Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H14N2O2, crystallizes as a nonmero­hedral twin, but the structure can be satisfactorily refined as a merohedral twin, in which a monoclinic unit cell with a cell angle [beta] close to 90° emulates a metrically ortho­rhom­bic cell. The two mol­ecules in the asymmetric unit are very similar in structure and they are related by an approximate pseudo-screw axis. The mol­ecules are linked into complex sheets by a combination of two O-H...N hydrogen bonds and four C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110023152/sk3375sup1.cif
Contains datablocks global, Inm, Im

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023152/sk3375Inmsup2.hkl
Contains datablock Inm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023152/sk3375Imsup3.hkl
Contains datablock Im

CCDC references: 790634; 790635

Comment top

Pyrrolo[1,2-a]quinoxaline constitutes a privileged heterocyclic system because of its potential bioactivity; some compounds containing this system have shown antiproliferative activity against human leukaemia and breast cancer (Desplat et al., 2010) and antileishmanial activity (Guillon et al., 2007). They also show promise as anti-ulcer agents because they are potential bacterial multidrug resistance pump inhibitors (Vidaillac Guillon, Arpin et al., 2007; Vidaillac Guillon, Moreau et al., 2007). Here, we report the molecular and supramolecular structure of the title compound, (I), which was prepared by simple cyclocondensation of 1-(2-aminophenyl)pyrrole with an aromatic aldehyde catalysed with L-proline.

Compound (I) (Fig. 1) crystallizes with Z' = 2 in the centrosymmetric space group P21/c, with a unit cell having the cell angle β = 90.326 (12)°, i.e. fairly close to 90°. Although analysis of the reflection data indicated that (I) had crystallized as a non-merohedral twin, the form of the twinning matrix showed that the twinning was close to merohedral, emulating a metrically orthorhombic cell. In fact, it proved possible to refine the structure either as a non-merohedral twin using a modified reflection file, or as a merohedral twin using an unmodifed reflection file, and we report both refinements here, denoted (Inm) and (Im) for the non-merohedral and merohedral twin models, respectively. As the atomic coordinates and geometric parameters derived from them are extremely similar for the two refinements, we discuss here only the results of the refinement as a non-merohedral twin.

The bond lengths and angles in the two independent molecules are very similar (Table 1), and the conformations of the two molecules in the selected asymmetric unit, as indicated by the key torsion angles (Table 1), are almost identical, but a search for possible additional crystallographic symmetry revealed none. However, the coordinates of pairs of corresponding atoms in the two molecules of the selected asymmetric unit are approximately related by the transformation (1/2 + x, 1/2 - y, 1.36 - z), corresponding to an approximate, but non-crystallographic, pseudo-screw axis along the line (x, 1/4, 0.68) (Fig. 2).

Within the fused tricyclic component of the molecules, the bond distances (Table 1) indicate some interesting patterns. In the five-membered rings, the C—C distances span ranges of less than 0.04 Å, even though Cx2—Cx3 (x = 1 or 2) are formally single bonds, while Cx1—Cx2 and Cx3—Cx3a are formally double bonds, thus indicating a degree of 6π electron delocalization in these rings. In the carbocyclic rings, the bond distances support aromatic delocalization, but with some slight bond fixation in the Cx6—Cx7 and Cx8—Cx9 bonds, while in the central rings there are clearly localized double bonds at the Cx4—Nx5 bonds. Overall, therefore, the pattern of two 6π circuits in the two outer rings of the fused system, with a localized double bond in the central ring, is reminiscent of the electronic structure of phenanthrene and related molecules (Glidewell & Lloyd, 1984, 1986).

Just three torsion angles (Table 1) suffice to define the molecular conformation. In each molecule, atom Cx47 (x = 1 or 2) of the methoxy group is almost coplanar with the adjacent ring, with deviations from the mean planes of 0.102 (3) and 0.063 (3) Å for atoms C147 and C247, respectively. Accordingly, the exocyclic C—C—O angles at each atom Cx45 show the usual difference of ca 10° (Seip & Seip, 1973; Ferguson et al., 1996). The pendent aryl rings make dihedral angles with the adjacent heterocyclic rings of 33.8 (2) and 35.7 (2)° in the type 1 and 2 molecules (for which n x? = 1 or 2, respectively), and even the H—O—C—C torsion angles are very similar in the two molecules. These conformations mean that the molecules have no internal symmetry, and hence that they are chiral, but the centrosymmetric space group accommodates equal numbers of the two conformational enantiomers for each type of molecule.

The supramolecular structure of (I) is built using two O—H···N hydrogen bonds and four C—H···O hydrogen bonds, which utilize all four of the O atoms present in the asymmetric unit (Table 2). The resulting sheet formation can be readily analysed in terms of two one-dimensional substructures (Ferguson et al., 1998a,b; Gregson et al., 2000). Just as atom O144 acts as hydrogen-bond donor to atom N25 within the selected asymmetric unit, so also atom O244 at (x, y, z) acts as hydrogen-bond donor to atom N15 at (1 + x, y, z), so forming a C22(16) chain (Bernstein et al., 1995) running parallel to the [100] direction. The formation of the one-dimensional substructure along [100] is augmented by two of the C—H···O hydrogen bonds. Atom C26 acts as hydrogen-bond donor to the hydroxyl atom O144 within the selected asymmetric unit, and atom C16 at (x, y, z) acts as donor to the hydroxyl atom O244 at (-1 + x, y, z), so that these two hydrogen bonds form a C22(20) chain, also parallel to [100] but antiparallel to the C22(16) motif. The combination of all four of these hydrogen bonds generates a C22(16)C22(20)[R22(6)][R22(6)] chain of rings along [100] (Fig. 3).

Two further C—H···O hydrogen bonds generate a second one-dimensional substructure in the form of a chain of edge-fused rings, itself built from two independent simple chain motifs. Atom C11 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to the methoxy atom O145 at (x, 1/2 - y, 1/2 + z), so forming C(9) chain built from type 1 molecules related by the c-glide plane at y = 1/4, and thus running parallel to the [001] direction. In a similar way, atom C21 in the type 2 molecule at (x, y, z) acts as hydrogen-bond donor to the methoxy atom O245 at (x, 1/2 - y, -1/2 + z), so forming a second C(9) chain along [001], this time containing only type 2 molecules and running antiparallel to the chain containing type 1 molecules. These two chains are linked by the O—H···N hydrogen bond within the asymmetric unit to form a ribbon, or a chain of edge-fused R44(28) rings running parallel to [001] (Fig. 4). The combination of the two chains of rings along [100] and [001] produces a complex sheet lying parallel to (010).

Related literature top

For related literature, see: Bernstein et al. (1995); Desplat et al. (2010); Ferguson et al. (1996, 1998a, 1998b); Glidewell & Lloyd (1984, 1986); Gregson et al. (2000); Guillon et al. (2007); Seip & Seip (1973); Spek (2009); Vidaillac, Guillon, Arpin, Forfar-Bares, Ba, Grellet, Moreau, Caignard, Jarry & Quentin (2007); Vidaillac, Guillon, Moreau, Arpin, Lagardere, Larrouture, Dallemagne, Caignard, Quentin & Jarry (2007).

Experimental top

A mixture of 1-(2-aminophenyl)pyrrole (1 mmol), 4-hydroxy-3-methoxybenzaldehyde (1 mmol), L-proline (20% w/w with respect to the pyrrole), Pd/C (50% w/w with respect to the pyrrole) and acetonitrile (2 ml) was stirred at ambient temperature for 48 h. The progress of the reaction was monitored by thin-layer chromatography, and when the reaction was thus judged to be complete the Pd/C was removed by filtration and the solvent was removed under reduced pressure. The resulting solid product, (I), was purified by column chromatography on silica gel using dichloromethane as the eluent. Yellow crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of a solution in ethanol (83% yield, m.p. 414 K). MS (70 eV) m/z (%) 290 (100) [M+], 275 (8), 261 (9); elemental analysis, found: C 74.4, H 5.0, N 9.6%; C18H14N2O2 requires: C 74.5, H 4.86, N 9.7%.

Refinement top

The initial refinement converged to a high R index of 0.103, and analysis of the fcf data indicated that the refinement should be handled as a non-merohedral twin, with twinning matrix (-1.000, 0.000, -0.004/0.000, -1.000, 0.000/0.000, 0.000, 1.000). From the original HKLF file (38684 measured reflections, of which 6234 were unique with a merging index of 0.0661), a modified file was prepared by use of the TwinRotMat option in PLATON (Spek, 2009) for use in the final refinement as a non-merohedral twin, to give twin fractions of 0.1234 (13) and 0.8766 (13).

All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding in geometrically idealized positions, with C—H = 0.95 (all ring atoms) or 0.98 Å (methyl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotatae but not to tilt, and 1.2 for all other H atoms bonded to C atoms. H atoms bonded to atoms O144 and O244 were permitted to ride at the positions deduced from difference maps, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.98 and 0.95 Å, respectively.

The form of the twinning matrix suggested that the twinning was pseudo-merohedral, as the twinning matrix approximated to (-1, 0, 0/0, -1, 0/0, 0, 1), corresponding to a monoclinic cell having the cell angle β close to 90°, emulating a metrically orthorhombic cell. Accordingly, the structure was also refined as a merohedral twin, to give twin fractions of 0.1228 (13) and 0.8772 (13). The H atoms were handled exactly as for the non-merohedral twin, now giving O—H distances of 0.97 and 0.96 Å, respectively. For refinements conducted under otherwise identical conditions, the merohedral twin actually gave a slightly smaller R factor, but the atomic coordinates and derived intramolecular geometric parameters from the two refinements are virtually indistinguishable, apart from the O—H distances.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent molecular components of (I), showing the atom-labelling scheme. (a) Molecule 1, containing atom N15. (b) Molecule 2, containing atom N25. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of the selected asymmetric unit of (I), showing the pseudo-symmetric relationship of the two independent molecules. For the sake of clarity, all H atoms have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of rings parallel to [100] and built from two O—H···N hydrogen bonds and two C—H···O hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a chain of edge-fused rings parallel to [001] and built from one O—H···N hydrogen bond and two C—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted.
(Inm) 2-methoxy-4-(pyrrolo[1,2-a]quinoxalin-4-yl)phenol top
Crystal data top
C18H14N2O2F(000) = 1216
Mr = 290.31Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6234 reflections
a = 7.9278 (8) Åθ = 2.8–27.5°
b = 15.2929 (18) ŵ = 0.09 mm1
c = 22.410 (4) ÅT = 120 K
β = 90.326 (12)°Block, colourless
V = 2717.0 (6) Å30.50 × 0.26 × 0.18 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5057 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1818
Tmin = 0.944, Tmax = 0.983l = 027
5057 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0805P)2 + 2.4154P]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H14N2O2V = 2717.0 (6) Å3
Mr = 290.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.9278 (8) ŵ = 0.09 mm1
b = 15.2929 (18) ÅT = 120 K
c = 22.410 (4) Å0.50 × 0.26 × 0.18 mm
β = 90.326 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3891 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.983Rint = 0.000
5057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
5057 reflectionsΔρmin = 0.26 e Å3
400 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0184 (4)0.1510 (2)0.98347 (13)0.0310 (7)
H110.00470.15991.02510.037*
C120.1091 (4)0.0857 (2)0.95767 (14)0.0333 (7)
H120.16930.04100.97810.040*
C130.0983 (4)0.09596 (19)0.89577 (13)0.0278 (6)
H130.15090.06000.86670.033*
C13a0.0023 (3)0.16762 (18)0.88456 (12)0.0228 (6)
C140.0612 (4)0.21193 (18)0.83257 (12)0.0216 (6)
N150.1579 (3)0.28065 (15)0.83561 (10)0.0232 (5)
C15a0.2001 (3)0.31409 (19)0.89120 (12)0.0228 (6)
C160.2951 (4)0.39025 (19)0.89378 (13)0.0257 (6)
H160.33180.41770.85800.031*
C170.3363 (4)0.4260 (2)0.94796 (13)0.0294 (7)
H170.40170.47800.94960.035*
C180.2827 (4)0.3862 (2)1.00025 (14)0.0313 (7)
H180.31160.41121.03760.038*
C190.1890 (4)0.31159 (19)0.99881 (13)0.0280 (7)
H190.15310.28461.03490.034*
C19a0.1463 (4)0.27535 (18)0.94433 (12)0.0232 (6)
N19b0.0488 (3)0.20078 (15)0.93964 (10)0.0235 (5)
C1410.0072 (4)0.18395 (18)0.77312 (12)0.0227 (6)
C1420.0205 (4)0.09758 (18)0.75782 (12)0.0249 (6)
H1420.00050.05270.78620.030*
C1430.0768 (4)0.07622 (19)0.70171 (13)0.0271 (6)
H1430.09790.01670.69210.033*
C1440.1030 (4)0.13962 (19)0.65934 (12)0.0251 (6)
C1450.0707 (4)0.22617 (18)0.67364 (12)0.0226 (6)
C1460.0187 (3)0.24808 (18)0.73002 (12)0.0229 (6)
H1460.00010.30780.73980.027*
O1440.1571 (3)0.11436 (13)0.60516 (9)0.0321 (5)
H1440.21390.15920.58150.048*
O1450.0958 (3)0.28506 (12)0.62874 (8)0.0276 (5)
C1470.0839 (4)0.37452 (19)0.64402 (13)0.0321 (7)
H17A0.03070.38740.65760.048*
H17B0.10950.41040.60900.048*
H17C0.16460.38780.67600.048*
C210.5093 (4)0.33346 (18)0.37435 (13)0.0257 (6)
H210.49740.32490.33260.031*
C220.6028 (4)0.39751 (19)0.40166 (13)0.0273 (6)
H220.66660.44130.38190.033*
C230.5886 (4)0.38756 (18)0.46330 (13)0.0253 (6)
H230.64140.42280.49290.030*
C23a0.4840 (3)0.31729 (18)0.47326 (12)0.0212 (6)
C240.4249 (3)0.27254 (17)0.52452 (12)0.0211 (6)
N250.3264 (3)0.20487 (15)0.52100 (10)0.0220 (5)
C25a0.2837 (3)0.17208 (18)0.46495 (12)0.0213 (6)
C260.1858 (4)0.09683 (19)0.46108 (12)0.0247 (6)
H260.14590.07010.49660.030*
C270.1459 (4)0.06052 (19)0.40699 (13)0.0266 (6)
H270.07910.00900.40510.032*
C280.2035 (4)0.09935 (19)0.35495 (13)0.0277 (7)
H280.17660.07390.31740.033*
C290.2984 (4)0.17361 (19)0.35726 (12)0.0252 (6)
H290.33700.20010.32150.030*
C29a0.3381 (3)0.21024 (18)0.41211 (12)0.0214 (6)
N29b0.4369 (3)0.28457 (15)0.41763 (10)0.0224 (5)
C2410.4828 (4)0.29995 (18)0.58448 (12)0.0230 (6)
C2420.5091 (4)0.38573 (18)0.59991 (12)0.0249 (6)
H2420.48670.43050.57160.030*
C2430.5676 (4)0.40775 (19)0.65597 (13)0.0263 (6)
H2430.58510.46750.66570.032*
C2440.6009 (4)0.34452 (19)0.69814 (12)0.0262 (6)
C2450.5693 (3)0.25756 (18)0.68371 (12)0.0234 (6)
C2460.5126 (3)0.23562 (18)0.62765 (12)0.0225 (6)
H2460.49330.17590.61810.027*
O2440.6599 (3)0.36976 (13)0.75195 (9)0.0332 (5)
H2440.71130.32260.77240.050*
O2450.5984 (3)0.19940 (13)0.72875 (8)0.0286 (5)
C2470.5849 (4)0.10910 (19)0.71431 (14)0.0337 (7)
H27A0.66430.09490.68240.051*
H27B0.46960.09620.70090.051*
H27C0.61140.07390.74970.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0341 (16)0.0384 (18)0.0206 (15)0.0071 (14)0.0061 (12)0.0052 (13)
C120.0339 (17)0.0343 (17)0.0315 (17)0.0040 (14)0.0087 (13)0.0090 (14)
C130.0257 (15)0.0287 (15)0.0290 (16)0.0036 (13)0.0028 (12)0.0016 (13)
C13a0.0219 (14)0.0262 (15)0.0202 (14)0.0061 (12)0.0014 (11)0.0003 (11)
C140.0238 (14)0.0219 (14)0.0193 (14)0.0049 (12)0.0009 (11)0.0017 (11)
N150.0273 (12)0.0246 (13)0.0178 (12)0.0056 (11)0.0003 (9)0.0026 (10)
C15a0.0234 (14)0.0256 (15)0.0194 (14)0.0072 (12)0.0012 (11)0.0036 (12)
C160.0275 (15)0.0267 (15)0.0229 (14)0.0062 (12)0.0003 (11)0.0011 (12)
C170.0308 (16)0.0272 (16)0.0303 (16)0.0061 (13)0.0053 (12)0.0062 (13)
C180.0375 (17)0.0314 (17)0.0250 (15)0.0113 (14)0.0051 (13)0.0074 (13)
C190.0323 (16)0.0324 (16)0.0192 (14)0.0120 (14)0.0009 (12)0.0023 (12)
C19a0.0256 (14)0.0245 (15)0.0194 (14)0.0085 (12)0.0001 (11)0.0016 (11)
N19b0.0272 (13)0.0259 (13)0.0175 (12)0.0056 (10)0.0016 (9)0.0012 (10)
C1410.0250 (14)0.0251 (15)0.0181 (14)0.0010 (12)0.0007 (11)0.0004 (11)
C1420.0304 (15)0.0230 (14)0.0215 (14)0.0037 (12)0.0032 (11)0.0010 (12)
C1430.0328 (16)0.0213 (14)0.0273 (15)0.0013 (13)0.0032 (12)0.0026 (12)
C1440.0292 (15)0.0273 (15)0.0189 (14)0.0023 (13)0.0024 (11)0.0035 (12)
C1450.0265 (14)0.0224 (14)0.0190 (14)0.0021 (12)0.0015 (11)0.0027 (11)
C1460.0256 (14)0.0231 (14)0.0200 (14)0.0004 (12)0.0003 (11)0.0024 (11)
O1440.0467 (13)0.0272 (11)0.0227 (11)0.0038 (10)0.0102 (9)0.0042 (9)
O1450.0410 (12)0.0215 (10)0.0204 (10)0.0009 (9)0.0031 (9)0.0008 (8)
C1470.0480 (19)0.0223 (15)0.0260 (16)0.0029 (14)0.0053 (13)0.0004 (12)
C210.0312 (16)0.0245 (15)0.0214 (14)0.0064 (13)0.0041 (12)0.0056 (12)
C220.0282 (15)0.0253 (15)0.0286 (15)0.0024 (12)0.0047 (12)0.0044 (12)
C230.0271 (15)0.0226 (15)0.0261 (15)0.0044 (12)0.0008 (11)0.0008 (12)
C23a0.0229 (14)0.0228 (14)0.0179 (13)0.0053 (12)0.0005 (11)0.0010 (11)
C240.0248 (14)0.0216 (14)0.0170 (13)0.0041 (12)0.0009 (10)0.0002 (11)
N250.0233 (12)0.0241 (12)0.0185 (12)0.0028 (10)0.0011 (9)0.0016 (10)
C25a0.0220 (14)0.0221 (14)0.0197 (14)0.0065 (11)0.0021 (11)0.0001 (11)
C260.0280 (15)0.0249 (15)0.0212 (14)0.0046 (12)0.0006 (11)0.0006 (12)
C270.0278 (15)0.0240 (15)0.0279 (15)0.0035 (13)0.0053 (12)0.0036 (12)
C280.0334 (16)0.0287 (16)0.0210 (15)0.0065 (13)0.0056 (12)0.0059 (12)
C290.0301 (16)0.0279 (15)0.0177 (14)0.0064 (13)0.0018 (11)0.0005 (12)
C29a0.0228 (14)0.0223 (14)0.0192 (14)0.0049 (12)0.0019 (11)0.0005 (11)
N29b0.0254 (12)0.0235 (12)0.0184 (12)0.0036 (10)0.0008 (9)0.0010 (10)
C2410.0251 (14)0.0254 (15)0.0185 (14)0.0008 (12)0.0001 (11)0.0001 (11)
C2420.0299 (15)0.0221 (14)0.0226 (14)0.0018 (12)0.0013 (12)0.0020 (12)
C2430.0328 (16)0.0208 (14)0.0252 (15)0.0037 (12)0.0037 (12)0.0031 (12)
C2440.0290 (15)0.0289 (16)0.0206 (14)0.0021 (12)0.0039 (11)0.0039 (12)
C2450.0259 (14)0.0237 (15)0.0206 (14)0.0010 (12)0.0014 (11)0.0020 (11)
C2460.0263 (14)0.0204 (14)0.0208 (14)0.0007 (12)0.0006 (11)0.0018 (11)
O2440.0500 (13)0.0280 (11)0.0214 (11)0.0048 (10)0.0128 (9)0.0047 (9)
O2450.0416 (12)0.0247 (10)0.0194 (10)0.0001 (9)0.0056 (9)0.0031 (8)
C2470.0502 (19)0.0260 (16)0.0248 (16)0.0004 (15)0.0069 (14)0.0032 (13)
Geometric parameters (Å, º) top
C11—C121.361 (5)C21—C221.370 (4)
C12—C131.398 (4)C22—C231.395 (4)
C13—C13a1.378 (4)C23—C23a1.376 (4)
C13a—C141.424 (4)C23a—C241.419 (4)
C14—N151.303 (4)C24—N251.299 (4)
N15—C15a1.389 (4)N25—C25a1.393 (3)
C15a—C161.389 (4)C25a—C261.391 (4)
C16—C171.373 (4)C26—C271.369 (4)
C17—C181.385 (4)C27—C281.388 (4)
C18—C191.361 (4)C28—C291.363 (4)
C19—C19a1.384 (4)C29—C29a1.385 (4)
C19a—N19b1.382 (4)C29a—N29b1.386 (4)
N19b—C111.350 (4)N29b—C211.355 (4)
C13a—N19b1.386 (4)C23a—N29b1.393 (3)
C15a—C19a1.395 (4)C25a—C29a1.391 (4)
C11—H110.9500C21—H210.9500
C12—H120.9500C22—H220.9500
C13—H130.9500C23—H230.9500
C14—C1411.466 (4)C24—C2411.478 (4)
C16—H160.9500C26—H260.9500
C17—H170.9500C27—H270.9500
C18—H180.9500C28—H280.9500
C19—H190.9500C29—H290.9500
C141—C1421.383 (4)C241—C2421.372 (4)
C141—C1461.392 (4)C241—C2461.399 (4)
C142—C1431.376 (4)C242—C2431.378 (4)
C142—H1420.9500C242—H2420.9500
C143—C1441.374 (4)C243—C2441.377 (4)
C143—H1430.9500C243—H2430.9500
C144—O1441.347 (3)C244—O2441.347 (3)
C144—C1451.386 (4)C244—C2451.391 (4)
C145—O1451.366 (3)C245—O2451.364 (3)
C145—C1461.373 (4)C245—C2461.374 (4)
C146—H1460.9500C246—H2460.9500
O144—H1440.9788O244—H2440.9457
O145—C1471.414 (3)O245—C2471.422 (3)
C147—H17A0.9800C247—H27A0.9800
C147—H17B0.9800C247—H27B0.9800
C147—H17C0.9800C247—H27C0.9800
N19b—C11—C12108.2 (3)N29b—C21—C22107.8 (3)
N19b—C11—H11125.9N29b—C21—H21126.1
C12—C11—H11125.9C22—C21—H21126.1
C11—C12—C13108.0 (3)C21—C22—C23108.5 (3)
C11—C12—H12126.0C21—C22—H22125.7
C13—C12—H12126.0C23—C22—H22125.7
C13a—C13—C12107.6 (3)C23a—C23—C22107.3 (3)
C13a—C13—H13126.2C23a—C23—H23126.3
C12—C13—H13126.2C22—C23—H23126.3
C13—C13a—N19b106.6 (2)C23—C23a—N29b107.1 (2)
C13—C13a—C14135.6 (3)C23—C23a—C24135.2 (3)
N19b—C13a—C14117.8 (2)N29b—C23a—C24117.6 (2)
N15—C14—C13a122.1 (2)N25—C24—C23a122.4 (2)
N15—C14—C141117.3 (2)N25—C24—C241117.7 (2)
C13a—C14—C141120.6 (2)C23a—C24—C241119.8 (2)
C14—N15—C15a119.2 (2)C24—N25—C25a119.0 (2)
C16—C15a—N15118.7 (3)C26—C25a—C29a118.0 (2)
C16—C15a—C19a119.0 (3)C26—C25a—N25119.2 (2)
N15—C15a—C19a122.4 (3)C29a—C25a—N25122.8 (3)
C17—C16—C15a120.2 (3)C27—C26—C25a121.1 (3)
C17—C16—H16119.9C27—C26—H26119.4
C15a—C16—H16119.9C25a—C26—H26119.4
C16—C17—C18120.0 (3)C26—C27—C28119.7 (3)
C16—C17—H17120.0C26—C27—H27120.2
C18—C17—H17120.0C28—C27—H27120.2
C19—C18—C17120.9 (3)C29—C28—C27120.6 (3)
C19—C18—H18119.6C29—C28—H28119.7
C17—C18—H18119.6C27—C28—H28119.7
C18—C19—C19a119.5 (3)C28—C29—C29a119.6 (3)
C18—C19—H19120.3C28—C29—H29120.2
C19a—C19—H19120.3C29a—C29—H29120.2
N19b—C19a—C19122.5 (3)C29—C29a—N29b122.5 (2)
N19b—C19a—C15a117.0 (2)C29—C29a—C25a121.0 (3)
C19—C19a—C15a120.5 (3)N29b—C29a—C25a116.5 (2)
C11—N19b—C19a129.0 (2)C21—N29b—C29a129.1 (2)
C11—N19b—C13a109.6 (2)C21—N29b—C23a109.3 (2)
C19a—N19b—C13a121.4 (2)C29a—N29b—C23a121.6 (2)
C142—C141—C146118.5 (3)C242—C241—C246118.2 (3)
C142—C141—C14123.5 (2)C242—C241—C24123.1 (2)
C146—C141—C14118.0 (2)C246—C241—C24118.7 (2)
C143—C142—C141120.4 (3)C241—C242—C243120.9 (3)
C143—C142—H142119.8C241—C242—H242119.6
C141—C142—H142119.8C243—C242—H242119.6
C144—C143—C142121.0 (3)C244—C243—C242121.1 (3)
C144—C143—H143119.5C244—C243—H243119.5
C142—C143—H143119.5C242—C243—H243119.5
O144—C144—C143118.1 (3)O244—C244—C243118.5 (3)
O144—C144—C145122.9 (3)O244—C244—C245122.9 (3)
C143—C144—C145119.0 (3)C243—C244—C245118.6 (3)
O145—C145—C144115.6 (2)O245—C245—C244115.0 (2)
O145—C145—C146124.3 (3)O245—C245—C246124.8 (3)
C146—C145—C144120.2 (3)C246—C245—C244120.2 (3)
C145—C146—C141120.8 (3)C245—C246—C241120.9 (3)
C145—C146—H146119.6C245—C246—H246119.5
C141—C146—H146119.6C241—C246—H246119.5
C144—O144—H144115.9C244—O244—H244111.2
C145—O145—C147116.7 (2)C245—O245—C247116.9 (2)
O145—C147—H17A109.5O245—C247—H27A109.5
O145—C147—H17B109.5O245—C247—H27B109.5
H17A—C147—H17B109.5H27A—C247—H27B109.5
O145—C147—H17C109.5O245—C247—H27C109.5
H17A—C147—H17C109.5H27A—C247—H27C109.5
H17B—C147—H17C109.5H27B—C247—H27C109.5
N19b—C11—C12—C130.4 (3)N29b—C21—C22—C230.4 (3)
C11—C12—C13—C13a0.9 (4)C21—C22—C23—C23a0.6 (3)
C12—C13—C13a—N19b1.0 (3)C22—C23—C23a—N29b0.6 (3)
C12—C13—C13a—C14179.8 (3)C22—C23—C23a—C24177.5 (3)
C13—C13a—C14—N15179.7 (3)C23—C23a—C24—N25178.6 (3)
N19b—C13a—C14—N151.1 (4)N29b—C23a—C24—N251.9 (4)
C13—C13a—C14—C1412.9 (5)C23—C23a—C24—C2411.8 (5)
N19b—C13a—C14—C141175.7 (2)N29b—C23a—C24—C241174.8 (2)
C13a—C14—N15—C15a2.5 (4)C23a—C24—N25—C25a3.3 (4)
C141—C14—N15—C15a174.4 (2)C241—C24—N25—C25a173.5 (2)
C14—N15—C15a—C16176.3 (3)C24—N25—C25a—C26176.5 (2)
C14—N15—C15a—C19a1.8 (4)C24—N25—C25a—C29a1.9 (4)
N15—C15a—C16—C17178.8 (3)C29a—C25a—C26—C270.9 (4)
C19a—C15a—C16—C170.6 (4)N25—C25a—C26—C27177.6 (2)
C15a—C16—C17—C180.2 (4)C25a—C26—C27—C280.1 (4)
C16—C17—C18—C190.0 (5)C26—C27—C28—C290.5 (4)
C17—C18—C19—C19a0.3 (4)C27—C28—C29—C29a0.3 (4)
C18—C19—C19a—N19b178.7 (3)C28—C29—C29a—N29b178.6 (3)
C18—C19—C19a—C15a0.7 (4)C28—C29—C29a—C25a0.4 (4)
C16—C15a—C19a—N19b178.6 (2)C26—C25a—C29a—C291.0 (4)
N15—C15a—C19a—N19b0.5 (4)N25—C25a—C29a—C29177.4 (3)
C16—C15a—C19a—C190.9 (4)C26—C25a—C29a—N29b179.3 (2)
N15—C15a—C19a—C19178.9 (3)N25—C25a—C29a—N29b0.9 (4)
C12—C11—N19b—C19a178.1 (3)C22—C21—N29b—C29a176.6 (3)
C12—C11—N19b—C13a0.3 (3)C22—C21—N29b—C23a0.0 (3)
C19—C19a—N19b—C110.8 (4)C29—C29a—N29b—C210.2 (4)
C15a—C19a—N19b—C11179.8 (3)C25a—C29a—N29b—C21178.5 (3)
C19—C19a—N19b—C13a177.5 (3)C29—C29a—N29b—C23a176.0 (2)
C15a—C19a—N19b—C13a1.9 (4)C25a—C29a—N29b—C23a2.3 (4)
C13—C13a—N19b—C110.8 (3)C23—C23a—N29b—C210.4 (3)
C14—C13a—N19b—C11179.8 (2)C24—C23a—N29b—C21177.9 (2)
C13—C13a—N19b—C19a177.8 (2)C23—C23a—N29b—C29a176.5 (2)
C14—C13a—N19b—C19a1.3 (4)C24—C23a—N29b—C29a1.0 (4)
N15—C14—C141—C142147.5 (3)N25—C24—C241—C242145.8 (3)
C13a—C14—C141—C14235.5 (4)C23a—C24—C241—C24237.3 (4)
N15—C14—C141—C14633.0 (4)N25—C24—C241—C24634.2 (4)
C13a—C14—C141—C146144.0 (3)C23a—C24—C241—C246142.7 (3)
C146—C141—C142—C1431.8 (4)C246—C241—C242—C2431.7 (4)
C14—C141—C142—C143177.7 (3)C24—C241—C242—C243178.2 (3)
C141—C142—C143—C1441.5 (4)C241—C242—C243—C2440.2 (4)
C142—C143—C144—O144179.6 (3)C242—C243—C244—O244179.2 (3)
C142—C143—C144—C1450.5 (4)C242—C243—C244—C2452.0 (4)
O144—C144—C145—O1450.6 (4)O244—C244—C245—O2451.6 (4)
C143—C144—C145—O145178.4 (3)C243—C244—C245—O245177.2 (3)
O144—C144—C145—C146178.8 (3)O244—C244—C245—C246178.6 (3)
C143—C144—C145—C1462.1 (4)C243—C244—C245—C2462.6 (4)
O145—C145—C146—C141178.8 (3)O245—C245—C246—C241178.6 (3)
C144—C145—C146—C1411.9 (4)C244—C245—C246—C2411.1 (4)
C142—C141—C146—C1450.1 (4)C242—C241—C246—C2451.1 (4)
C14—C141—C146—C145179.4 (3)C24—C241—C246—C245178.9 (3)
C146—C145—O145—C1476.9 (4)C246—C245—O245—C2476.6 (4)
C144—C145—O145—C147172.5 (3)C244—C245—O245—C247173.6 (3)
C143—C144—O144—H144158C243—C244—O244—H244161
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O144—H144···N250.981.772.703 (3)158
O244—H244···N15i0.951.862.725 (3)150
C11—H11···O145ii0.952.573.451 (4)154
C16—H16···O244iii0.952.493.212 (4)133
C21—H21···O245iv0.952.493.380 (3)156
C26—H26···O1440.952.533.249 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.
(Im) 2-methoxy-4-(pyrrolo[1,2-a]quinoxalin-4-yl)phenol top
Crystal data top
C18H14N2O2F(000) = 1216
Mr = 290.31Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6234 reflections
a = 7.9278 (8) Åθ = 2.8–27.5°
b = 15.2929 (18) ŵ = 0.09 mm1
c = 22.410 (4) ÅT = 120 K
β = 90.326 (12)°Block, colourless
V = 2717.0 (6) Å30.50 × 0.26 × 0.18 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5057 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.8°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1818
Tmin = 0.944, Tmax = 0.983l = 027
34020 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0848P)2 + 1.9308P]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H14N2O2V = 2717.0 (6) Å3
Mr = 290.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.9278 (8) ŵ = 0.09 mm1
b = 15.2929 (18) ÅT = 120 K
c = 22.410 (4) Å0.50 × 0.26 × 0.18 mm
β = 90.326 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3891 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.983Rint = 0.061
34020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
5057 reflectionsΔρmin = 0.27 e Å3
400 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0182 (4)0.1510 (2)0.98350 (13)0.0320 (7)
H110.00460.16001.02510.038*
C120.1090 (4)0.0857 (2)0.95769 (14)0.0342 (7)
H120.16910.04100.97820.041*
C130.0982 (4)0.09598 (19)0.89576 (13)0.0284 (6)
H130.15060.06010.86670.034*
C13a0.0022 (3)0.16758 (18)0.88460 (12)0.0237 (6)
C140.0613 (3)0.21190 (17)0.83260 (12)0.0225 (6)
N150.1579 (3)0.28065 (15)0.83559 (10)0.0240 (5)
C15a0.2002 (3)0.31405 (18)0.89118 (12)0.0236 (6)
C160.2950 (3)0.39022 (18)0.89386 (13)0.0265 (6)
H160.33140.41770.85800.032*
C170.3364 (4)0.4259 (2)0.94784 (13)0.0304 (7)
H170.40190.47790.94940.037*
C180.2826 (4)0.38614 (19)1.00016 (14)0.0323 (7)
H180.31150.41121.03750.039*
C190.1891 (4)0.31159 (19)0.99873 (13)0.0291 (7)
H190.15340.28461.03480.035*
C19a0.1463 (3)0.27533 (18)0.94430 (12)0.0240 (6)
N19b0.0490 (3)0.20076 (15)0.93965 (10)0.0245 (5)
C1410.0071 (4)0.18397 (18)0.77310 (12)0.0235 (6)
C1420.0204 (4)0.09758 (18)0.75788 (12)0.0256 (6)
H1420.00030.05270.78630.031*
C1430.0768 (4)0.07625 (18)0.70172 (13)0.0279 (6)
H1430.09790.01680.69210.033*
C1440.1029 (4)0.13958 (18)0.65942 (12)0.0260 (6)
C1450.0709 (4)0.22617 (18)0.67366 (12)0.0232 (6)
C1460.0186 (3)0.24809 (18)0.73001 (12)0.0238 (6)
H1460.00040.30770.73970.029*
O1440.1571 (3)0.11433 (13)0.60516 (9)0.0329 (5)
H1440.21170.16090.58300.049*
O1450.0958 (3)0.28506 (12)0.62873 (8)0.0285 (5)
C1470.0839 (4)0.37452 (18)0.64407 (13)0.0326 (7)
H17A0.03090.38750.65740.049*
H17B0.11030.41040.60910.049*
H17C0.16410.38760.67630.049*
C210.5093 (4)0.33347 (18)0.37436 (13)0.0264 (6)
H210.49740.32490.33260.032*
C220.6026 (4)0.39754 (19)0.40163 (13)0.0282 (6)
H220.66630.44140.38190.034*
C230.5885 (4)0.38756 (18)0.46328 (13)0.0263 (6)
H230.64120.42280.49290.032*
C23a0.4841 (3)0.31729 (17)0.47324 (12)0.0222 (6)
C240.4247 (3)0.27257 (17)0.52456 (12)0.0219 (6)
N250.3263 (3)0.20487 (14)0.52096 (10)0.0226 (5)
C25a0.2835 (3)0.17209 (17)0.46490 (12)0.0217 (6)
C260.1856 (4)0.09680 (18)0.46109 (12)0.0254 (6)
H260.14570.07010.49660.030*
C270.1458 (4)0.06053 (19)0.40696 (13)0.0273 (6)
H270.07900.00900.40500.033*
C280.2035 (4)0.09933 (18)0.35494 (13)0.0287 (7)
H280.17680.07390.31740.034*
C290.2983 (4)0.17358 (19)0.35722 (12)0.0263 (6)
H290.33670.20010.32140.032*
C29a0.3381 (3)0.21022 (17)0.41211 (12)0.0224 (6)
N29b0.4368 (3)0.28456 (14)0.41760 (10)0.0231 (5)
C2410.4829 (4)0.29992 (18)0.58450 (12)0.0239 (6)
C2420.5092 (4)0.38576 (18)0.59990 (12)0.0258 (6)
H2420.48680.43060.57160.031*
C2430.5675 (4)0.40771 (18)0.65602 (12)0.0271 (6)
H2430.58510.46750.66570.032*
C2440.6008 (4)0.34455 (19)0.69816 (12)0.0270 (6)
C2450.5694 (3)0.25754 (18)0.68374 (12)0.0243 (6)
C2460.5125 (3)0.23561 (18)0.62766 (12)0.0232 (6)
H2460.49300.17590.61810.028*
O2440.6599 (3)0.36974 (13)0.75190 (9)0.0338 (5)
H2440.71120.32200.77350.051*
O2450.5984 (3)0.19940 (12)0.72875 (8)0.0295 (5)
C2470.5848 (4)0.10911 (18)0.71435 (13)0.0347 (7)
H27A0.66360.09500.68220.052*
H27B0.46930.09620.70120.052*
H27C0.61200.07400.74970.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0357 (16)0.0378 (18)0.0225 (15)0.0068 (14)0.0055 (12)0.0050 (13)
C120.0355 (17)0.0340 (17)0.0331 (17)0.0042 (14)0.0079 (13)0.0097 (14)
C130.0268 (15)0.0288 (15)0.0296 (16)0.0036 (12)0.0020 (12)0.0013 (13)
C13a0.0233 (14)0.0258 (14)0.0219 (14)0.0061 (12)0.0014 (11)0.0005 (11)
C140.0250 (14)0.0216 (14)0.0210 (14)0.0046 (12)0.0008 (11)0.0013 (11)
N150.0280 (12)0.0249 (12)0.0191 (12)0.0053 (10)0.0005 (9)0.0024 (9)
C15a0.0245 (14)0.0255 (14)0.0209 (14)0.0068 (12)0.0016 (11)0.0038 (11)
C160.0288 (15)0.0269 (15)0.0239 (14)0.0059 (12)0.0002 (11)0.0013 (12)
C170.0325 (16)0.0269 (16)0.0319 (16)0.0057 (13)0.0053 (12)0.0063 (13)
C180.0392 (17)0.0314 (16)0.0263 (16)0.0117 (14)0.0057 (13)0.0077 (13)
C190.0343 (16)0.0320 (16)0.0211 (15)0.0119 (13)0.0009 (12)0.0019 (12)
C19a0.0270 (14)0.0245 (15)0.0207 (14)0.0084 (12)0.0002 (11)0.0012 (11)
N19b0.0286 (13)0.0256 (12)0.0192 (12)0.0055 (10)0.0015 (9)0.0014 (10)
C1410.0258 (14)0.0252 (14)0.0195 (14)0.0007 (12)0.0008 (11)0.0000 (11)
C1420.0314 (15)0.0231 (14)0.0225 (14)0.0032 (12)0.0035 (11)0.0007 (12)
C1430.0337 (16)0.0213 (14)0.0286 (15)0.0010 (12)0.0017 (12)0.0029 (12)
C1440.0305 (15)0.0269 (15)0.0206 (14)0.0022 (12)0.0013 (11)0.0037 (12)
C1450.0273 (14)0.0226 (14)0.0197 (14)0.0020 (12)0.0005 (11)0.0025 (11)
C1460.0266 (14)0.0231 (14)0.0216 (14)0.0005 (12)0.0007 (11)0.0025 (11)
O1440.0483 (13)0.0271 (11)0.0235 (11)0.0035 (10)0.0094 (9)0.0044 (9)
O1450.0423 (12)0.0214 (10)0.0218 (10)0.0007 (9)0.0025 (9)0.0007 (8)
C1470.0484 (19)0.0225 (15)0.0270 (16)0.0028 (14)0.0046 (14)0.0003 (12)
C210.0322 (15)0.0243 (14)0.0228 (15)0.0062 (12)0.0045 (12)0.0059 (12)
C220.0296 (15)0.0252 (15)0.0297 (15)0.0025 (12)0.0039 (12)0.0044 (12)
C230.0287 (15)0.0224 (14)0.0278 (15)0.0045 (12)0.0005 (12)0.0007 (12)
C23a0.0243 (14)0.0226 (14)0.0197 (14)0.0054 (11)0.0004 (11)0.0012 (11)
C240.0258 (14)0.0217 (14)0.0183 (13)0.0037 (12)0.0014 (11)0.0003 (11)
N250.0238 (12)0.0246 (12)0.0194 (12)0.0029 (10)0.0007 (9)0.0015 (9)
C25a0.0225 (14)0.0225 (14)0.0203 (14)0.0061 (11)0.0020 (11)0.0002 (11)
C260.0285 (15)0.0250 (15)0.0226 (14)0.0045 (12)0.0009 (11)0.0008 (12)
C270.0290 (15)0.0241 (14)0.0288 (15)0.0033 (12)0.0054 (12)0.0035 (12)
C280.0350 (16)0.0287 (16)0.0224 (15)0.0065 (13)0.0067 (12)0.0056 (12)
C290.0314 (16)0.0278 (15)0.0198 (14)0.0061 (13)0.0016 (11)0.0006 (12)
C29a0.0236 (14)0.0221 (14)0.0213 (14)0.0046 (11)0.0012 (11)0.0006 (11)
N29b0.0265 (12)0.0238 (12)0.0190 (12)0.0032 (10)0.0001 (9)0.0012 (9)
C2410.0262 (14)0.0253 (14)0.0202 (14)0.0005 (12)0.0004 (11)0.0002 (11)
C2420.0318 (15)0.0221 (14)0.0234 (14)0.0016 (12)0.0015 (12)0.0019 (11)
C2430.0345 (16)0.0207 (14)0.0260 (15)0.0036 (12)0.0038 (12)0.0030 (12)
C2440.0298 (15)0.0289 (15)0.0220 (14)0.0016 (12)0.0038 (12)0.0043 (12)
C2450.0273 (14)0.0233 (14)0.0222 (14)0.0008 (12)0.0008 (11)0.0017 (11)
C2460.0272 (14)0.0205 (13)0.0219 (14)0.0004 (12)0.0008 (11)0.0018 (11)
O2440.0512 (13)0.0284 (11)0.0217 (10)0.0044 (10)0.0125 (9)0.0049 (9)
O2450.0431 (12)0.0247 (10)0.0205 (10)0.0003 (9)0.0052 (9)0.0031 (8)
C2470.0517 (19)0.0259 (16)0.0264 (16)0.0001 (15)0.0069 (14)0.0030 (13)
Geometric parameters (Å, º) top
C11—N19b1.350 (4)C21—N29b1.354 (4)
C11—C121.362 (5)C21—C221.370 (4)
C11—H110.9500C21—H210.9500
C12—C131.399 (4)C22—C231.395 (4)
C12—H120.9500C22—H220.9500
C13—C13a1.376 (4)C23—C23a1.376 (4)
C13—H130.9500C23—H230.9500
C13a—N19b1.387 (4)C23a—N29b1.393 (3)
C13a—C141.425 (4)C23a—C241.421 (4)
C14—N151.303 (4)C24—N251.298 (3)
C14—C1411.467 (4)C24—C2411.478 (4)
N15—C15a1.389 (3)N25—C25a1.393 (3)
C15a—C161.388 (4)C25a—C29a1.390 (4)
C15a—C19a1.394 (4)C25a—C261.391 (4)
C16—C171.369 (4)C26—C271.369 (4)
C16—H160.9500C26—H260.9500
C17—C181.386 (4)C27—C281.388 (4)
C17—H170.9500C27—H270.9500
C18—C191.361 (4)C28—C291.362 (4)
C18—H180.9500C28—H280.9500
C19—C19a1.384 (4)C29—C29a1.387 (4)
C19—H190.9500C29—H290.9500
C19a—N19b1.381 (4)C29a—N29b1.385 (4)
C141—C1421.382 (4)C241—C2421.373 (4)
C141—C1461.392 (4)C241—C2461.398 (4)
C142—C1431.377 (4)C242—C2431.379 (4)
C142—H1420.9500C242—H2420.9500
C143—C1441.372 (4)C243—C2441.375 (4)
C143—H1430.9500C243—H2430.9500
C144—O1441.349 (3)C244—O2441.346 (3)
C144—C1451.386 (4)C244—C2451.391 (4)
C145—O1451.366 (3)C245—O2451.363 (3)
C145—C1461.373 (4)C245—C2461.375 (4)
C146—H1460.9500C246—H2460.9500
O144—H1440.9711O244—H2440.9649
O145—C1471.414 (3)O245—C2471.422 (3)
C147—H17A0.9800C247—H27A0.9800
C147—H17B0.9800C247—H27B0.9800
C147—H17C0.9800C247—H27C0.9800
N19b—C11—C12108.2 (3)N29b—C21—C22107.8 (3)
N19b—C11—H11125.9N29b—C21—H21126.1
C12—C11—H11125.9C22—C21—H21126.1
C11—C12—C13108.0 (3)C21—C22—C23108.5 (3)
C11—C12—H12126.0C21—C22—H22125.8
C13—C12—H12126.0C23—C22—H22125.8
C13a—C13—C12107.6 (3)C23a—C23—C22107.3 (3)
C13a—C13—H13126.2C23a—C23—H23126.3
C12—C13—H13126.2C22—C23—H23126.3
C13—C13a—N19b106.7 (2)C23—C23a—N29b107.1 (2)
C13—C13a—C14135.6 (3)C23—C23a—C24135.2 (3)
N19b—C13a—C14117.7 (2)N29b—C23a—C24117.6 (2)
N15—C14—C13a122.2 (2)N25—C24—C23a122.4 (2)
N15—C14—C141117.2 (2)N25—C24—C241117.8 (2)
C13a—C14—C141120.5 (2)C23a—C24—C241119.8 (2)
C14—N15—C15a119.2 (2)C24—N25—C25a119.1 (2)
C16—C15a—N15118.7 (3)C29a—C25a—C26118.1 (2)
C16—C15a—C19a118.9 (3)C29a—C25a—N25122.8 (2)
N15—C15a—C19a122.4 (3)C26—C25a—N25119.1 (2)
C17—C16—C15a120.4 (3)C27—C26—C25a121.0 (3)
C17—C16—H16119.8C27—C26—H26119.5
C15a—C16—H16119.8C25a—C26—H26119.5
C16—C17—C18119.9 (3)C26—C27—C28119.7 (3)
C16—C17—H17120.1C26—C27—H27120.1
C18—C17—H17120.1C28—C27—H27120.1
C19—C18—C17120.9 (3)C29—C28—C27120.6 (3)
C19—C18—H18119.6C29—C28—H28119.7
C17—C18—H18119.6C27—C28—H28119.7
C18—C19—C19a119.5 (3)C28—C29—C29a119.5 (3)
C18—C19—H19120.2C28—C29—H29120.2
C19a—C19—H19120.2C29a—C29—H29120.2
N19b—C19a—C19122.5 (3)N29b—C29a—C29122.4 (2)
N19b—C19a—C15a117.1 (2)N29b—C29a—C25a116.6 (2)
C19—C19a—C15a120.5 (3)C29—C29a—C25a121.0 (3)
C11—N19b—C19a129.0 (2)C21—N29b—C29a129.1 (2)
C11—N19b—C13a109.5 (2)C21—N29b—C23a109.2 (2)
C19a—N19b—C13a121.5 (2)C29a—N29b—C23a121.5 (2)
C142—C141—C146118.6 (2)C242—C241—C246118.3 (3)
C142—C141—C14123.4 (2)C242—C241—C24123.0 (2)
C146—C141—C14118.0 (2)C246—C241—C24118.7 (2)
C143—C142—C141120.3 (3)C241—C242—C243120.8 (3)
C143—C142—H142119.9C241—C242—H242119.6
C141—C142—H142119.9C243—C242—H242119.6
C144—C143—C142121.0 (3)C244—C243—C242121.2 (3)
C144—C143—H143119.5C244—C243—H243119.4
C142—C143—H143119.5C242—C243—H243119.4
O144—C144—C143118.1 (3)O244—C244—C243118.5 (3)
O144—C144—C145122.7 (2)O244—C244—C245122.8 (3)
C143—C144—C145119.2 (3)C243—C244—C245118.6 (3)
O145—C145—C146124.2 (2)O245—C245—C246124.8 (2)
O145—C145—C144115.7 (2)O245—C245—C244115.0 (2)
C146—C145—C144120.1 (3)C246—C245—C244120.2 (3)
C145—C146—C141120.8 (3)C245—C246—C241120.9 (3)
C145—C146—H146119.6C245—C246—H246119.5
C141—C146—H146119.6C241—C246—H246119.5
C144—O144—H144113.4C244—O244—H244112.1
C145—O145—C147116.7 (2)C245—O245—C247117.0 (2)
O145—C147—H17A109.5O245—C247—H27A109.5
O145—C147—H17B109.5O245—C247—H27B109.5
H17A—C147—H17B109.5H27A—C247—H27B109.5
O145—C147—H17C109.5O245—C247—H27C109.5
H17A—C147—H17C109.5H27A—C247—H27C109.5
H17B—C147—H17C109.5H27B—C247—H27C109.5
N19b—C11—C12—C130.4 (3)N29b—C21—C22—C230.4 (3)
C11—C12—C13—C13a0.8 (3)C21—C22—C23—C23a0.6 (3)
C12—C13—C13a—N19b0.9 (3)C22—C23—C23a—N29b0.6 (3)
C12—C13—C13a—C14179.9 (3)C22—C23—C23a—C24177.6 (3)
C13—C13a—C14—N15179.8 (3)C23—C23a—C24—N25178.6 (3)
N19b—C13a—C14—N150.9 (4)N29b—C23a—C24—N251.7 (4)
C13—C13a—C14—C1413.1 (5)C23—C23a—C24—C2412.1 (5)
N19b—C13a—C14—C141175.7 (2)N29b—C23a—C24—C241174.7 (2)
C13a—C14—N15—C15a2.4 (4)C23a—C24—N25—C25a3.1 (4)
C141—C14—N15—C15a174.4 (2)C241—C24—N25—C25a173.4 (2)
C14—N15—C15a—C16176.3 (2)C24—N25—C25a—C29a1.8 (4)
C14—N15—C15a—C19a1.6 (4)C24—N25—C25a—C26176.6 (2)
N15—C15a—C16—C17178.8 (3)C29a—C25a—C26—C270.9 (4)
C19a—C15a—C16—C170.8 (4)N25—C25a—C26—C27177.6 (2)
C15a—C16—C17—C180.4 (4)C25a—C26—C27—C280.1 (4)
C16—C17—C18—C190.1 (4)C26—C27—C28—C290.5 (4)
C17—C18—C19—C19a0.4 (4)C27—C28—C29—C29a0.5 (4)
C18—C19—C19a—N19b178.7 (3)C28—C29—C29a—N29b178.6 (2)
C18—C19—C19a—C15a0.8 (4)C28—C29—C29a—C25a0.3 (4)
C16—C15a—C19a—N19b178.6 (2)C26—C25a—C29a—N29b179.4 (2)
N15—C15a—C19a—N19b0.6 (4)N25—C25a—C29a—N29b1.0 (4)
C16—C15a—C19a—C191.0 (4)C26—C25a—C29a—C291.0 (4)
N15—C15a—C19a—C19179.0 (3)N25—C25a—C29a—C29177.4 (2)
C12—C11—N19b—C19a178.1 (3)C22—C21—N29b—C29a176.6 (3)
C12—C11—N19b—C13a0.2 (3)C22—C21—N29b—C23a0.1 (3)
C19—C19a—N19b—C110.6 (4)C29—C29a—N29b—C210.1 (4)
C15a—C19a—N19b—C11179.8 (3)C25a—C29a—N29b—C21178.5 (3)
C19—C19a—N19b—C13a177.4 (3)C29—C29a—N29b—C23a176.0 (2)
C15a—C19a—N19b—C13a2.2 (4)C25a—C29a—N29b—C23a2.4 (4)
C13—C13a—N19b—C110.7 (3)C23—C23a—N29b—C210.3 (3)
C14—C13a—N19b—C11179.9 (2)C24—C23a—N29b—C21178.0 (2)
C13—C13a—N19b—C19a177.7 (2)C23—C23a—N29b—C29a176.5 (2)
C14—C13a—N19b—C19a1.5 (4)C24—C23a—N29b—C29a1.2 (4)
N15—C14—C141—C142147.5 (3)N25—C24—C241—C242145.9 (3)
C13a—C14—C141—C14235.7 (4)C23a—C24—C241—C24237.5 (4)
N15—C14—C141—C14632.8 (4)N25—C24—C241—C24634.0 (4)
C13a—C14—C141—C146144.0 (3)C23a—C24—C241—C246142.6 (3)
C146—C141—C142—C1431.9 (4)C246—C241—C242—C2431.7 (4)
C14—C141—C142—C143177.8 (3)C24—C241—C242—C243178.4 (3)
C141—C142—C143—C1441.6 (4)C241—C242—C243—C2440.1 (4)
C142—C143—C144—O144179.6 (3)C242—C243—C244—O244179.1 (3)
C142—C143—C144—C1450.3 (4)C242—C243—C244—C2452.0 (4)
O144—C144—C145—O1450.8 (4)O244—C244—C245—O2451.8 (4)
C143—C144—C145—O145178.4 (3)C243—C244—C245—O245177.1 (3)
O144—C144—C145—C146178.9 (3)O244—C244—C245—C246178.6 (3)
C143—C144—C145—C1461.9 (4)C243—C244—C245—C2462.5 (4)
O145—C145—C146—C141178.8 (3)O245—C245—C246—C241178.7 (3)
C144—C145—C146—C1411.6 (4)C244—C245—C246—C2410.9 (4)
C142—C141—C146—C1450.3 (4)C242—C241—C246—C2451.2 (4)
C14—C141—C146—C145179.4 (3)C24—C241—C246—C245178.9 (3)
C146—C145—O145—C1477.1 (4)C246—C245—O245—C2476.7 (4)
C144—C145—O145—C147172.6 (2)C244—C245—O245—C247173.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O144—H144···N250.971.802.703 (3)154
O244—H244···N15i0.961.842.726 (3)151
C11—H11···O145ii0.952.573.450 (4)154
C16—H16···O244iii0.952.493.215 (4)133
C21—H21···O245iv0.952.493.380 (3)156
C26—H26···O1440.952.533.249 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.

Experimental details

(Inm)(Im)
Crystal data
Chemical formulaC18H14N2O2C18H14N2O2
Mr290.31290.31
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)7.9278 (8), 15.2929 (18), 22.410 (4)7.9278 (8), 15.2929 (18), 22.410 (4)
β (°) 90.326 (12) 90.326 (12)
V3)2717.0 (6)2717.0 (6)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.50 × 0.26 × 0.180.50 × 0.26 × 0.18
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.944, 0.9830.944, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5057, 5057, 3891 34020, 5057, 3891
Rint0.0000.061
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.04 0.053, 0.159, 1.05
No. of reflections50575057
No. of parameters400400
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.260.22, 0.27

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (Inm) top
C11—C121.361 (5)C21—C221.370 (4)
C12—C131.398 (4)C22—C231.395 (4)
C13—C13a1.378 (4)C23—C23a1.376 (4)
C13a—C141.424 (4)C23a—C241.419 (4)
C14—N151.303 (4)C24—N251.299 (4)
N15—C15a1.389 (4)N25—C25a1.393 (3)
C15a—C161.389 (4)C25a—C261.391 (4)
C16—C171.373 (4)C26—C271.369 (4)
C17—C181.385 (4)C27—C281.388 (4)
C18—C191.361 (4)C28—C291.363 (4)
C19—C19a1.384 (4)C29—C29a1.385 (4)
C19a—N19b1.382 (4)C29a—N29b1.386 (4)
N19b—C111.350 (4)N29b—C211.355 (4)
C13a—N19b1.386 (4)C23a—N29b1.393 (3)
C15a—C19a1.395 (4)C25a—C29a1.391 (4)
O145—C145—C144115.6 (2)O245—C245—C244115.0 (2)
O145—C145—C146124.3 (3)O245—C245—C246124.8 (3)
C145—O145—C147116.7 (2)C245—O245—C247116.9 (2)
C13a—C14—C141—C14235.5 (4)C23a—C24—C241—C24237.3 (4)
C144—C145—O145—C147172.5 (3)C244—C245—O245—C247173.6 (3)
C143—C144—O144—H144158C243—C244—O244—H244161
Hydrogen-bond geometry (Å, º) for (Inm) top
D—H···AD—HH···AD···AD—H···A
O144—H144···N250.981.772.703 (3)158
O244—H244···N15i0.951.862.725 (3)150
C11—H11···O145ii0.952.573.451 (4)154
C16—H16···O244iii0.952.493.212 (4)133
C21—H21···O245iv0.952.493.380 (3)156
C26—H26···O1440.952.533.249 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds