Download citation
Download citation
link to html
The structure of the title compound, C6H6OS, exhibits a flip-type disorder of the thio­phene ring [occupancy ratio = 0.848 (3):0.152 (3)], which is typical for many thio­phene derivatives. The puckered thio­phene ring is essentially coplanar with the plane formed by the non-H atoms of the acetyl substituent, similar to its simple analogues, i.e. 3-acetyl-2-carb­oxy­thio­phene, 4-acetyl-3-carb­oxy­thio­phene and 3,5-di­acetyl-2-ethyl­amino-4-methyl­thio­phene. In the crystal structure, mol­ecules are connected by C-H...[pi] hydrogen bonds, forming a sheet parallel to the (001) plane. Moreover, an inspection of the crystal lattice reveals that there are short S...O contacts connecting the mol­ecules of adjacent sheets. Comparison of the title crystal structure with its simple 3-meth­oxy­thio­phene analogue shows a close similarity in the herringbone arrangement of mol­ecules and in the presence of C-H...[pi] inter­actions and S...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011101506X/sk3405sup1.cif
Contains datablocks I, global

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011101506X/sk3405Isup3.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011101506X/sk3405Isup3.hkl
Contains datablock I

CCDC reference: 833419

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(Thiophen-3-yl)ethanone top
Crystal data top
C6H6OSF(000) = 528
Mr = 126.17Dx = 1.380 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6176 reflections
a = 14.592 (3) Åθ = 2.7–25.4°
b = 5.5108 (11) ŵ = 0.42 mm1
c = 15.106 (3) ÅT = 290 K
V = 1214.7 (4) Å3Columnar, colourless
Z = 80.42 × 0.28 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
1106 independent reflections
Radiation source: Enhance (Mo) X-ray Source683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1517
Tmin = 0.966, Tmax = 1.000k = 66
6176 measured reflectionsl = 1118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1106 reflectionsΔρmax = 0.16 e Å3
82 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.92563 (12)0.2250 (3)0.04321 (12)0.0603 (6)
C40.92740 (17)0.3294 (5)0.14413 (17)0.0433 (7)
H40.96130.44600.11400.052*
C30.88361 (15)0.1309 (4)0.10297 (15)0.0343 (6)
C20.83774 (17)0.0081 (5)0.16404 (17)0.0435 (7)
H20.80460.14660.14940.052*
C60.88753 (16)0.0838 (5)0.00646 (16)0.0405 (7)
C70.84392 (18)0.1416 (5)0.02909 (17)0.0581 (8)
H7A0.84510.13790.09260.087*
H7B0.78160.15070.00900.087*
H7C0.87710.28100.00840.087*
S10.84751 (8)0.0981 (2)0.26867 (6)0.0473 (4)0.848 (3)
C50.9139 (7)0.3296 (19)0.2339 (6)0.057 (2)0.848 (3)
H50.93880.44540.27170.069*0.848 (3)
S1A0.9185 (11)0.365 (3)0.2463 (9)0.0473 (4)0.152 (3)
C5A0.845 (2)0.045 (6)0.242 (2)0.057 (2)0.152 (3)
H5A0.82250.04150.28980.069*0.152 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0786 (14)0.0623 (13)0.0401 (11)0.0135 (12)0.0037 (10)0.0080 (10)
C40.0449 (17)0.0409 (17)0.0440 (17)0.0057 (13)0.0027 (12)0.0019 (13)
C30.0344 (13)0.0334 (14)0.0349 (13)0.0027 (13)0.0004 (11)0.0023 (12)
C20.0431 (16)0.0435 (15)0.0438 (15)0.0028 (14)0.0038 (13)0.0035 (13)
C60.0377 (14)0.0458 (18)0.0381 (15)0.0073 (15)0.0036 (11)0.0004 (14)
C70.0660 (18)0.0569 (18)0.0514 (16)0.0047 (17)0.0009 (15)0.0115 (15)
S10.0531 (5)0.0553 (7)0.0335 (5)0.0005 (6)0.0032 (5)0.0035 (5)
C50.063 (3)0.052 (5)0.057 (5)0.005 (3)0.008 (3)0.009 (3)
S1A0.0531 (5)0.0553 (7)0.0335 (5)0.0005 (6)0.0032 (5)0.0035 (5)
C5A0.063 (3)0.052 (5)0.057 (5)0.005 (3)0.008 (3)0.009 (3)
Geometric parameters (Å, º) top
O1—C61.215 (3)C2—H20.9300
C4—C51.371 (9)C6—C71.496 (3)
C4—C31.411 (3)C7—H7A0.9600
C4—S1A1.561 (14)C7—H7B0.9600
C4—H40.9300C7—H7C0.9600
C3—C21.373 (3)S1—C51.686 (11)
C3—C61.482 (3)C5—H50.9300
C2—C5A1.22 (3)S1A—C5A2.06 (4)
C2—S11.691 (3)C5A—H5A0.9300
C5—C4—C3111.8 (5)C3—C6—C7118.8 (2)
C3—C4—S1A119.6 (7)C6—C7—H7A109.5
C5—C4—H4124.1C6—C7—H7B109.5
C3—C4—H4124.1H7A—C7—H7B109.5
S1A—C4—H4116.3C6—C7—H7C109.5
C2—C3—C4110.9 (2)H7A—C7—H7C109.5
C2—C3—C6125.6 (2)H7B—C7—H7C109.5
C4—C3—C6123.5 (2)C5—S1—C291.1 (3)
C5A—C2—C3118.1 (16)C4—C5—S1112.9 (5)
C3—C2—S1113.2 (2)C4—C5—H5123.5
C5A—C2—H2118.4S1—C5—H5123.5
C3—C2—H2123.4C4—S1A—C5A84.5 (12)
S1—C2—H2123.4C2—C5A—S1A107 (2)
O1—C6—C3120.8 (2)C2—C5A—H5A126.7
O1—C6—C7120.3 (2)S1A—C5A—H5A126.7
C5—C4—C3—C20.9 (6)C4—C3—C6—C7175.8 (2)
S1A—C4—C3—C20.3 (8)C5A—C2—S1—C5141 (15)
C5—C4—C3—C6179.3 (5)C3—C2—S1—C50.5 (4)
S1A—C4—C3—C6179.5 (8)C3—C4—C5—S11.3 (8)
C4—C3—C2—C5A4.6 (18)S1A—C4—C5—S1171 (9)
C6—C3—C2—C5A175.6 (18)C2—S1—C5—C41.0 (7)
C4—C3—C2—S10.1 (3)C5—C4—S1A—C5A5 (7)
C6—C3—C2—S1179.93 (19)C3—C4—S1A—C5A2.7 (13)
C2—C3—C6—O1175.8 (2)C3—C2—C5A—S1A6 (2)
C4—C3—C6—O14.0 (4)S1—C2—C5A—S1A34 (13)
C2—C3—C6—C74.4 (4)C4—S1A—C5A—C25 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.943.660 (3)136
C5—H5···Cg1ii0.932.993.755 (10)141
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds