit for both (I) and (II). The asymmetric unit consists of an Ln cation, three crotonate anions and two coordinated water molecules determining the neutral complex, completed by an external adenine, disordered around an inversion centre, a solvent water molecule in similar conditions and three further, fully occupied, solvent water molecules. The three crotonate anions (distinguished by their trailing number, 1, 2 or 3) act in a chelating way. Unit 3 has, in addition, one of its carboxylate O atoms (O13) shared with a neigbouring coordination polyhedron (Fig. 1), thus giving rise to the central Ln2O2 loop defining the dimeric unit, with Ln···Ln separations of 4.1766 (12) Å for (I) and 4.2340 (12) Å for (II). The seven sites thus provided to the cation environment by the carboxylate O atoms are expanded by two aqua O atoms to a nine-coordination polyhedron, with Ln—O ranges of 2.3504 (19)–2.5524 (19) Å for (I) and 2.4057 (16)–2.5739 (15)Å for (II) (see Tables 1 and 3 for details). The dimeric linkage is reinforced by a strong intra-dimeric hydrogen bond involving atoms O1W and O11i [symmetry code: (i) 1 - x, 1 - y, -z; Tables 2 and 4, first entry].

This type of dimeric unit occurs rather frequently among Ln crotonates. In particular, we have recently found it in our structural study of the family of lanthanocrotonate diaminopurine analogues, viz. di-µ-but-2-enoato-bis[diaquabis(but-2-enoato)Ln].2,6-diaminopurine disolvate, with Ln = Ho or Dy [(IV); Atria et al., 2009], or Ln = Nd (Atria, Astete et al., 2011), where the [Ln(Crot)3(H2O)2]2 dinuclear structure is extremely similar to the present one. However, the coordination environments and the resulting hydrogen-bonding schemes are different, and this will be commented on below in the light of the electronic state of their constituents.

The La–adenine analogue, (III), presents a different configuration around the cation, with two carboxylates sharing one of their coordinated O atoms with neighbouring cations, giving rise to chains (instead of dimers) of ten-coordinated (instead of nine-coordinated) polyhedra. The LaO10 coordination assembly in (III) is a slightly distorted bicapped square antiprism. In contrast, the LnO9 one in (I) and (II) consists of five O atoms in equatorial positions, describing a rather planar structure [mean deviation 0.112 (2) Å], capped by one O atom above the plane and a triangular array below (Fig. 1, inset). The Dy cation, in turn, lies 0.502 (2) Å below the pentagonal mean plane.

The neutral adenine molecule (hereinafter ade0) is basically planar, with a maximum deviation of 0.042 Å for atom N5, and it almost engulfs an inversion centre, 0.0329 (2) Å away from the least-squares plane (shown as a cross in Fig. 2). In addition, the solvent water molecule O6W is also quasi-coplanar [deviation 0.2620 (12) Å], and so both the adenine molecule and this solvent water molecule are forced to be 0.50:0.50 disordered around the inversion centre. Their symmetry-related images superimpose each other in such a way that the NH2 group in one of the images almost coincides with the OH2 group in the other (Fig. 2). The metrics of the ade0 group are normal, and it presents the same prototropic state (distribution of single and double bonds) as in the La analogue [Atria et al., 2012; form (b) in Scheme 2 of that work] with protonation at N2. We shall not discuss the point any further, but the interested reader is referred to this latter report for a brief discussion of the subject. The molecule does not take part in coordination but it plays, in conjunction with the solvent water molecules, a significant role in the general cohesion. Table 2 presents the hydrogen-bonding interactions in which all available O—H and N—H groups act as donors, and all possible O and N atoms act as acceptors; the exceptions to this are based on steric impossibilities, viz. shielding (among atoms O1W and O2W, both coordinated to Dy1, and O13, engaged in the Dy—O—Dy bridge) or protonation (on the nitrogen side, only protonated atoms N2 and N5 do not accept hydrogen bonds). Figs. 3(a) and 3(b) present two different views of the web-like structure woven by these interactions, which hold the isolated dimers in place. Simple inspection of these figures shows that both the dimers and most of the solvent water molecules lie in planar arrays parallel to (001) at z = 0, shown in both views in projection as horizontal strips in heavy lining. In addition, the disordered ade0 and O6W molecules serve as connectors between these two-dimensional structures; this linkage is achieved through hydrogen bonds 2 to 10 in Table 2. The internal cohesion of the planes (made up of dimers and solvent water molecules) is in turn achieved by a large number of hydrogen bonds involving only water H atoms as donors on one side and water and carboxylate O atoms as acceptors on the other (entries 11 to 17 in Tables 2 and 4). Fig. 4 shows a thin (001) layer around z = 0 (thus excluding the disordered part at z ~0.50), where the most significant hydrogen-bonding loops (A to E) arising from these interactions are identified. There are three centrosymmetric loops: A, graph-set R44(8) (Bernstein et al., 1995); B, R44(12); and C, R44(20), and two non-centrosymmetric ones: D, R33(8), and E, R33(8).

The present Dy structure, (I), with its very complex interaction scheme involving all available coordinated O atoms, provides an example of the influence which the hydrogen-bonding interactions might have on the O-atom coordination capabilities and even the valence state of the coordinated cations, as second-order receptors of these interactions. In this respect it is worth comparing the structure of (I) with the above-mentioned Dy diamine purine analogue, (IV), which presents an almost identical dimeric structure but a looser hydrogen-bonding `web'. For the sake of comparison, some relevant values will be given in the order (I)/(IV). (a) Overall Dy—O coordination range 2.3504 (19)–2.5524 (19)/2.3457 (17)–2.5257 (17) Å. (b) Bridging Dy···Dy 4.1766 (12)/4.0412 (13) Å. (c) Shortest Dy—O bridge 2.3784 (18)/2.3464 (17) Å. (d) Longest Dy—O bridge 2.5524 (19)/2.5021 (17) Å. All these figures point to a stronger involvement in coordination in (IV) (with weaker and sparser hydrogen-bonds) compared with (I) (showing a stronger and denser hydrogen-bonding network), a fact confirmed by a bond-valence calculation for Dy (using PLATON; Spek, 2009), resulting in 2.94 valence units for (IV) versus 2.81 valence units for (I).

Related literature top

For related literature, see: Atria et al. (2009, 2012); Atria, Astete, Garland & Baggio (2011); Atria, Corsini, Herrera, Garland & Baggio (2011); Atria, Garland & Baggio (2011); Atria, Morel, Garland & Baggio (2011); Benelli & Gatteschi (2002); Bernstein et al. (1995); Fujita et al. (1994); Lu & Babb (2001); Ma et al. (2000); Pan et al. (2004); Spek (2009); Thompson (2002); Wang et al. (2002); Xu et al. (2002).

Experimental top

Complexes (I) and (II) were synthesized by similar methods. A mixture of the appropriate oxide (Dy2O3 or Sm2O3, 1 mmol) and crotonic acid (6 mmol) was dissolved in water (100 ml), followed by the addition of the adenine ligand (1 mmol) dissolved in ethanol (40 ml). The resulting mixture was refluxed for 24 h, filtered while hot and then concentrated to 25 ml [in vacuo, by evaporation, by heating?]. The filtrate was left to stand at room temperature and suitable crystals for single-crystal X-ray diffraction appeared. These were used without further processing.

Refinement top

The unbound adenine and one of the solvent water molecules are disordered around an inversion centre into two almost overlapping, equally populated, units.

All the H atoms were clearly seen in a difference Fourier map but they were treated differently in refinement. C-bound H atoms were repositioned at their expected locations and allowed to ride, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C)]. H atoms attached to N and O were refined with restrained distances of N—H = O—H = 0.85 (1) Å and free Uiso(H).

The extinction parameters had a significant effect on the refinement so they were retained, in spite of their small value.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) (left) and (II) (right). Displacement ellipsoids are drawn at the 40% probability level, with independent (symmetry-related) atoms in heavy (hollow) bonds and filled (empty) ellipsoids. Inset: the coordination assembly of the lanthanide cation. [Symmetry code: (i) -x + 1, -y + 1, -z.]
[Figure 2] Fig. 2. A schematic view showing the way in which the disordered adenine and solvent water molecule O6W overlap. [Symmetry code: (ii) -x + 2, -y, -z + 1.]
[Figure 3] Fig. 3. Packing views of (I) (a) projected down [100] and (b) projected down [010]
[Figure 4] Fig. 4. A [001] packing view of a thin (001) slab of (I), centred at z = 0 and showing the different hydrogen-bonding loops connecting the dimers. Centrosymmetric loops: A, as L1 [O4W···H2WB—O2W—H2WA] + L1i; B, as L2 [O21—Dy1—O12···(H5WB—O5W—H5WA)iii] + L2ii; C, as L3 [(O12—Dy1—O11)v···H3WA—O3W···H4WB—O4W—H4WA···O5W—H5WB] + L3iv,. Non-centrosymmetric loops: D, as O21—Dy1—O2W—H2WA···(O4W—H4WA···O5W—H5WA)i, and E, as H2WB—O2W—Dy1—O13—(Dy1—O11)v···H3WA—O3W···H4WB—O4W. [Symmetry codes: (i): 2 - x, 1 - y, -z; (ii): 1 - x, 2 - y, -z; (iii): -1 + x, 1 + y, z; (iv): 2 - x, -y, -z; (v): 1 - x, 1 - y, -z.]
(I) di-µ-but-2-enoato-bis[diaquabis(but-2-enoato)dysprosium(III)] adenine monosolvate heptahydrate top
Crystal data top
[Dy(C4H5O2)6(H2O)4]·C5H5N5·7H2OZ = 1
Mr = 1168.80F(000) = 582
Triclinic, P1Dx = 1.771 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.614 (3) ÅCell parameters from 9064 reflections
b = 10.808 (3) Åθ = 1.9–27.7°
c = 11.338 (3) ŵ = 3.47 mm1
α = 73.075 (4)°T = 291 K
β = 83.958 (5)°Block, colourless
γ = 61.833 (5)°0.22 × 0.20 × 0.12 mm
V = 1096.1 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4253 independent reflections
Radiation source: fine-focus sealed tube4178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
CCD rotation images, thin slices scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1313
Tmin = 0.42, Tmax = 0.66k = 1313
8551 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.014P)2 + 1.0859P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
4253 reflectionsΔρmax = 0.86 e Å3
365 parametersΔρmin = 0.60 e Å3
22 restraintsExtinction correction: SHELXL97 Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0105 (4)
Crystal data top
[Dy(C4H5O2)6(H2O)4]·C5H5N5·7H2Oγ = 61.833 (5)°
Mr = 1168.80V = 1096.1 (5) Å3
Triclinic, P1Z = 1
a = 10.614 (3) ÅMo Kα radiation
b = 10.808 (3) ŵ = 3.47 mm1
c = 11.338 (3) ÅT = 291 K
α = 73.075 (4)°0.22 × 0.20 × 0.12 mm
β = 83.958 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4253 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
4178 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.66Rint = 0.016
8551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01822 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.86 e Å3
4253 reflectionsΔρmin = 0.60 e Å3
365 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9952 (9)0.0288 (10)0.3358 (8)0.0349 (16)0.50
H11.00510.02110.25540.042*0.50
C21.0259 (6)0.0372 (7)0.5351 (6)0.0293 (12)0.50
C31.0027 (7)0.0260 (7)0.7275 (7)0.0306 (13)0.50
H31.02510.07220.81110.037*0.50
C40.8690 (6)0.1884 (7)0.5801 (7)0.0263 (13)0.50
C50.9286 (7)0.1073 (8)0.4928 (7)0.0260 (12)0.50
N10.9087 (19)0.1513 (14)0.3623 (18)0.031 (2)0.50
N21.0713 (6)0.0894 (6)0.4354 (7)0.0363 (12)0.50
H21.142 (7)0.172 (6)0.436 (10)0.044*0.50
N31.0698 (17)0.1118 (12)0.6519 (17)0.027 (2)0.50
N40.9093 (5)0.1145 (5)0.7001 (4)0.0308 (10)0.50
N50.781 (2)0.3295 (16)0.550 (2)0.036 (3)0.50
H5A0.760 (9)0.389 (6)0.593 (6)0.044*0.50
H5B0.728 (8)0.379 (7)0.485 (5)0.044*0.50
O6W1.234 (2)0.3712 (14)0.449 (2)0.041 (3)0.50
H6WA1.287 (7)0.427 (7)0.513 (4)0.049*0.50
H6WB1.288 (6)0.384 (8)0.389 (4)0.049*0.50
Dy10.554568 (11)0.588410 (11)0.115150 (9)0.02228 (6)
O110.35882 (19)0.79135 (19)0.02367 (17)0.0292 (4)
O210.5573 (2)0.8066 (2)0.02418 (18)0.0340 (4)
C110.4292 (3)0.8640 (3)0.0623 (2)0.0272 (5)
C210.3647 (3)1.0109 (3)0.1493 (3)0.0370 (6)
H210.42181.05690.17580.044*
C310.2324 (3)1.0807 (3)0.1918 (3)0.0376 (6)
H310.17681.03300.16490.045*
C410.1620 (4)1.2294 (4)0.2792 (3)0.0541 (9)
H41A0.13511.22320.35470.081*
H41B0.22731.27020.29610.081*
H41C0.07831.29070.24310.081*
O120.4564 (2)0.7708 (2)0.22721 (18)0.0384 (5)
O220.6161 (2)0.5532 (2)0.32690 (18)0.0401 (5)
C120.5266 (3)0.6822 (3)0.3263 (2)0.0319 (6)
C220.5028 (4)0.7265 (4)0.4422 (3)0.0430 (7)
H220.54780.65420.51430.052*
C320.4233 (4)0.8592 (4)0.4504 (3)0.0436 (7)
H320.37910.93180.37820.052*
C420.3981 (4)0.9033 (5)0.5674 (3)0.0558 (9)
H42A0.46080.82290.63200.084*
H42B0.30050.93070.58950.084*
H42C0.41670.98470.55580.084*
O130.40146 (19)0.4809 (2)0.07176 (16)0.0283 (4)
O230.3693 (2)0.5420 (2)0.24319 (18)0.0350 (4)
C130.3417 (3)0.4837 (3)0.1755 (2)0.0257 (5)
C230.2481 (3)0.4138 (3)0.2125 (3)0.0356 (6)
H230.23670.36900.15860.043*
C330.1798 (4)0.4100 (4)0.3150 (3)0.0437 (7)
H330.19110.45500.36880.052*
C430.0849 (5)0.3389 (5)0.3527 (4)0.0621 (11)
H43A0.08490.29380.29120.093*
H43B0.01070.41120.36070.093*
H43C0.11960.26610.43040.093*
O1W0.6943 (2)0.3338 (2)0.18512 (19)0.0349 (4)
H1WA0.758 (3)0.278 (3)0.242 (2)0.042*
H1WB0.692 (3)0.279 (3)0.146 (2)0.042*
O2W0.8024 (2)0.5409 (2)0.0973 (2)0.0373 (4)
H2WA0.838 (3)0.599 (2)0.071 (3)0.045*
H2WB0.862 (3)0.4606 (17)0.085 (3)0.045*
O3W0.9127 (3)0.1509 (4)0.0703 (3)0.0624 (7)
H3WA0.834 (3)0.161 (5)0.039 (3)0.075*
H3WB0.911 (4)0.139 (5)0.140 (2)0.075*
O4W1.0226 (3)0.3070 (3)0.0195 (3)0.0541 (6)
H4WA1.090 (3)0.232 (3)0.065 (3)0.065*
H4WB0.986 (4)0.272 (4)0.017 (3)0.065*
O5W1.2607 (2)0.0781 (3)0.1488 (3)0.0529 (6)
H5WB1.305 (3)0.0134 (11)0.166 (4)0.064*
H5WA1.318 (3)0.110 (3)0.114 (3)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (4)0.047 (5)0.023 (4)0.022 (4)0.002 (4)0.014 (4)
C20.028 (3)0.029 (4)0.028 (4)0.010 (3)0.001 (2)0.009 (3)
C30.030 (3)0.032 (3)0.026 (3)0.013 (2)0.001 (3)0.005 (3)
C40.026 (3)0.030 (3)0.028 (3)0.016 (3)0.001 (2)0.009 (2)
C50.026 (3)0.032 (4)0.023 (3)0.015 (3)0.005 (3)0.011 (3)
N10.035 (5)0.020 (6)0.032 (4)0.009 (5)0.001 (3)0.007 (5)
N20.034 (3)0.034 (3)0.038 (4)0.008 (2)0.002 (3)0.020 (3)
N30.027 (5)0.011 (6)0.037 (6)0.002 (5)0.006 (4)0.005 (4)
N40.034 (2)0.034 (2)0.025 (2)0.015 (2)0.0024 (18)0.0097 (19)
N50.038 (6)0.031 (8)0.031 (4)0.005 (7)0.006 (4)0.016 (6)
O6W0.040 (4)0.035 (7)0.034 (4)0.001 (6)0.001 (3)0.023 (6)
Dy10.02409 (8)0.02101 (8)0.02058 (8)0.00905 (5)0.00095 (4)0.00661 (5)
O110.0298 (9)0.0264 (9)0.0321 (10)0.0139 (8)0.0011 (8)0.0076 (8)
O210.0293 (10)0.0303 (10)0.0390 (11)0.0141 (8)0.0021 (8)0.0031 (8)
C110.0301 (13)0.0255 (12)0.0265 (12)0.0122 (11)0.0021 (10)0.0093 (10)
C210.0356 (15)0.0327 (15)0.0394 (16)0.0178 (13)0.0014 (12)0.0006 (12)
C310.0354 (15)0.0343 (15)0.0365 (15)0.0147 (13)0.0008 (12)0.0026 (12)
C410.0465 (19)0.0424 (19)0.051 (2)0.0103 (15)0.0080 (16)0.0030 (16)
O120.0570 (13)0.0267 (10)0.0292 (10)0.0159 (9)0.0012 (9)0.0099 (8)
O220.0430 (12)0.0385 (11)0.0309 (10)0.0088 (9)0.0049 (9)0.0142 (9)
C120.0366 (15)0.0376 (15)0.0281 (13)0.0212 (13)0.0022 (11)0.0113 (12)
C220.0499 (19)0.0495 (19)0.0295 (15)0.0196 (15)0.0002 (13)0.0165 (14)
C320.057 (2)0.0534 (19)0.0369 (16)0.0351 (17)0.0112 (14)0.0222 (14)
C420.071 (2)0.074 (3)0.050 (2)0.046 (2)0.0265 (18)0.0406 (19)
O130.0317 (10)0.0330 (10)0.0236 (9)0.0169 (8)0.0077 (7)0.0113 (8)
O230.0425 (11)0.0457 (12)0.0315 (10)0.0284 (10)0.0125 (8)0.0208 (9)
C130.0265 (12)0.0250 (12)0.0238 (12)0.0102 (10)0.0042 (10)0.0084 (10)
C230.0390 (15)0.0459 (17)0.0328 (14)0.0276 (14)0.0070 (12)0.0138 (13)
C330.0500 (19)0.061 (2)0.0360 (16)0.0377 (17)0.0120 (14)0.0178 (15)
C430.070 (3)0.088 (3)0.051 (2)0.060 (2)0.0189 (18)0.015 (2)
O1W0.0408 (11)0.0229 (9)0.0351 (11)0.0080 (8)0.0131 (9)0.0066 (8)
O2W0.0294 (10)0.0343 (11)0.0476 (12)0.0146 (9)0.0023 (9)0.0112 (10)
O3W0.0448 (14)0.087 (2)0.0557 (16)0.0329 (14)0.0057 (12)0.0179 (15)
O4W0.0462 (14)0.0402 (13)0.0647 (17)0.0110 (11)0.0043 (12)0.0126 (12)
O5W0.0364 (12)0.0411 (13)0.0701 (17)0.0155 (10)0.0061 (11)0.0056 (12)
Geometric parameters (Å, º) top
C1—N11.309 (11)C41—H41A0.9600
C1—N21.392 (11)C41—H41B0.9600
C1—H10.9300C41—H41C0.9600
C2—N31.332 (19)O12—C121.270 (3)
C2—N21.353 (9)O22—C121.262 (3)
C2—C51.372 (10)C12—C221.484 (4)
C3—N41.325 (8)C22—C321.303 (5)
C3—N31.346 (12)C22—H220.9300
C3—H30.9300C32—C421.493 (4)
C4—N51.317 (16)C32—H320.9300
C4—N41.356 (8)C42—H42A0.9600
C4—C51.414 (10)C42—H42B0.9600
C5—N11.42 (2)C42—H42C0.9600
N2—H20.85 (3)O13—C131.278 (3)
N5—H5A0.85 (3)O23—C131.254 (3)
N5—H5B0.85 (3)C13—C231.474 (4)
O6W—H6WA0.85 (3)C23—C331.304 (4)
O6W—H6WB0.85 (3)C23—H230.9300
Dy1—O1W2.3504 (19)C33—C431.496 (4)
Dy1—O13i2.3784 (18)C33—H330.9300
Dy1—O122.4142 (19)C43—H43A0.9600
Dy1—O2W2.428 (2)C43—H43B0.9600
Dy1—O222.429 (2)C43—H43C0.9600
Dy1—O212.4380 (19)O1W—H1WA0.85 (3)
Dy1—O112.4456 (19)O1W—H1WB0.85 (3)
Dy1—O232.4763 (19)O2W—H2WA0.85 (3)
Dy1—O132.5524 (19)O2W—H2WB0.85 (3)
O11—C111.285 (3)O3W—H3WA0.85 (3)
O21—C111.262 (3)O3W—H3WB0.85 (3)
C11—C211.472 (4)O4W—H4WA0.85 (3)
C21—C311.304 (4)O4W—H4WB0.85 (3)
C21—H210.9300O5W—H5WB0.85 (3)
C31—C411.490 (4)O5W—H5WA0.85 (3)
C31—H310.9300
N1—C1—N2115.9 (13)C12—Dy1—C1199.06 (8)
N1—C1—H1122.1O1W—Dy1—C1376.86 (7)
N2—C1—H1122.1O13i—Dy1—C1390.17 (6)
N3—C2—N2126.3 (8)O12—Dy1—C1397.81 (7)
N3—C2—C5126.7 (9)O2W—Dy1—C13150.45 (7)
N2—C2—C5107.0 (5)O22—Dy1—C1395.97 (7)
N4—C3—N3129.4 (9)O21—Dy1—C13134.50 (7)
N4—C3—H3115.3O11—Dy1—C1381.24 (7)
N3—C3—H3115.3O23—Dy1—C1325.28 (7)
N5—C4—N4119.6 (12)O13—Dy1—C1325.97 (6)
N5—C4—C5123.6 (12)C12—Dy1—C1396.60 (7)
N4—C4—C5116.7 (6)C11—Dy1—C13108.14 (7)
C2—C5—C4117.8 (7)C11—O11—Dy193.57 (15)
C2—C5—N1111.6 (9)C11—O21—Dy194.55 (15)
C4—C5—N1130.6 (7)O21—C11—O11118.5 (2)
C1—N1—C5100.9 (13)O21—C11—C21119.6 (2)
C2—N2—C1104.7 (6)O11—C11—C21121.9 (2)
C2—N2—H2125 (8)O21—C11—Dy159.08 (13)
C1—N2—H2130 (8)O11—C11—Dy159.50 (13)
C2—N3—C3110.6 (10)C21—C11—Dy1176.8 (2)
C3—N4—C4118.6 (5)C31—C21—C11124.2 (3)
C4—N5—H5A128 (5)C31—C21—H21117.9
C4—N5—H5B126 (5)C11—C21—H21117.9
H5A—N5—H5B105 (3)C21—C31—C41126.2 (3)
H6WA—O6W—H6WB105 (3)C21—C31—H31116.9
O1W—Dy1—O13i77.86 (7)C41—C31—H31116.9
O1W—Dy1—O12130.44 (7)C31—C41—H41A109.5
O13i—Dy1—O12151.64 (7)C31—C41—H41B109.5
O1W—Dy1—O2W73.62 (7)H41A—C41—H41B109.5
O13i—Dy1—O2W82.42 (7)C31—C41—H41C109.5
O12—Dy1—O2W102.24 (7)H41A—C41—H41C109.5
O1W—Dy1—O2277.62 (7)H41B—C41—H41C109.5
O13i—Dy1—O22152.62 (7)C12—O12—Dy193.62 (17)
O12—Dy1—O2253.65 (7)C12—O22—Dy193.15 (16)
O2W—Dy1—O2279.14 (7)O22—C12—O12119.4 (2)
O1W—Dy1—O21142.06 (7)O22—C12—C22119.4 (3)
O13i—Dy1—O2180.99 (7)O12—C12—C22121.2 (3)
O12—Dy1—O2174.00 (7)O22—C12—Dy160.09 (14)
O2W—Dy1—O2172.64 (7)O12—C12—Dy159.45 (14)
O22—Dy1—O21112.09 (7)C22—C12—Dy1174.9 (2)
O1W—Dy1—O11146.32 (6)C32—C22—C12124.8 (3)
O13i—Dy1—O1176.92 (6)C32—C22—H22117.6
O12—Dy1—O1177.48 (7)C12—C22—H22117.6
O2W—Dy1—O11124.12 (7)C22—C32—C42124.7 (3)
O22—Dy1—O11130.37 (6)C22—C32—H32117.6
O21—Dy1—O1153.26 (6)C42—C32—H32117.6
O1W—Dy1—O2384.06 (7)C32—C42—H42A109.5
O13i—Dy1—O23115.44 (6)C32—C42—H42B109.5
O12—Dy1—O2375.01 (7)H42A—C42—H42B109.5
O2W—Dy1—O23147.98 (7)C32—C42—H42C109.5
O22—Dy1—O2373.77 (7)H42A—C42—H42C109.5
O21—Dy1—O23133.71 (7)H42B—C42—H42C109.5
O11—Dy1—O2386.96 (7)C13—O13—Dy1i150.93 (17)
O1W—Dy1—O1374.47 (7)C13—O13—Dy193.02 (15)
O13i—Dy1—O1364.26 (7)Dy1i—O13—Dy1115.74 (7)
O12—Dy1—O13119.54 (7)C13—O23—Dy197.26 (15)
O2W—Dy1—O13137.72 (7)O23—C13—O13118.2 (2)
O22—Dy1—O13119.67 (7)O23—C13—C23122.9 (2)
O21—Dy1—O13122.79 (6)O13—C13—C23118.8 (2)
O11—Dy1—O1374.63 (6)O23—C13—Dy157.46 (13)
O23—Dy1—O1351.19 (6)O13—C13—Dy161.01 (13)
O1W—Dy1—C12103.80 (8)C23—C13—Dy1173.30 (19)
O13i—Dy1—C12173.22 (7)C33—C23—C13124.9 (3)
O12—Dy1—C1226.93 (8)C33—C23—H23117.5
O2W—Dy1—C1291.72 (8)C13—C23—H23117.5
O22—Dy1—C1226.76 (8)C23—C33—C43125.0 (3)
O21—Dy1—C1294.06 (8)C23—C33—H33117.5
O11—Dy1—C12103.87 (8)C43—C33—H33117.5
O23—Dy1—C1271.33 (7)C33—C43—H43A109.5
O13—Dy1—C12122.50 (7)C33—C43—H43B109.5
O1W—Dy1—C11155.90 (7)H43A—C43—H43B109.5
O13i—Dy1—C1178.55 (7)C33—C43—H43C109.5
O12—Dy1—C1173.09 (7)H43A—C43—H43C109.5
O2W—Dy1—C1198.39 (7)H43B—C43—H43C109.5
O22—Dy1—C11123.99 (7)H1WA—O1W—H1WB105 (3)
O21—Dy1—C1126.36 (7)H2WA—O2W—H2WB106 (3)
O11—Dy1—C1126.93 (7)H3WA—O3W—H3WB105 (3)
O23—Dy1—C11110.74 (7)H4WA—O4W—H4WB104 (3)
O13—Dy1—C1199.53 (7)H5WB—O5W—H5WA107 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O11i0.85 (3)1.99 (3)2.807 (3)162 (3)
N2—H2···N5ii0.85 (3)1.47 (3)2.278 (14)158 (11)
N2—H2···O6W0.85 (3)1.86 (3)2.663 (14)156 (10)
N5—H5A···O23iii0.85 (3)2.28 (3)2.99 (2)143 (8)
N5—H5B···O220.85 (3)2.13 (3)2.95 (2)161 (7)
O6W—H6WA···O22ii0.85 (3)1.96 (3)2.80 (2)172 (7)
O6W—H6WB···O23iv0.85 (3)1.98 (3)2.779 (19)156 (8)
O3W—H3WB···N4v0.85 (3)1.90 (3)2.749 (5)178 (4)
O1W—H1WA···N10.85 (3)1.89 (3)2.742 (19)176 (3)
O1W—H1WA···N3ii0.85 (3)2.03 (3)2.857 (16)165 (3)
O2W—H2WA···O4Wvi0.85 (3)2.18 (3)3.001 (3)163 (3)
O2W—H2WB···O4W0.85 (3)1.99 (3)2.814 (3)164 (3)
O3W—H3WA···O11i0.85 (3)1.96 (3)2.806 (3)173 (5)
O4W—H4WA···O5W0.85 (3)1.88 (3)2.724 (3)170 (4)
O4W—H4WB···O3W0.85 (3)2.05 (3)2.890 (4)168 (3)
O5W—H5WB···O12iv0.85 (3)2.06 (3)2.879 (3)164 (4)
O5W—H5WA···O21vi0.85 (3)1.98 (3)2.820 (3)176 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y, z1; (vi) x+2, y+1, z.
(II) di-µ-but-2-enoato-bis[diaquabis(but-2-enoato)samarium(III)] adenine monosolvate heptahydrate top
Crystal data top
[Sm(C4H5O2)6(H2O)4]·C5H5N5·7H2OZ = 1
Mr = 1144.50F(000) = 574
Triclinic, P1Dx = 1.716 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.633 (3) ÅCell parameters from 9182 reflections
b = 10.847 (3) Åθ = 1.9–27.9°
c = 11.397 (3) ŵ = 2.71 mm1
α = 73.126 (4)°T = 291 K
β = 83.926 (4)°Block, colourless
γ = 61.784 (5)°0.28 × 0.24 × 0.14 mm
V = 1107.7 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4295 independent reflections
Radiation source: fine-focus sealed tube4154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
CCD rotation images, thin slices scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1313
Tmin = 0.44, Tmax = 0.68k = 1313
8609 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.3677P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4295 reflectionsΔρmax = 0.53 e Å3
365 parametersΔρmin = 0.50 e Å3
22 restraintsExtinction correction: SHELXL97 Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0148 (5)
Crystal data top
[Sm(C4H5O2)6(H2O)4]·C5H5N5·7H2Oγ = 61.784 (5)°
Mr = 1144.50V = 1107.7 (5) Å3
Triclinic, P1Z = 1
a = 10.633 (3) ÅMo Kα radiation
b = 10.847 (3) ŵ = 2.71 mm1
c = 11.397 (3) ÅT = 291 K
α = 73.126 (4)°0.28 × 0.24 × 0.14 mm
β = 83.926 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4295 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
4154 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 0.68Rint = 0.016
8609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01722 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.53 e Å3
4295 reflectionsΔρmin = 0.50 e Å3
365 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9976 (7)0.0253 (8)0.3387 (6)0.0359 (12)0.50
H11.01010.01660.25890.043*0.50
C21.0248 (5)0.0369 (6)0.5371 (5)0.0292 (10)0.50
C31.0006 (5)0.0246 (5)0.7278 (6)0.0315 (10)0.50
H31.02300.06970.81110.038*0.50
C40.8680 (4)0.1890 (5)0.5787 (5)0.0250 (10)0.50
C50.9279 (6)0.1064 (7)0.4928 (6)0.0254 (10)0.50
N10.9088 (14)0.1490 (12)0.3640 (13)0.0318 (19)0.50
N21.0709 (5)0.0907 (5)0.4388 (6)0.0335 (10)0.50
H21.144 (5)0.169 (5)0.435 (8)0.040*0.50
N31.0674 (13)0.1108 (10)0.6531 (12)0.0281 (18)0.50
N40.9069 (4)0.1165 (4)0.6991 (3)0.0301 (8)0.50
N50.775 (3)0.334 (2)0.549 (2)0.038 (3)0.50
H5A0.754 (8)0.380 (8)0.603 (5)0.045*0.50
H5B0.746 (7)0.400 (6)0.481 (4)0.045*0.50
O6W1.226 (2)0.3692 (17)0.4500 (18)0.048 (3)0.50
H6WA1.281 (7)0.385 (9)0.507 (4)0.058*0.50
H6WB1.279 (7)0.387 (9)0.390 (5)0.058*0.50
Sm10.555267 (9)0.589467 (9)0.115954 (8)0.02219 (5)
O110.35694 (15)0.79566 (15)0.02599 (14)0.0298 (3)
O210.55475 (16)0.81166 (16)0.02557 (15)0.0341 (3)
C110.4270 (2)0.8674 (2)0.06356 (19)0.0268 (4)
C210.3624 (3)1.0138 (3)0.1506 (2)0.0380 (5)
H210.41951.05960.17690.046*
C310.2311 (3)1.0829 (3)0.1928 (2)0.0385 (5)
H310.17561.03540.16600.046*
C410.1607 (3)1.2310 (3)0.2801 (3)0.0541 (7)
H41A0.12611.22570.35200.081*
H41B0.22851.26800.30290.081*
H41C0.08211.29470.24150.081*
O120.45474 (19)0.77277 (16)0.23143 (14)0.0376 (4)
O220.61570 (18)0.55584 (18)0.33015 (14)0.0399 (4)
C120.5244 (2)0.6846 (3)0.3297 (2)0.0327 (5)
C220.5008 (3)0.7288 (3)0.4445 (2)0.0435 (6)
H220.54610.65680.51610.052*
C320.4214 (3)0.8610 (3)0.4528 (2)0.0444 (6)
H320.37710.93290.38090.053*
C420.3955 (3)0.9068 (4)0.5684 (3)0.0567 (8)
H42A0.45610.82670.63370.085*
H42B0.29740.93670.58910.085*
H42C0.41620.98650.55670.085*
O130.40052 (15)0.48138 (16)0.07408 (13)0.0282 (3)
O230.36698 (18)0.54108 (19)0.24571 (15)0.0360 (4)
C130.3409 (2)0.4831 (2)0.17792 (18)0.0258 (4)
C230.2478 (2)0.4128 (3)0.2140 (2)0.0361 (5)
H230.23700.36830.16000.043*
C330.1795 (3)0.4085 (3)0.3161 (2)0.0433 (6)
H330.19040.45300.37010.052*
C430.0850 (4)0.3372 (4)0.3529 (3)0.0629 (8)
H43A0.09240.28470.29550.094*
H43B0.01220.41010.35340.094*
H43C0.11410.27100.43350.094*
O1W0.69952 (18)0.32990 (16)0.18569 (15)0.0367 (4)
H1WA0.763 (2)0.274 (2)0.2418 (17)0.044*
H1WB0.694 (3)0.278 (2)0.146 (2)0.044*
O2W0.80789 (16)0.54076 (18)0.09538 (16)0.0376 (4)
H2WA0.847 (2)0.594 (2)0.072 (2)0.045*
H2WB0.866 (2)0.4587 (14)0.085 (3)0.045*
O3W0.9125 (2)0.1513 (3)0.0702 (2)0.0648 (6)
H3WA0.833 (2)0.161 (4)0.040 (3)0.078*
H3WB0.913 (3)0.133 (4)0.1372 (19)0.078*
O4W1.0245 (2)0.3047 (2)0.0189 (2)0.0515 (5)
H4WA1.087 (3)0.229 (2)0.067 (2)0.062*
H4WB0.985 (3)0.274 (3)0.019 (2)0.062*
O5W1.26049 (19)0.0783 (2)0.1491 (2)0.0534 (5)
H5WB1.298 (3)0.0123 (11)0.173 (3)0.064*
H5WA1.324 (2)0.102 (3)0.117 (3)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (3)0.050 (4)0.022 (3)0.023 (3)0.002 (3)0.014 (3)
C20.029 (3)0.033 (3)0.028 (3)0.014 (2)0.000 (2)0.011 (2)
C30.033 (2)0.030 (2)0.027 (3)0.0134 (19)0.003 (2)0.003 (2)
C40.025 (2)0.028 (2)0.026 (2)0.0155 (19)0.0017 (16)0.0058 (18)
C50.029 (3)0.036 (3)0.015 (3)0.016 (2)0.001 (2)0.008 (3)
N10.034 (5)0.026 (5)0.035 (4)0.011 (4)0.001 (3)0.012 (3)
N20.033 (2)0.029 (3)0.036 (3)0.0066 (19)0.001 (2)0.018 (2)
N30.027 (4)0.013 (5)0.033 (5)0.000 (4)0.006 (3)0.004 (3)
N40.0347 (19)0.0304 (18)0.0247 (18)0.0147 (16)0.0006 (15)0.0077 (15)
N50.041 (4)0.049 (7)0.022 (3)0.018 (6)0.001 (3)0.012 (5)
O6W0.051 (4)0.055 (7)0.035 (4)0.014 (5)0.003 (3)0.026 (5)
Sm10.02521 (7)0.02167 (7)0.01990 (7)0.01037 (5)0.00044 (4)0.00677 (4)
O110.0298 (7)0.0267 (7)0.0329 (8)0.0137 (6)0.0004 (6)0.0066 (6)
O210.0306 (8)0.0307 (8)0.0386 (9)0.0156 (7)0.0030 (7)0.0022 (7)
C110.0310 (10)0.0258 (10)0.0246 (10)0.0129 (8)0.0022 (8)0.0092 (8)
C210.0366 (12)0.0321 (11)0.0423 (13)0.0181 (10)0.0033 (10)0.0006 (10)
C310.0362 (12)0.0362 (12)0.0370 (13)0.0148 (10)0.0018 (10)0.0041 (10)
C410.0499 (15)0.0410 (14)0.0501 (16)0.0105 (12)0.0072 (13)0.0015 (12)
O120.0560 (10)0.0282 (8)0.0272 (8)0.0164 (7)0.0015 (7)0.0101 (6)
O220.0445 (9)0.0378 (9)0.0296 (8)0.0092 (7)0.0057 (7)0.0137 (7)
C120.0397 (12)0.0383 (12)0.0275 (11)0.0230 (10)0.0022 (9)0.0112 (10)
C220.0521 (15)0.0508 (15)0.0301 (12)0.0220 (12)0.0000 (11)0.0174 (11)
C320.0589 (15)0.0552 (15)0.0371 (13)0.0373 (13)0.0122 (12)0.0224 (12)
C420.0750 (19)0.077 (2)0.0489 (16)0.0506 (17)0.0263 (14)0.0423 (15)
O130.0327 (7)0.0337 (8)0.0221 (7)0.0178 (6)0.0066 (6)0.0111 (6)
O230.0455 (9)0.0489 (9)0.0317 (8)0.0319 (8)0.0148 (7)0.0233 (7)
C130.0268 (9)0.0253 (9)0.0229 (10)0.0105 (8)0.0037 (8)0.0074 (8)
C230.0418 (12)0.0478 (13)0.0314 (12)0.0295 (11)0.0078 (10)0.0155 (10)
C330.0508 (14)0.0604 (16)0.0359 (13)0.0383 (13)0.0116 (11)0.0187 (12)
C430.0704 (19)0.089 (2)0.0521 (17)0.0609 (19)0.0171 (15)0.0143 (16)
O1W0.0442 (9)0.0238 (7)0.0361 (9)0.0089 (7)0.0151 (7)0.0064 (6)
O2W0.0295 (8)0.0367 (9)0.0472 (10)0.0159 (7)0.0023 (7)0.0116 (8)
O3W0.0491 (11)0.0968 (17)0.0560 (13)0.0395 (12)0.0094 (10)0.0243 (12)
O4W0.0452 (10)0.0408 (10)0.0628 (13)0.0145 (8)0.0030 (9)0.0139 (9)
O5W0.0382 (9)0.0394 (10)0.0699 (14)0.0157 (8)0.0043 (9)0.0021 (9)
Geometric parameters (Å, º) top
C1—N11.321 (8)C41—H41A0.9600
C1—N21.385 (8)C41—H41B0.9600
C1—H10.9300C41—H41C0.9600
C2—N31.328 (14)O12—C121.266 (3)
C2—N21.353 (7)O22—C121.268 (3)
C2—C51.368 (8)C12—C221.478 (3)
C3—N41.334 (6)C22—C321.303 (4)
C3—N31.345 (9)C22—H220.9300
C3—H30.9300C32—C421.494 (3)
C4—N41.364 (7)C32—H320.9300
C4—N51.36 (2)C42—H42A0.9600
C4—C51.415 (8)C42—H42B0.9600
C5—N11.411 (16)C42—H42C0.9600
N2—H20.85 (3)O13—C131.283 (2)
N5—H5A0.85 (3)O23—C131.250 (3)
N5—H5B0.85 (3)C13—C231.475 (3)
O6W—H6WA0.85 (3)C23—C331.307 (3)
O6W—H6WB0.85 (3)C23—H230.9300
Sm1—O1W2.4057 (16)C33—C431.498 (3)
Sm1—O13i2.4314 (15)C33—H330.9300
Sm1—O122.4576 (16)C43—H43A0.9600
Sm1—O222.4695 (17)C43—H43B0.9600
Sm1—O212.4785 (16)C43—H43C0.9600
Sm1—O2W2.4792 (17)O1W—H1WA0.85 (3)
Sm1—O112.4956 (15)O1W—H1WB0.85 (3)
Sm1—O232.5273 (16)O2W—H2WA0.85 (3)
Sm1—O132.5739 (15)O2W—H2WB0.85 (3)
O11—C111.277 (3)O3W—H3WA0.85 (3)
O21—C111.263 (3)O3W—H3WB0.85 (3)
C11—C211.474 (3)O4W—H4WA0.85 (3)
C21—C311.299 (3)O4W—H4WB0.85 (3)
C21—H210.9300O5W—H5WB0.85 (3)
C31—C411.491 (3)O5W—H5WA0.85 (3)
C31—H310.9300
N1—C1—N2115.6 (10)C12—Sm1—C1199.31 (7)
N1—C1—H1122.2O1W—Sm1—C1377.05 (6)
N2—C1—H1122.2O13i—Sm1—C1390.14 (5)
N3—C2—N2125.8 (6)O12—Sm1—C1397.28 (6)
N3—C2—C5127.7 (8)O22—Sm1—C1395.60 (6)
N2—C2—C5106.5 (4)O21—Sm1—C13134.01 (5)
N4—C3—N3129.0 (7)O2W—Sm1—C13150.24 (6)
N4—C3—H3115.5O11—Sm1—C1381.74 (5)
N3—C3—H3115.5O23—Sm1—C1324.88 (5)
N4—C4—N5118.7 (10)O13—Sm1—C1325.72 (5)
N4—C4—C5116.8 (4)C12—Sm1—C1395.96 (6)
N5—C4—C5124.5 (10)C11—Sm1—C13108.04 (6)
C2—C5—C4117.3 (6)C11—O11—Sm193.58 (12)
C2—C5—N1112.4 (8)C11—O21—Sm194.76 (12)
C4—C5—N1130.3 (6)O21—C11—O11119.25 (18)
C1—N1—C5100.5 (10)O21—C11—C21119.14 (19)
C2—N2—C1105.0 (5)O11—C11—C21121.60 (19)
C2—N2—H2128 (6)O21—C11—Sm159.26 (10)
C1—N2—H2125 (6)O11—C11—Sm160.08 (10)
C2—N3—C3110.5 (7)C21—C11—Sm1176.69 (16)
C3—N4—C4118.5 (4)C31—C21—C11124.3 (2)
C4—N5—H5A119 (5)C31—C21—H21117.9
C4—N5—H5B133 (5)C11—C21—H21117.9
H5A—N5—H5B105 (3)C21—C31—C41126.3 (2)
H6WA—O6W—H6WB106 (3)C21—C31—H31116.8
O1W—Sm1—O13i77.55 (5)C41—C31—H31116.8
O1W—Sm1—O12130.25 (6)C31—C41—H41A109.5
O13i—Sm1—O12152.16 (5)C31—C41—H41B109.5
O1W—Sm1—O2278.31 (5)H41A—C41—H41B109.5
O13i—Sm1—O22153.22 (5)C31—C41—H41C109.5
O12—Sm1—O2252.77 (5)H41A—C41—H41C109.5
O1W—Sm1—O21142.17 (6)H41B—C41—H41C109.5
O13i—Sm1—O2181.01 (5)C12—O12—Sm194.01 (13)
O12—Sm1—O2174.54 (6)C12—O22—Sm193.40 (13)
O22—Sm1—O21112.27 (6)O12—C12—O22119.6 (2)
O1W—Sm1—O2W73.24 (6)O12—C12—C22121.1 (2)
O13i—Sm1—O2W81.98 (5)O22—C12—C22119.3 (2)
O12—Sm1—O2W103.04 (6)O12—C12—Sm159.61 (11)
O22—Sm1—O2W80.11 (6)O22—C12—Sm160.16 (11)
O21—Sm1—O2W73.19 (5)C22—C12—Sm1175.49 (17)
O1W—Sm1—O11146.23 (5)C32—C22—C12124.9 (2)
O13i—Sm1—O1176.52 (5)C32—C22—H22117.6
O12—Sm1—O1178.05 (5)C12—C22—H22117.6
O22—Sm1—O11130.17 (5)C22—C32—C42125.4 (3)
O21—Sm1—O1152.28 (5)C22—C32—H32117.3
O2W—Sm1—O11123.46 (5)C42—C32—H32117.3
O1W—Sm1—O2384.26 (6)C32—C42—H42A109.5
O13i—Sm1—O23115.01 (5)C32—C42—H42B109.5
O12—Sm1—O2374.76 (6)H42A—C42—H42B109.5
O22—Sm1—O2373.66 (6)C32—C42—H42C109.5
O21—Sm1—O23133.33 (5)H42A—C42—H42C109.5
O2W—Sm1—O23148.37 (6)H42B—C42—H42C109.5
O11—Sm1—O2387.44 (6)C13—O13—Sm1i150.42 (13)
O1W—Sm1—O1374.62 (6)C13—O13—Sm193.72 (12)
O13i—Sm1—O1364.49 (5)Sm1i—O13—Sm1115.51 (5)
O12—Sm1—O13118.86 (5)C13—O23—Sm196.82 (12)
O22—Sm1—O13119.24 (5)O23—C13—O13118.59 (19)
O21—Sm1—O13122.45 (5)O23—C13—C23122.71 (19)
O2W—Sm1—O13137.55 (5)O13—C13—C23118.67 (19)
O11—Sm1—O1374.86 (5)O23—C13—Sm158.30 (11)
O23—Sm1—O1350.53 (5)O13—C13—Sm160.56 (10)
O1W—Sm1—C12104.15 (6)C23—C13—Sm1173.30 (15)
O13i—Sm1—C12173.89 (5)C33—C23—C13124.8 (2)
O12—Sm1—C1226.38 (6)C33—C23—H23117.6
O22—Sm1—C1226.44 (6)C13—C23—H23117.6
O21—Sm1—C1294.42 (6)C23—C33—C43124.9 (3)
O2W—Sm1—C1292.84 (6)C23—C33—H33117.6
O11—Sm1—C12103.93 (6)C43—C33—H33117.6
O23—Sm1—C1271.09 (6)C33—C43—H43A109.5
O13—Sm1—C12121.59 (6)C33—C43—H43B109.5
O1W—Sm1—C11155.38 (6)H43A—C43—H43B109.5
O13i—Sm1—C1178.36 (6)C33—C43—H43C109.5
O12—Sm1—C1173.83 (6)H43A—C43—H43C109.5
O22—Sm1—C11123.90 (6)H43B—C43—H43C109.5
O21—Sm1—C1125.97 (5)H1WA—O1W—H1WB107 (3)
O2W—Sm1—C1198.45 (6)H2WA—O2W—H2WB107 (3)
O11—Sm1—C1126.33 (5)H3WA—O3W—H3WB105 (3)
O23—Sm1—C11110.69 (6)H4WA—O4W—H4WB105 (3)
O13—Sm1—C1199.34 (6)H5WB—O5W—H5WA108 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O11i0.85 (3)2.00 (3)2.823 (2)165 (2)
N2—H2···N5ii0.85 (3)1.54 (3)2.325 (19)154 (8)
N2—H2···O6W0.85 (3)1.88 (3)2.640 (17)149 (7)
N5—H5A···O23iii0.85 (3)2.17 (3)2.96 (2)154 (6)
N5—H5B···O220.85 (3)2.08 (3)2.90 (2)162 (6)
O6W—H6WA···O22ii0.85 (3)2.14 (3)2.82 (2)137 (7)
O6W—H6WB···O23iv0.85 (3)1.97 (3)2.79 (2)163 (6)
O1W—H1WA···N10.85 (3)1.88 (3)2.729 (15)178 (3)
O1W—H1WA···N3ii0.85 (3)2.00 (3)2.833 (12)166 (2)
O3W—H3WB···N4v0.85 (3)1.93 (3)2.772 (4)172 (4)
O2W—H2WA···O4Wvi0.85 (3)2.14 (3)2.958 (3)165 (2)
O2W—H2WB···O4W0.85 (3)2.00 (3)2.814 (3)161 (2)
O3W—H3WA···O11i0.85 (3)1.96 (3)2.808 (3)174 (4)
O4W—H4WA···O5W0.85 (3)1.89 (3)2.715 (3)164 (3)
O4W—H4WB···O3W0.85 (3)2.06 (3)2.886 (3)164 (3)
O5W—H5WB···O12iv0.85 (3)2.07 (3)2.875 (2)160 (3)
O5W—H5WA···O21vi0.85 (3)1.98 (3)2.815 (2)170 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y, z1; (vi) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Dy(C4H5O2)6(H2O)4]·C5H5N5·7H2O[Sm(C4H5O2)6(H2O)4]·C5H5N5·7H2O
Mr1168.801144.50
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)291291
a, b, c (Å)10.614 (3), 10.808 (3), 11.338 (3)10.633 (3), 10.847 (3), 11.397 (3)
α, β, γ (°)73.075 (4), 83.958 (5), 61.833 (5)73.126 (4), 83.926 (4), 61.784 (5)
V3)1096.1 (5)1107.7 (5)
Z11
Radiation typeMo KαMo Kα
µ (mm1)3.472.71
Crystal size (mm)0.22 × 0.20 × 0.120.28 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Tmin, Tmax0.42, 0.660.44, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
8551, 4253, 4178 8609, 4295, 4154
Rint0.0160.016
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.09 0.017, 0.043, 1.07
No. of reflections42534295
No. of parameters365365
No. of restraints2222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.600.53, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
Dy1—O1W2.3504 (19)Dy1—O212.4380 (19)
Dy1—O13i2.3784 (18)Dy1—O112.4456 (19)
Dy1—O122.4142 (19)Dy1—O232.4763 (19)
Dy1—O2W2.428 (2)Dy1—O132.5524 (19)
Dy1—O222.429 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O11i0.85 (3)1.99 (3)2.807 (3)162 (3)
N2—H2···N5ii0.85 (3)1.47 (3)2.278 (14)158 (11)
N2—H2···O6W0.85 (3)1.86 (3)2.663 (14)156 (10)
N5—H5A···O23iii0.85 (3)2.28 (3)2.99 (2)143 (8)
N5—H5B···O220.85 (3)2.13 (3)2.95 (2)161 (7)
O6W—H6WA···O22ii0.85 (3)1.96 (3)2.80 (2)172 (7)
O6W—H6WB···O23iv0.85 (3)1.98 (3)2.779 (19)156 (8)
O3W—H3WB···N4v0.85 (3)1.90 (3)2.749 (5)178 (4)
O1W—H1WA···N10.85 (3)1.89 (3)2.742 (19)176 (3)
O1W—H1WA···N3ii0.85 (3)2.03 (3)2.857 (16)165 (3)
O2W—H2WA···O4Wvi0.85 (3)2.18 (3)3.001 (3)163 (3)
O2W—H2WB···O4W0.85 (3)1.99 (3)2.814 (3)164 (3)
O3W—H3WA···O11i0.85 (3)1.96 (3)2.806 (3)173 (5)
O4W—H4WA···O5W0.85 (3)1.88 (3)2.724 (3)170 (4)
O4W—H4WB···O3W0.85 (3)2.05 (3)2.890 (4)168 (3)
O5W—H5WB···O12iv0.85 (3)2.06 (3)2.879 (3)164 (4)
O5W—H5WA···O21vi0.85 (3)1.98 (3)2.820 (3)176 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y, z1; (vi) x+2, y+1, z.
Selected bond lengths (Å) for (II) top
Sm1—O1W2.4057 (16)Sm1—O2W2.4792 (17)
Sm1—O13i2.4314 (15)Sm1—O112.4956 (15)
Sm1—O122.4576 (16)Sm1—O232.5273 (16)
Sm1—O222.4695 (17)Sm1—O132.5739 (15)
Sm1—O212.4785 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O11i0.85 (3)2.00 (3)2.823 (2)165 (2)
N2—H2···N5ii0.85 (3)1.54 (3)2.325 (19)154 (8)
N2—H2···O6W0.85 (3)1.88 (3)2.640 (17)149 (7)
N5—H5A···O23iii0.85 (3)2.17 (3)2.96 (2)154 (6)
N5—H5B···O220.85 (3)2.08 (3)2.90 (2)162 (6)
O6W—H6WA···O22ii0.85 (3)2.14 (3)2.82 (2)137 (7)
O6W—H6WB···O23iv0.85 (3)1.97 (3)2.79 (2)163 (6)
O1W—H1WA···N10.85 (3)1.88 (3)2.729 (15)178 (3)
O1W—H1WA···N3ii0.85 (3)2.00 (3)2.833 (12)166 (2)
O3W—H3WB···N4v0.85 (3)1.93 (3)2.772 (4)172 (4)
O2W—H2WA···O4Wvi0.85 (3)2.14 (3)2.958 (3)165 (2)
O2W—H2WB···O4W0.85 (3)2.00 (3)2.814 (3)161 (2)
O3W—H3WA···O11i0.85 (3)1.96 (3)2.808 (3)174 (4)
O4W—H4WA···O5W0.85 (3)1.89 (3)2.715 (3)164 (3)
O4W—H4WB···O3W0.85 (3)2.06 (3)2.886 (3)164 (3)
O5W—H5WB···O12iv0.85 (3)2.07 (3)2.875 (2)160 (3)
O5W—H5WA···O21vi0.85 (3)1.98 (3)2.815 (2)170 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y, z1; (vi) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds