Download citation
Download citation
link to html
Recrystallization of [MoO2Cl{HC(3,5-Me2pz)3}]Cl [where HC(3,5-Me2pz)3 is tris­(3,5-dimethyl-1H-pyrazol-1-yl)methane] led to the isolation of large quanti­ties of the dinuclear complex dichlorido-2[kappa]2Cl-[mu]-oxido-[kappa]2O:O-tetra­ox­ido-1[kappa]2O,2[kappa]2O-[tris(3,5-dimethyl-1H-pyrazol-1-yl-1[kappa]N2)methane]­dimolybdenum(IV) acetonitrile monosolvate, [Mo2Cl2O4(C16H22N6)]·CH3CN or [{MoO2Cl2}([mu]2-O){MoO2[HC(3,5-Me2pz)3]}]·CH3CN. At 150 K, this complex cocrystallizes in the ortho­rhom­bic space group Pbcm with an acetonitrile mol­ecule. The complex has mirror symmetry: only half of the complex constitutes the asymmetric unit and all the heavy elements (namely Mo and Cl) are located on the mirror plane. The acetonitrile molecule also lies on a mirror plane. The two crystallographically independent Mo6+ centres have drastically different coordination environments: while one Mo atom is hexa­coordinated and chelated to HC(3,5-Me2pz)3 (which occupies one face of the octa­hedron), the other Mo atom is instead penta­coordinated, having two chloride anions in the apical positions of the distorted trigonal bipyramid. This latter coordination mode of MoVI was found to be unprecedented. Individual complexes and solvent mol­ecules are close-packed in the solid state, mediated by various supra­molecular contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112004507/sk3427sup1.cif
Contains datablocks global, I

cdx

Chemdraw file https://doi.org/10.1107/S0108270112004507/sk3427Isup2.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112004507/sk3427Isup3.hkl
Contains datablock I

CCDC reference: 873880

Comment top

It is just over 40 years since the first detailed report of the coordination chemistry of tris(pyrazolyl)methane (Tpm) ligands (Trofimenko, 1970). These tridentate ligands are members of the family of `scorpionate' molecules and their complexes have found wide application in coordination, organometallic and bioinorganic chemistry (Bigmore et al., 2005; Garcia et al., 2009; Pettinari & Pettinari, 2005). Several 1:1 Tpm–Mo6+ complexes and related derivatives have been prepared as catalysts for the epoxidation of olefins (Gago et al., 2010; Neves et al., 2011; Santos et al., 2001). The reaction of [MoO2X2(THF)2] (X = Cl, Br; THF is tetrahydrofuran) with tris(pyrazol-1-yl)methane {HC(pz)3} or tris(3,5-dimethyl-pyrazol-1-yl)methane {HC(3,5-Me2pz)3} under dry conditions yields mononuclear complexes of the type [MoO2X(L)]X (Santos et al., 2001). In the presence of residual amounts of water, these complexes have a tendency to form dinuclear derivatives via hydrolysis of the Mo—X bonds. Thus, starting from [MoO2Cl{HC(3,5-Me2pz)3}]BF4, the symmetrical [{MoO2(HC(3,5-Me2pz)3)}22-O)](BF4)2 and unsymmetrical [{MoO(O2)2(H2O)}(µ2-O){MoO2(HC(3,5-Me2pz)3)}] oxido-bridged species were isolated and their crystal structures established (Neves et al., 2011). Pombeiro and coworkers described the crystal structures of three related symmetrical dimers containing the ligand tris(pyrazol-1-yl)methanesulfonate (Tpms), namely the Mo5+ complexes [{MoO(µ2-O)(Tpms)}2] and [{MoOCl(Tpms)}22-O)], and the Mo6+ complex [{MoO2(Tpms)}22-O)] (Dinoi et al., 2010). In the present communication, we describe the molecular and crystal structure of the unsymmetrical dinuclear complex [{MoO2Cl2}(µ2-O){MoO2{HC(3,5-Me2pz)3)}].CH3CN, (I), crystals of which were obtained during attempts to recrystallize the mononuclear complex [MoO2Cl{HC(3,5-Me2pz)3}]Cl.

The crystal structure of (I) is based on the novel unsymmetrical dinuclear complex [{MoO2Cl2}(µ2-O){MoO2(HC(3,5-Me2pz)3)}], which is formed by two crystallographically independent Mo6+ metallic centres bridged by an O atom (µ2-bridging oxide group) which imposes an Mo1···Mo2 distance of 3.7808 (5) Å and an Mo1—O1—Mo2 kink angle of 164.98 (16)° (Fig. 1). A search of the literature and the Cambridge Structural Database (CSD; Version 5.32; Allen, 2002) reveals only a handful of crystallographic reports of dinuclear Mon+ complexes with HC(3,5-Me2pz)3 as ligand: two unsymmetrical complexes, [{MoOCl2}(µ2-O)2{MoO(HC(3,5-Me2pz)3)}] and [{MoO(OC6H4O)}(µ2-O)2{MoO(HC(3,5-Me2pz)3)}], reported by Enemark and collaborators (Dhawan et al., 1995), and more recently our research group published the symmetrical [{MoO2(HC(3,5-Me2pz)3)}22-O)]2+ and unsymmetrical [{MoO(O2)2(H2O)}(µ2-O){MoO2(HC(3,5-Me2pz)3)}] related complexes (Neves et al., 2011).

As shown in Fig. 1, the two independent Mo6+ centres of (I) have very different coordination environments, hence the highly unsymmetrical nature of the complex. Atom Mo1 is six-coordinated, {MoN3O3}, by a whole HC(3,5-Me2pz)3 organic chelating linker, by two symmetry-related terminal oxide groups and by the aforementioned µ2-bridging oxide group, exhibiting a highly distorted octahedral coordination environment, as reflected by the dispersion in the values of the Mo1—(N,O) bond distances and the internal (N,O)—Mo1—(N,O) octahedral angles (see Table 1). As expected, the Mo1 O2 bond of the crystallographically independent terminal oxide group is shorter than the Mo1—O1 bond of the µ2-bridging oxide moiety. In addition, the well known trans effect of the MoO bonds is clearly present in (I), with the Mo1—N3 connection being significantly longer than those trans (i.e. Mo1—N1) to the oxide bridge (see Fig. 1 and Table 1 for details). We note that the main structural features of the Mo1 coordination environment are very much comparable with those found in the octahedral centres of the related symmetrical and unsymmetrical complexes mentioned in the previous paragraph (Neves et al., 2011; Dhawan et al., 1995).

In a similar fashion to that described for Mo1, the Mo2 centre is also coordinated by the O1 µ2-bridging oxide group and two terminal oxide groups. The coordination is completed by two chloride anions, leading to a five-coordinated environment, {MoCl2O3}, the geometry of which strongly resembles a distorted trigonal bipyramid. Interestingly, as depicted in Fig. 1, the equatorial plane is composed solely of O atoms, while the axial positions are instead occupied by the two chloride anions (Fig. 1 and Table 1). To the best of our knowledge, this five-coordination mode observed for the Mo2 centre with trigonal–bipyramidal geometry is unprecedented. In fact, a cautious search of the literature and the CSD reveals only three other complexes with related {MoCl2O3} environments, [Mo2O4Cl4]2- (Mattes et al., 1976), [{MoOCl2}(µ2-O)2{MoO(HC(3,5-Me2pz)3)}] (Dhawan et al., 1995) and [MoO(2,6-Me2C6H3O)2Cl2] (Hanna et al., 2004). However, in all these structures the coordination polyhedron resembles a square pyramid, which is very different from that observed for Mo2.

Also worthy of note is the presence of intramolecular Mo2—Cl1···Cg1 interactions (Cg1 is the centroid of the N3/N4/C8–C10 ring), with the Mo2···Cg1 distance being 3.6140 (15) Å. This supramolecular interaction occurs between the Cl1 anion bound to Mo2 and the two adjacent pyrazole rings of the HC(3,5-Me2pz)3 ligand chelated to Mo1. This supramolecular interaction strengthens (along with the µ2-oxide bridge) the connection between the two crystallographically independent Mo6+ centres.

In the crystal structure of (I), each dinuclear [{MoO2Cl2}(µ2-O){MoO2(HC(3,5-Me2pz)3)}] complex cocrystallizes with an acetonitrile solvent molecule which plays a decisive role in the stabilization of the compound, acting simultaneously as a space-filling entity and as a donor–acceptor in several possible weak supramolecular interactions (Fig. 2). Table 2 lists the geometric details of all possible supramolecular contacts present in the crystal structure; contacts not shown in Fig. 2. [Please check added text - original not clear]

Related literature top

For related literature, see: Allen (2002); Bigmore et al. (2005); Dhawan et al. (1995); Dinoi et al. (2010); Gago et al. (2010); Garcia et al. (2009); Hanna et al. (2004); Julia et al. (1984); Mattes et al. (1976); Neves et al. (2011); Pettinari & Pettinari (2005); Santos et al. (2001); Trofimenko (1970).

Experimental top

Tris(3,5-dimethyl-1H-pyrazol-1-yl)methane {HC(3,5-Me2pz)3} (Julia et al., 1984; Neves et al., 2011) and [MoO2Cl{HC(3,5-Me2pz)3}]Cl (Santos et al., 2001) were prepared according to the published procedures. Single crystals of (I) were obtained from the recrystallization of the mononuclear complex by slow diffusion of diethyl ether into a concentrated acetonitrile solution. Spectroscopic analysis: FT–IR (KBr, ν, cm-1): 956 [s, νsym(MoO)], 939 [s, νsym(MoO)], 916 [vs, νasym(MoO)], 904 [vs, νasym(MoO)], 778 [vs, br, ν(Mo—O—Mo)]; 1H NMR (500 MHz, 298 K, CDCl3, δ, p.p.m.): 8.13 (s, 1H, CH), 6.31 (s, 1H, H4), 6.25 (s, 2H, H4), 2.86 (s, 3H, methyl group in position 3), 2.83 (s, 6H, methyl groups in position 3), 2.75 (s, 9H, methyl groups in position 5).

Refinement top

H atoms bound to C atoms were placed at their idealized positions and included in the final structural model in riding-motion approximation, with C—H = 1.00 (tertiary C—H), 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C) (for tertiary and aromatic C—H) or 1.5Ueq(C) (for methyl H).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the unsymmetrical dinuclear title complex, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, y, -z + 1/2.]
[Figure 2] Fig. 2. A perspective view, along the [100] direction of the unit cell, of the crystal packing of (I). CH3CN solvent molecules are represented in a mixed ball-and-stick and space-filling model.
dichlorido-2κ2Cl-µ-oxido-κ2O:O-tetraoxido- 1κ2O,2κ2O-[tris(3,5-dimethyl-1H-pyrazol-1-yl- 1κN2)methane]dimolybdenum(IV) acetonitrile monosolvate top
Crystal data top
[Mo2Cl2O4(C16H22N6)]·C2H3NF(000) = 1360
Mr = 682.23Dx = 1.785 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 9084 reflections
a = 8.6346 (5) Åθ = 2.5–30.2°
b = 21.6152 (12) ŵ = 1.24 mm1
c = 13.6021 (8) ÅT = 150 K
V = 2538.7 (3) Å3Block, red
Z = 40.11 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII X8 KappaCCD area-detector
diffractometer
3526 independent reflections
Radiation source: fine-focus sealed tube3061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and ϕ scansθmax = 29.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.876, Tmax = 0.929k = 2629
59602 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0721P)2 + 2.6754P]
where P = (Fo2 + 2Fc2)/3
3526 reflections(Δ/σ)max = 0.003
176 parametersΔρmax = 1.89 e Å3
0 restraintsΔρmin = 1.53 e Å3
Crystal data top
[Mo2Cl2O4(C16H22N6)]·C2H3NV = 2538.7 (3) Å3
Mr = 682.23Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 8.6346 (5) ŵ = 1.24 mm1
b = 21.6152 (12) ÅT = 150 K
c = 13.6021 (8) Å0.11 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII X8 KappaCCD area-detector
diffractometer
3526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3061 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.929Rint = 0.062
59602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 1.89 e Å3
3526 reflectionsΔρmin = 1.53 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo20.40467 (4)1.028524 (16)0.25000.01793 (12)
Mo10.31860 (3)0.857025 (15)0.25000.01551 (12)
Cl10.12758 (12)1.02546 (5)0.25000.0266 (2)
Cl20.67791 (11)1.00826 (5)0.25000.0255 (2)
O10.3887 (3)0.93808 (13)0.25000.0204 (6)
O20.4078 (2)0.82384 (10)0.34872 (18)0.0240 (5)
O30.4144 (3)1.07398 (12)0.14884 (18)0.0320 (5)
N10.1515 (4)0.77668 (16)0.25000.0172 (7)
N20.0060 (4)0.78256 (15)0.25000.0162 (6)
N30.1244 (3)0.88742 (11)0.35504 (17)0.0161 (5)
N40.0297 (2)0.87704 (11)0.33741 (17)0.0147 (4)
C10.0736 (4)0.84396 (18)0.25000.0147 (7)
H10.18890.83940.25000.018*
C20.3397 (6)0.6902 (2)0.25000.0368 (12)
H2A0.41440.72430.25000.055*
H2B0.35510.66470.19120.055*0.50
H2C0.35510.66470.30880.055*0.50
C30.1797 (5)0.7156 (2)0.25000.0244 (9)
C40.0387 (5)0.6834 (2)0.25000.0287 (10)
H40.02600.63970.25000.034*
C50.0775 (5)0.7267 (2)0.25000.0210 (8)
C60.2486 (5)0.7200 (2)0.25000.0321 (11)
H6A0.29670.76110.25000.048*
H6B0.28110.69730.30880.048*0.50
H6C0.28110.69730.19120.048*0.50
C70.2787 (4)0.93335 (16)0.4906 (2)0.0286 (7)
H7A0.35960.90310.47530.043*
H7B0.26550.93600.56210.043*
H7C0.30870.97390.46480.043*
C80.1304 (3)0.91364 (13)0.4447 (2)0.0186 (5)
C90.0189 (3)0.91846 (14)0.4835 (2)0.0218 (6)
H90.04610.93560.54540.026*
C100.1189 (3)0.89393 (13)0.4159 (2)0.0189 (5)
C110.2893 (3)0.88362 (15)0.4194 (2)0.0233 (6)
H11A0.33840.90480.36390.035*
H11B0.33070.90010.48120.035*
H11C0.31090.83920.41550.035*
N1000.1257 (8)0.75000.50000.0594 (15)
C1000.0031 (10)0.75000.50000.0509 (16)
C1010.1712 (9)0.75000.50000.068 (2)
H10A0.20900.71260.46720.102*0.50
H10B0.20900.75090.56790.102*0.50
H10C0.20900.78660.46480.102*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo20.02245 (19)0.01250 (19)0.0188 (2)0.00196 (12)0.0000.000
Mo10.01049 (17)0.01188 (18)0.0242 (2)0.00093 (11)0.0000.000
Cl10.0221 (5)0.0209 (5)0.0368 (6)0.0061 (4)0.0000.000
Cl20.0213 (5)0.0236 (5)0.0317 (6)0.0053 (4)0.0000.000
O10.0159 (12)0.0143 (14)0.0312 (17)0.0004 (11)0.0000.000
O20.0169 (9)0.0192 (10)0.0358 (13)0.0032 (8)0.0064 (8)0.0047 (9)
O30.0363 (13)0.0296 (13)0.0301 (13)0.0047 (10)0.0013 (10)0.0120 (10)
N10.0127 (14)0.0137 (16)0.0251 (18)0.0003 (12)0.0000.000
N20.0132 (14)0.0133 (15)0.0223 (16)0.0007 (12)0.0000.000
N30.0119 (10)0.0185 (12)0.0179 (11)0.0020 (8)0.0022 (8)0.0007 (9)
N40.0113 (9)0.0149 (11)0.0180 (11)0.0014 (8)0.0012 (8)0.0006 (9)
C10.0113 (15)0.0135 (18)0.0192 (18)0.0023 (13)0.0000.000
C20.028 (2)0.013 (2)0.068 (4)0.0004 (17)0.0000.000
C30.020 (2)0.017 (2)0.036 (2)0.0018 (15)0.0000.000
C40.028 (2)0.0126 (19)0.045 (3)0.0064 (17)0.0000.000
C50.0210 (19)0.0145 (19)0.027 (2)0.0055 (15)0.0000.000
C60.022 (2)0.021 (2)0.053 (3)0.0134 (17)0.0000.000
C70.0249 (14)0.0356 (18)0.0254 (16)0.0074 (13)0.0066 (12)0.0063 (14)
C80.0211 (13)0.0154 (13)0.0194 (14)0.0023 (10)0.0020 (10)0.0010 (11)
C90.0253 (14)0.0238 (15)0.0163 (13)0.0006 (11)0.0021 (10)0.0033 (11)
C100.0208 (13)0.0153 (13)0.0205 (14)0.0004 (10)0.0042 (10)0.0020 (11)
C110.0190 (12)0.0257 (15)0.0250 (15)0.0004 (11)0.0045 (11)0.0020 (12)
N1000.078 (4)0.036 (3)0.064 (4)0.0000.0000.011 (3)
C1000.085 (5)0.034 (3)0.033 (3)0.0000.0000.018 (2)
C1010.074 (5)0.081 (6)0.049 (4)0.0000.0000.034 (4)
Geometric parameters (Å, º) top
Mo1—O11.854 (3)C2—H2C0.9800
Mo1—O21.706 (2)C3—C41.402 (6)
Mo1—N12.258 (3)C4—C51.372 (6)
Mo1—N32.299 (2)C4—H40.9500
Mo2—O11.960 (3)C5—C61.484 (6)
Mo2—O31.693 (2)C6—H6A0.9800
Mo2—Cl12.3935 (11)C6—H6B0.9800
Mo2—Cl22.3997 (11)C6—H6C0.9800
Mo1—O2i1.706 (2)C7—C81.487 (4)
Mo1—N3i2.299 (2)C7—H7A0.9800
Mo2—O3i1.693 (2)C7—H7B0.9800
N1—C31.343 (5)C7—H7C0.9800
N1—N21.366 (4)C8—C91.397 (4)
N2—C51.357 (5)C9—C101.367 (4)
N2—C11.450 (5)C9—H90.9500
N3—C81.346 (4)C10—C111.489 (4)
N3—N41.371 (3)C11—H11A0.9800
N4—C101.366 (4)C11—H11B0.9800
N4—C11.438 (3)C11—H11C0.9800
C1—N4i1.438 (3)N100—C1001.112 (9)
C1—H11.0000C100—C1011.451 (11)
C2—C31.487 (6)C101—H10A0.9800
C2—H2A0.9800C101—H10B0.9800
C2—H2B0.9800C101—H10C0.9800
O1—Mo1—N1159.35 (12)C3—C2—H2C109.5
O1—Mo1—N388.17 (9)H2A—C2—H2C109.5
O1—Mo1—N3i88.17 (9)H2B—C2—H2C109.5
O2—Mo1—O1104.48 (9)N1—C3—C4109.3 (4)
O2i—Mo1—O1104.48 (9)N1—C3—C2122.1 (4)
O2i—Mo1—O2103.83 (16)C4—C3—C2128.6 (4)
O2—Mo1—N187.99 (9)C5—C4—C3107.2 (4)
O2i—Mo1—N187.99 (9)C5—C4—H4126.4
O2—Mo1—N387.71 (10)C3—C4—H4126.4
O2—Mo1—N3i159.81 (9)N2—C5—C4105.9 (4)
O2i—Mo1—N3159.81 (9)N2—C5—C6122.7 (4)
O2i—Mo1—N3i87.71 (10)C4—C5—C6131.4 (4)
N1—Mo1—N375.75 (9)C5—C6—H6A109.5
N1—Mo1—N3i75.75 (9)C5—C6—H6B109.5
N3i—Mo1—N376.86 (11)H6A—C6—H6B109.5
O1—Mo2—Cl184.38 (8)C5—C6—H6C109.5
O1—Mo2—Cl283.52 (8)H6A—C6—H6C109.5
O3—Mo2—O1125.62 (9)H6B—C6—H6C109.5
O3i—Mo2—O1125.62 (9)C8—C7—H7A109.5
O3—Mo2—O3i108.75 (18)C8—C7—H7B109.5
O3—Mo2—Cl193.76 (8)H7A—C7—H7B109.5
O3i—Mo2—Cl193.76 (8)C8—C7—H7C109.5
O3—Mo2—Cl293.28 (9)H7A—C7—H7C109.5
O3i—Mo2—Cl293.28 (9)H7B—C7—H7C109.5
Cl1—Mo2—Cl2167.90 (4)N3—C8—C9109.8 (2)
Mo1—O1—Mo2164.97 (16)N3—C8—C7122.3 (3)
C3—N1—N2105.8 (3)C9—C8—C7127.9 (3)
C3—N1—Mo1129.8 (3)C10—C9—C8107.4 (3)
N2—N1—Mo1124.4 (2)C10—C9—H9126.3
C5—N2—N1111.8 (3)C8—C9—H9126.3
C5—N2—C1129.1 (3)N4—C10—C9105.9 (2)
N1—N2—C1119.1 (3)N4—C10—C11122.8 (3)
C8—N3—N4105.3 (2)C9—C10—C11131.3 (3)
C8—N3—Mo1130.98 (18)C10—C11—H11A109.5
N4—N3—Mo1123.55 (17)C10—C11—H11B109.5
C10—N4—N3111.5 (2)H11A—C11—H11B109.5
C10—N4—C1129.1 (2)C10—C11—H11C109.5
N3—N4—C1118.8 (2)H11A—C11—H11C109.5
N4—C1—N4i111.5 (3)H11B—C11—H11C109.5
N4—C1—N2110.4 (2)N100—C100—C101180.000 (2)
N4i—C1—N2110.4 (2)C100—C101—H10A109.5
N4—C1—H1108.1C100—C101—H10B109.5
N4i—C1—H1108.1H10A—C101—H10B109.5
N2—C1—H1108.1C100—C101—H10C109.5
C3—C2—H2A109.5H10A—C101—H10C109.5
C3—C2—H2B109.5H10B—C101—H10C109.5
H2A—C2—H2B109.5
O2i—Mo1—O1—Mo2125.62 (8)C8—N3—N4—C1174.5 (2)
O2—Mo1—O1—Mo2125.62 (8)Mo1—N3—N4—C11.7 (3)
N1—Mo1—O1—Mo20.0C10—N4—C1—N4i126.6 (3)
N3i—Mo1—O1—Mo238.45 (6)N3—N4—C1—N4i63.1 (4)
N3—Mo1—O1—Mo238.45 (6)C10—N4—C1—N2110.2 (3)
O3—Mo2—O1—Mo190.60 (12)N3—N4—C1—N260.1 (3)
O3i—Mo2—O1—Mo190.60 (12)C5—N2—C1—N4118.1 (2)
Cl1—Mo2—O1—Mo10.0N1—N2—C1—N461.9 (2)
Cl2—Mo2—O1—Mo1180.0C5—N2—C1—N4i118.1 (2)
O2i—Mo1—N1—C351.96 (8)N1—N2—C1—N4i61.9 (2)
O2—Mo1—N1—C351.96 (8)N2—N1—C3—C40.0
O1—Mo1—N1—C3180.0Mo1—N1—C3—C4180.0
N3i—Mo1—N1—C3140.11 (6)N2—N1—C3—C2180.0
N3—Mo1—N1—C3140.11 (6)Mo1—N1—C3—C20.0
O2i—Mo1—N1—N2128.04 (8)N1—C3—C4—C50.0
O2—Mo1—N1—N2128.04 (8)C2—C3—C4—C5180.0
O1—Mo1—N1—N20.0N1—N2—C5—C40.0
N3i—Mo1—N1—N239.89 (6)C1—N2—C5—C4180.0
N3—Mo1—N1—N239.89 (6)N1—N2—C5—C6180.0
C3—N1—N2—C50.0C1—N2—C5—C60.0
Mo1—N1—N2—C5180.0C3—C4—C5—N20.0
C3—N1—N2—C1180.0C3—C4—C5—C6180.0
Mo1—N1—N2—C10.0N4—N3—C8—C91.1 (3)
O2i—Mo1—N3—C8171.4 (3)Mo1—N3—C8—C9174.6 (2)
O2—Mo1—N3—C845.7 (3)N4—N3—C8—C7178.8 (3)
O1—Mo1—N3—C858.9 (2)Mo1—N3—C8—C75.4 (4)
N1—Mo1—N3—C8134.2 (3)N3—C8—C9—C100.6 (4)
N3i—Mo1—N3—C8147.5 (2)C7—C8—C9—C10179.4 (3)
O2i—Mo1—N3—N43.7 (4)N3—N4—C10—C92.9 (3)
O2—Mo1—N3—N4129.4 (2)C1—N4—C10—C9173.8 (3)
O1—Mo1—N3—N4126.0 (2)N3—N4—C10—C11175.7 (3)
N1—Mo1—N3—N440.9 (2)C1—N4—C10—C114.8 (5)
N3i—Mo1—N3—N437.4 (2)C8—C9—C10—N42.1 (3)
C8—N3—N4—C102.5 (3)C8—C9—C10—C11176.3 (3)
Mo1—N3—N4—C10173.64 (18)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2Cl2O4(C16H22N6)]·C2H3N
Mr682.23
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)150
a, b, c (Å)8.6346 (5), 21.6152 (12), 13.6021 (8)
V3)2538.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.11 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII X8 KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.876, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
59602, 3526, 3061
Rint0.062
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.11
No. of reflections3526
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.89, 1.53

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected geometric parameters (Å, º) top
Mo1—O11.854 (3)Mo2—O11.960 (3)
Mo1—O21.706 (2)Mo2—O31.693 (2)
Mo1—N12.258 (3)Mo2—Cl12.3935 (11)
Mo1—N32.299 (2)Mo2—Cl22.3997 (11)
O1—Mo1—N1159.35 (12)O1—Mo2—Cl184.38 (8)
O1—Mo1—N388.17 (9)O1—Mo2—Cl283.52 (8)
O2—Mo1—O1104.48 (9)O3—Mo2—O1125.62 (9)
O2i—Mo1—O2103.83 (16)O3—Mo2—O3i108.75 (18)
O2—Mo1—N187.99 (9)O3—Mo2—Cl193.76 (8)
O2—Mo1—N387.71 (10)O3—Mo2—Cl293.28 (9)
O2—Mo1—N3i159.81 (9)Cl1—Mo2—Cl2167.90 (4)
N1—Mo1—N375.75 (9)Mo1—O1—Mo2164.97 (16)
N3i—Mo1—N376.86 (11)
Symmetry code: (i) x, y, z+1/2.
Selected short supramolecular interactions (Å, °) in (I) top
A—B···CA—BB···CA···CA—B···C
Y—X···Cg contacts
Mo2—Cl1···Cg1a2.3935 (11)3.6140 (15)4.8687 (12)106.50 (3)
Possible weak hydrogen bonds
C4—H4···Cl1i0.952.803.704 (4)158
C11—H11A···Cl2ii0.982.723.556 (3)143
C11—H11B···O3iii0.982.463.427 (4)170
C101—H10C···O20.982.473.310 (5)144
Note: (a) Two contacts with symmetry-related centroids, one with that belonging to the asymmetric unit and another generated by the symmetry code (x, y, -z + 1/2).

Cg1 is the centroid of the N3/N4/C8–C10 ring.

Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) x - 1, y, z; (iii) -x, -y + 2, z + 1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds