Download citation
Download citation
link to html
High-quality crystals of two bis­(phenolate)titanium complexes, namely dichlorido{4,4'-dimethyl-2,2'-[cyclo­hexane-1,2-diyl­bis­(sulfanedi­yl)]diphenolato}titanium(IV), [Ti(C20H22O2S2)Cl2], (I), and dichlorido{2,2'-[cyclo­hexane-1,2-diylbis(sulfanedi­yl)]­diphenolato}titanium(IV), [Ti(C18H18O2S2)Cl2], (II), were obtained by reactive crystallization. Depending on the solvent, compound (II) was obtained as unsolvated (IIa) or as the toluene hemisolvate, [Ti(C18H18O2S2)Cl2]·0.5C7H8, (IIb). These systems without bulky substituents on the aromatic phenolate rings serve as ideal model compounds for precatalysts. The excellent X-ray diffraction data will help clarify the nature of the mismatched inter­actions between the soft S atoms within the ligand and the hard titanium center. Mol­ecule (I) has crystallographic C2 symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109042280/sk3350sup1.cif
Contains datablocks global, I, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109042280/sk3350Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109042280/sk3350IIasup3.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109042280/sk3350IIbsup4.hkl
Contains datablock IIb

CCDC references: 760069; 760070; 760071

Comment top

Bis(phenolate) complexes of the early transition metals such as titanium are precatalysts for olefin polymerization. The ligand structure has a strong influence on the stereochemistry of the resulting polymer (Capacchione et al., 2004; Beckerle et al., 2007; Cohen et al., 2007). For this reason the bis(phenolate) ligands have been tuned by different substituents on the aromatic rings (R1 and R2) as well as by modifying the bridging unit. S atoms as part of the bridge can improve the catalytic activity, obviously as a result of hemilabile interactions between the soft donor S atom and the hard metal center (Froese et al., 1999). In several S—C—C—S bridged bis(phenolato)titanium complexes, the M···S interactions lead to a stereorigid tetradentate (OSSO) coordination in solution (Capacchione et al., 2005). The nature of this so-called mismatched interaction is still not well understood and further details are not available from routine structure data. Ideal model compounds for structural studies should be as simple as possible, keeping the number of parameters low. Catalytically active systems usually contain bulky substituents such as t-butyl groups in ortho position of the ring systems, which are often found disordered in the solid state. According to a previous structural comparison, the ortho substituents in bis(phenolate)–metal complexes barely influence the bond parameters around the metal center (Capacchione et al., 2005).

Comparatively good results were obtained recently for a routine crystal structure determination of (I) (Meppelder et al., 2008). We have now obtained high-quality crystals of this compound by reactive crystallization. In an analogous reaction, we have obtained crystals of a compound without the 4-methyl substituents and without solvent in the crystal structure, (IIa), as well as a toluene solvate, (IIb). Excellent diffraction results gave a resolution of sinθ/λ > 1.03 for all of these examples and have led to good agreement factors in spite of the outstanding ratio of reflections to parameters. The molecular structures of the three compounds are shown in Figs. 1–3.

Although the structure model of (IIb) should be even more simple than that of (I), it only shows idealized C2 symmetry. As reported previously, (I) crystallizes on a crystallographic C2 axis. In addition in (IIb), solvent molecules are incorporated around inversion centers in the space group P21/n. The incorporated toluene solvent molecules are disordered in the crystal structure. There are no significant differences between the molecular structures. As in the parent molecule with a CH2CH2 bridge (Snell et al., 2003), the metal center adopts a distorted octahedral geometry, coordinated by the two chloro ligands, both O-atom donors of the bis(phenolate) ligands and both S atoms. The Cl ligands and the S atoms are found in one plane. Both O atoms occupy pseudoapical positions. The Ti—S distances are 2.6188 (2) Å in (I), 2.6141 (2) and 2.6270 (2) Å in (IIa), and 2.6030 (3) and 2.6261 (3) Å in (IIb), and are comparable to the Ti—S lengths in related compounds (ranging from 2.6 to 2.9 Å; Capacchione et al., 2005). The stabilization of the helical configuration of the molecules by the relatively short Ti—S bond distances was noted previously. The overall geometry is chiral with a gauche-like conformation of the S—C—C—S bridge. The centrosymmetric packing arrangement contains both enantiomers.

Packing diagrams (Figs. 4 and 5) show similarities between the arrangement of (IIa) and (IIb), which both crystallize in space group P 21/n. The projections along the crystallographic a axis show the positions of the toluene solvent molecules. All three crystal structures exhibit close interactomic interactions involving the H atoms of the cyclohexyl fragment and the O atoms of neighboring bis(phenolate) ligands.

The close similarity of the molecular structure parameters underlines that (I) and (IIa) are suitable model compounds for bis(phenolate)–metal-based precatalysts. We are currently working on the further interpretation of the diffraction data. By multipole refinement, we are now determining the electron density distribution in (I) and (IIa) to establish the nature of the interaction between the hard metal center and the soft S atom. These data will give further insight into the extent of oxygen–Ti π interaction in this class of compounds (Snell et al., 2003).

Related literature top

For related literature, see: Beckerle et al. (2007); Capacchione et al. (2004, 2005); Cohen et al. (2007); Froese et al. (1999); Meppelder et al. (2008); Snell et al. (2003).

Experimental top

Compound (I) was prepared as described previously (Meppelder et al., 2008). High-quality crystals were obtained by reactive crystallization: A Schlenk tube containing TiCl4 (0.2 mmol) in toluene (2 ml) was covered with a layer of pure solvent (3 ml). A solution of bis(phenol) (0.2 mmol) in the same solvent (2 ml) was carefully added on top. Crystals formed within 3 d. The proligand 2,2'-[cyclohexane-1,2-diylbis(sulfanediyl)]diphenol was synthesized according to a literature procedure (Meppelder et al., 2008) starting from o-mercaptophenol. Cyclohexene oxide (4.49 ml, 55 mmol) was added to sodium 2-mercaptophenolate (50 mmol) in ethanol (50 ml) and heated under reflux for 5 h. After removing the solvent under reduced pressure, the residue was dissolved in diethyl ether, washed with a saturated NH4Cl solution and dried over MgSO4. Evaporation of the solvent gave 10.704 g (47.7 mmol) of 2-(2-hydroxycyclohexylthio)phenol. This was dissolved in CH2Cl2 (100 ml) and thionyl chloride (3.47 ml, 47.7 mmol) was added at 243 K. Removing the volatiles under reduced pressure left a residue that was treated with CH2Cl2, washed with a solution of NaHCO3 and dried over MgSO4. Evaporation of the solvent gave 10.143 g (41.8 mmol) of 2-(2-chlorocyclohexylthio)phenol as a brown oil. It was dissolved in MeOH and CH2Cl2 and added to o-mercaptophenolate (41.8 mmol). After refluxing for 3 h and removing the solvent in vacuo a residue was obtained that was treated with CH2Cl2 and filtered. Crystallization from ethanol and pentane (3:1) at 243 K gave 2,2'-[cyclohexane-1,2-diylbis(sulfanediyl)]diphenol as colorless needles in a yield of 69% (9.53 g, 28.7 mmol). 1H NMR (400 MHz, CDCl3): δ 1.00–1.15 (m, 2H, CH of C6H10), 1.23–1.41 (CH2 of C6H10), 2.67 (qd, 2H, J = 9.7 amd 3.3 Hz, CH—S), 6.80 (dt, 2H, J = 7.6 and 1.3 Hz, arom. CH), 6.96 (dd, 2H, J = 8.2 and 1.1 Hz, arom. CH), 7.18 (s, 2H, OH), 7.24 (ddd, 2H, J = 8.1, 7.4 and 1.6 Hz, arom. CH), 7.39 (dd, 2H, J = 7.7 and 1.5 Hz, arom. CH); 13C NMR (100 MHz, CDCl3): δ 25.5 (s, CH of C6H10), 33.8 (s, CH of C6H10), 52.3 (s, CH—S), 115.3 (s, arom. C), 115.8 (s, arom. C), 120.6 (s, arom. C), 131.8 (s, arom. C), 137.6 (s, arom. C), 158.1 (s, arom. C).

Compound (II) was obtained by reactive crystallization from TiCl4 and bis(phenol) using the solvent benzene (IIa) or toluene (IIb) [quantities of reageants?]. 1H NMR (400 MHz, tetrahydrofuran-d8): δ 1.08–1.27 (m, 2H, CH of C6H10), 1.29–1.43 (m, 2H, CH of C6H10), 1.46–1.59 (m, 2H, CH2 of C6H10), 1.95–2.07 (m, 2H, CH2 of C6H10), 2.90–3.02 (m, 2H, S—CH), 6.59–6.68 (m, 2H, arom. CH), 6.73 (dd, 2H, J = 8.1 and 1.2 Hz, arom. CH), 7.05 (ddd, 2H, J = 8.1, 7.3 and 1.7 Hz, arom. CH), 7.22 (dd, 2H, J = 7.7 and 1.6 Hz, arom. CH); 13C NMR (100 MHz, tetrahydrofuran-d8): δ 23.8 (s, CH of C6H10), 30.9 (s, CH of C6H10), 50.4 (s, CH—S), 114.8 (s, arom. C), 115.1 (s, arom. C), 119.3 (s, arom. C), 129.6 (s, arom. C), 135.5 (s, arom. C), 157.9 (s, arom. C).

Refinement top

All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.98 (methyl), 0.99 (cyclohexyl CH2) or 1.00 Å (cyclohexyl CH), and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(methyl C) [this is not the case for Uiso(H) values for (I); were these refined freely?].

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrari radii. [Symmetry codes: (i) -x + 1, -y, -z + 1/2.]
[Figure 2] Fig. 2. The molecular structure of (IIa). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrari radii.
[Figure 3] Fig. 3. The molecular structure of (IIb). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrari radii.
[Figure 4] Fig. 4. The crystal packing of (IIa), viewed along the a axis. For the sake of clarity, H atoms have been omitted.
[Figure 5] Fig. 5. The crystal packing of (IIb), viewed along the a axis. For the sake of clarity, H atoms have been omitted.
(I) dichlorido{4,4'-dimethyl-2,2'-[cyclohexane-1,2- diylbis(sulfanediyl)]diphenolato}titanium(IV) top
Crystal data top
[Ti(C20H22O2S2)Cl2]F(000) = 984
Mr = 477.30Dx = 1.468 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.7948 (2) ÅCell parameters from 6964 reflections
b = 10.9672 (2) Åθ = 2.7–42.9°
c = 18.5874 (3) ŵ = 0.85 mm1
β = 101.105 (1)°T = 100 K
V = 2159.34 (7) Å3Prism, red
Z = 40.29 × 0.24 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
10145 independent reflections
Radiation source: fine-focus sealed tube7452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 47.8°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 2222
Tmin = 0.791, Tmax = 0.883k = 2221
52551 measured reflectionsl = 3238
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2037P]
where P = (Fo2 + 2Fc2)/3
10145 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ti(C20H22O2S2)Cl2]V = 2159.34 (7) Å3
Mr = 477.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.7948 (2) ŵ = 0.85 mm1
b = 10.9672 (2) ÅT = 100 K
c = 18.5874 (3) Å0.29 × 0.24 × 0.15 mm
β = 101.105 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
10145 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
7452 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.883Rint = 0.060
52551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 1.07 e Å3
10145 reflectionsΔρmin = 0.75 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F\^2\^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F\^2\^, conventional R-factors R are based on F, with F set to zero for negative F\^2\^. The threshold expression of F\^2\^ > σ(F\^2\^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F\^2\^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.50000.468358 (18)0.25000.01403 (4)
Cl10.65277 (2)0.34440 (2)0.310568 (12)0.02210 (5)
S10.629178 (16)0.651102 (19)0.317412 (11)0.01551 (4)
O10.41634 (6)0.50037 (5)0.32706 (3)0.01667 (10)
C10.44142 (7)0.57781 (7)0.38397 (4)0.01485 (11)
C20.54474 (7)0.65682 (7)0.39009 (4)0.01555 (12)
C30.57655 (8)0.73407 (9)0.45066 (4)0.01971 (14)
H30.64910.78460.45520.025 (3)*
C40.50272 (8)0.73765 (9)0.50438 (4)0.02122 (15)
C50.39833 (8)0.65958 (9)0.49692 (4)0.02047 (14)
H50.34700.66120.53310.030 (4)*
C60.36794 (7)0.57997 (8)0.43824 (4)0.01809 (13)
H60.29740.52700.43490.030 (4)*
C70.53420 (12)0.82285 (12)0.56888 (6)0.0332 (2)
H7A0.59900.88080.56040.056 (5)*
H7B0.56590.77570.61340.064 (6)*
H7C0.45810.86750.57480.050 (5)*
C80.57147 (7)0.78640 (7)0.26277 (4)0.01534 (12)
H80.60980.78490.21790.022 (3)*
C90.61727 (10)0.90263 (9)0.30505 (5)0.02400 (17)
H9A0.58560.90410.35160.019 (3)*
H9B0.71070.90270.31720.035 (4)*
C100.57160 (13)1.01629 (9)0.26044 (7)0.0330 (2)
H10A0.60031.09010.28960.044 (4)*
H10B0.60821.01820.21550.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01743 (7)0.01138 (7)0.01543 (8)0.0000.00853 (6)0.000
Cl10.02806 (9)0.01894 (9)0.02266 (9)0.00812 (7)0.01326 (7)0.00696 (7)
S10.01036 (6)0.01779 (9)0.01892 (8)0.00076 (5)0.00421 (5)0.00193 (6)
O10.0187 (2)0.0162 (2)0.0173 (2)0.00272 (18)0.00900 (19)0.00378 (18)
C10.0152 (2)0.0164 (3)0.0136 (3)0.0014 (2)0.0044 (2)0.0004 (2)
C20.0132 (2)0.0189 (3)0.0143 (3)0.0010 (2)0.0020 (2)0.0003 (2)
C30.0182 (3)0.0243 (4)0.0153 (3)0.0017 (3)0.0003 (2)0.0024 (3)
C40.0238 (3)0.0257 (4)0.0132 (3)0.0003 (3)0.0011 (2)0.0032 (3)
C50.0237 (3)0.0254 (4)0.0132 (3)0.0010 (3)0.0057 (2)0.0019 (3)
C60.0191 (3)0.0208 (4)0.0159 (3)0.0007 (3)0.0073 (2)0.0015 (2)
C70.0384 (5)0.0423 (6)0.0186 (4)0.0100 (5)0.0049 (4)0.0130 (4)
C80.0165 (3)0.0128 (3)0.0189 (3)0.0031 (2)0.0089 (2)0.0021 (2)
C90.0320 (4)0.0180 (4)0.0258 (4)0.0109 (3)0.0152 (3)0.0077 (3)
C100.0572 (7)0.0132 (3)0.0360 (5)0.0096 (4)0.0276 (5)0.0042 (3)
Geometric parameters (Å, º) top
Ti1—O11.8678 (6)C5—C61.3863 (12)
Ti1—O1i1.8678 (6)C5—H50.9500
Ti1—Cl1i2.2628 (2)C6—H60.9500
Ti1—Cl12.2628 (2)C7—H7A0.9800
Ti1—S12.6188 (2)C7—H7B0.9800
Ti1—S1i2.6188 (2)C7—H7C0.9800
S1—C21.7703 (8)C8—C8i1.5246 (15)
S1—C81.8378 (8)C8—C91.5288 (11)
O1—C11.3428 (9)C8—H81.0000
C1—C61.3984 (10)C9—C101.5255 (15)
C1—C21.3996 (11)C9—H9A0.9900
C2—C31.3979 (11)C9—H9B0.9900
C3—C41.3930 (12)C10—C10i1.520 (3)
C3—H30.9500C10—H10A0.9900
C4—C51.4007 (13)C10—H10B0.9900
C4—C71.5062 (13)
O1—Ti1—O1i158.33 (4)C6—C5—C4121.79 (8)
O1—Ti1—Cl1i94.633 (19)C6—C5—H5119.1
O1i—Ti1—Cl1i98.34 (2)C4—C5—H5119.1
O1—Ti1—Cl198.34 (2)C5—C6—C1119.81 (8)
O1i—Ti1—Cl194.633 (19)C5—C6—H6120.1
Cl1i—Ti1—Cl1106.142 (15)C1—C6—H6120.1
O1—Ti1—S177.337 (19)C4—C7—H7A109.5
O1i—Ti1—S186.07 (2)C4—C7—H7B109.5
Cl1i—Ti1—S1165.407 (9)H7A—C7—H7B109.5
Cl1—Ti1—S187.242 (8)C4—C7—H7C109.5
O1—Ti1—S1i86.07 (2)H7A—C7—H7C109.5
O1i—Ti1—S1i77.337 (19)H7B—C7—H7C109.5
Cl1i—Ti1—S1i87.242 (8)C8i—C8—C9111.58 (5)
Cl1—Ti1—S1i165.407 (9)C8i—C8—S1112.77 (4)
S1—Ti1—S1i80.132 (10)C9—C8—S1110.33 (6)
C2—S1—C8102.92 (3)C8i—C8—H8107.3
C2—S1—Ti195.00 (3)C9—C8—H8107.3
C8—S1—Ti1105.12 (3)S1—C8—H8107.3
C1—O1—Ti1131.99 (5)C10—C9—C8111.30 (8)
O1—C1—C6121.51 (7)C10—C9—H9A109.4
O1—C1—C2119.49 (6)C8—C9—H9A109.4
C6—C1—C2118.99 (7)C10—C9—H9B109.4
C3—C2—C1120.60 (7)C8—C9—H9B109.4
C3—C2—S1123.59 (6)H9A—C9—H9B108.0
C1—C2—S1115.81 (6)C10i—C10—C9110.19 (7)
C4—C3—C2120.57 (8)C10i—C10—H10A109.6
C4—C3—H3119.7C9—C10—H10A109.6
C2—C3—H3119.7C10i—C10—H10B109.6
C3—C4—C5118.18 (8)C9—C10—H10B109.6
C3—C4—C7121.03 (9)H10A—C10—H10B108.1
C5—C4—C7120.79 (8)
Symmetry code: (i) x+1, y, z+1/2.
(IIa) dichlorido{2,2'-[cyclohexane-1,2-diylbis(sulfanediyl)]diphenolato}titanium(IV) top
Crystal data top
[Ti(C18H18O2S2)Cl2]F(000) = 920
Mr = 449.24Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4627 (7) ÅCell parameters from 82760 reflections
b = 16.8985 (4) Åθ = 2.9–36.3°
c = 12.0810 (11) ŵ = 0.98 mm1
β = 104.195 (6)°T = 100 K
V = 1872.8 (2) Å3Fragment, red
Z = 40.30 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
28176 independent reflections
Radiation source: fine-focus sealed tube22536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 60.0°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 2222
Tmin = 0.759, Tmax = 0.844k = 041
257682 measured reflectionsl = 029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.24 w = 1/[σ^2^(Fo^2^) + (0.0269P)^2^ + 0.5527P]
where P = (Fo^2^ + 2Fc^2^)/3
28176 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ti(C18H18O2S2)Cl2]V = 1872.8 (2) Å3
Mr = 449.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4627 (7) ŵ = 0.98 mm1
b = 16.8985 (4) ÅT = 100 K
c = 12.0810 (11) Å0.30 × 0.22 × 0.18 mm
β = 104.195 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
28176 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
22536 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.844Rint = 0.053
257682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.24Δρmax = 0.84 e Å3
28176 reflectionsΔρmin = 0.73 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.391941 (11)0.404359 (6)0.177709 (8)0.01005 (1)
Cl10.45087 (2)0.337295 (10)0.033394 (14)0.01702 (3)
Cl20.216452 (18)0.330863 (10)0.224790 (16)0.01741 (3)
S10.362857 (16)0.507412 (9)0.333419 (12)0.01013 (2)
S20.603073 (17)0.501657 (8)0.167314 (12)0.01033 (2)
O10.26987 (5)0.48047 (3)0.09177 (4)0.01341 (6)
O20.54628 (5)0.36568 (3)0.29468 (4)0.01151 (6)
C10.19830 (6)0.54178 (3)0.12310 (5)0.01175 (7)
C20.22848 (6)0.56395 (3)0.23886 (5)0.01125 (7)
C30.15042 (7)0.62488 (4)0.27487 (6)0.01427 (8)
H30.17070.63900.35330.017*
C40.04283 (7)0.66467 (4)0.19517 (7)0.01665 (10)
H40.01000.70660.21880.020*
C50.01283 (7)0.64277 (4)0.08041 (7)0.01740 (10)
H50.06190.66950.02650.021*
C60.09026 (7)0.58249 (4)0.04333 (6)0.01548 (9)
H60.07010.56910.03530.019*
C70.52787 (6)0.56925 (3)0.35809 (4)0.00966 (6)
H70.60940.53760.40630.012*
C80.57159 (6)0.58972 (3)0.24800 (4)0.00953 (6)
H80.48890.61980.19840.011*
C90.70609 (6)0.64374 (4)0.27085 (5)0.01288 (7)
H9A0.79210.61390.31410.015*
H9B0.72530.66000.19720.015*
C100.68506 (7)0.71749 (4)0.33840 (6)0.01612 (9)
H10A0.77500.74980.35450.019*
H10B0.60450.74990.29270.019*
C110.64989 (7)0.69342 (4)0.45034 (6)0.01599 (9)
H11A0.63680.74140.49390.019*
H11B0.73200.66250.49710.019*
C120.51054 (7)0.64357 (4)0.42650 (5)0.01285 (7)
H12A0.42760.67540.38290.015*
H12B0.48910.62790.49970.015*
C130.73737 (6)0.44920 (3)0.26808 (5)0.01115 (7)
C140.68789 (6)0.38515 (3)0.32288 (5)0.01003 (6)
C150.78821 (6)0.34152 (4)0.40452 (5)0.01281 (7)
H150.75620.29830.44230.015*
C160.93511 (7)0.36186 (4)0.43007 (7)0.01683 (10)
H161.00290.33260.48630.020*
C170.98442 (7)0.42461 (5)0.37431 (8)0.01889 (11)
H171.08510.43790.39260.023*
C180.88586 (7)0.46771 (4)0.29187 (7)0.01576 (9)
H180.91920.50940.25200.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01124 (3)0.00770 (3)0.00980 (3)0.00018 (2)0.00011 (2)0.00017 (2)
Cl20.01375 (5)0.01515 (6)0.02212 (7)0.00376 (4)0.00206 (5)0.00236 (5)
Cl10.02394 (7)0.01283 (5)0.01256 (5)0.00360 (5)0.00112 (5)0.00339 (4)
S20.01379 (5)0.00906 (4)0.00876 (4)0.00020 (3)0.00399 (4)0.00046 (3)
S10.01093 (4)0.00999 (4)0.00968 (4)0.00039 (3)0.00293 (3)0.00146 (3)
O20.01050 (13)0.01058 (13)0.01218 (13)0.00130 (10)0.00037 (10)0.00228 (10)
O10.01617 (16)0.01114 (14)0.01108 (14)0.00266 (12)0.00020 (12)0.00011 (11)
C140.01012 (15)0.00943 (15)0.01054 (15)0.00046 (12)0.00250 (12)0.00056 (12)
C130.01105 (16)0.01013 (16)0.01311 (17)0.00084 (12)0.00457 (13)0.00111 (13)
C180.01141 (18)0.0139 (2)0.0237 (3)0.00090 (15)0.00764 (18)0.00303 (18)
C170.00997 (18)0.0174 (2)0.0294 (3)0.00157 (17)0.00508 (19)0.0042 (2)
C160.01062 (18)0.0164 (2)0.0223 (3)0.00236 (16)0.00176 (17)0.00342 (19)
C150.01141 (17)0.01236 (18)0.01418 (19)0.00127 (14)0.00220 (14)0.00264 (14)
C80.01051 (15)0.00856 (14)0.00939 (14)0.00047 (11)0.00218 (12)0.00030 (11)
C70.00998 (15)0.01011 (15)0.00861 (14)0.00046 (12)0.00174 (12)0.00001 (11)
C120.01235 (17)0.01337 (18)0.01265 (18)0.00124 (14)0.00272 (14)0.00327 (14)
C110.0142 (2)0.0158 (2)0.0167 (2)0.00076 (16)0.00135 (16)0.00694 (17)
C100.0152 (2)0.01112 (18)0.0211 (2)0.00255 (15)0.00275 (18)0.00228 (17)
C90.01178 (17)0.01226 (18)0.01469 (19)0.00265 (14)0.00346 (14)0.00054 (14)
C20.00961 (15)0.01063 (16)0.01315 (17)0.00005 (12)0.00212 (13)0.00064 (13)
C10.01165 (16)0.00952 (15)0.01267 (17)0.00008 (13)0.00026 (13)0.00139 (13)
C60.0151 (2)0.01141 (18)0.0168 (2)0.00019 (15)0.00211 (17)0.00264 (15)
C50.01241 (19)0.01174 (19)0.0249 (3)0.00063 (15)0.00144 (18)0.00335 (18)
C40.01074 (18)0.01207 (19)0.0264 (3)0.00072 (15)0.00315 (18)0.00037 (18)
C30.01046 (17)0.01338 (19)0.0194 (2)0.00020 (14)0.00444 (16)0.00133 (16)
Geometric parameters (Å, º) top
Ti1—O11.8649 (5)C8—H81.0000
Ti1—O21.8828 (5)C7—C121.5341 (8)
Ti1—Cl22.2554 (2)C7—H71.0000
Ti1—Cl12.2609 (2)C12—C111.5314 (9)
Ti1—S22.6141 (2)C12—H12A0.9900
Ti1—S12.6270 (2)C12—H12B0.9900
S2—C131.7675 (6)C11—C101.5249 (11)
S2—C81.8428 (5)C11—H11A0.9900
S1—C21.7670 (6)C11—H11B0.9900
S1—C71.8413 (6)C10—C91.5293 (9)
O2—C141.3401 (7)C10—H10A0.9900
O1—C11.3421 (8)C10—H10B0.9900
C14—C151.3993 (8)C9—H9A0.9900
C14—C131.4076 (8)C9—H9B0.9900
C13—C181.3988 (8)C2—C31.3973 (8)
C18—C171.3916 (10)C2—C11.4078 (8)
C18—H180.9500C1—C61.4014 (8)
C17—C161.3965 (10)C6—C51.3914 (10)
C17—H170.9500C6—H60.9500
C16—C151.3912 (9)C5—C41.3952 (12)
C16—H160.9500C5—H50.9500
C15—H150.9500C4—C31.3911 (10)
C8—C71.5264 (7)C4—H40.9500
C8—C91.5352 (8)C3—H30.9500
O1—Ti1—O2156.60 (2)C8—C7—S1112.82 (4)
O1—Ti1—Cl297.257 (18)C12—C7—S1110.70 (4)
O2—Ti1—Cl295.919 (16)C8—C7—H7107.1
O1—Ti1—Cl198.778 (17)C12—C7—H7107.1
O2—Ti1—Cl196.440 (17)S1—C7—H7107.1
Cl2—Ti1—Cl1104.745 (9)C11—C12—C7110.54 (5)
O1—Ti1—S285.172 (18)C11—C12—H12A109.5
O2—Ti1—S278.060 (15)C7—C12—H12A109.5
Cl2—Ti1—S2167.716 (8)C11—C12—H12B109.5
Cl1—Ti1—S286.693 (8)C7—C12—H12B109.5
O1—Ti1—S177.416 (16)H12A—C12—H12B108.1
O2—Ti1—S183.735 (16)C10—C11—C12110.18 (5)
Cl2—Ti1—S188.369 (8)C10—C11—H11A109.6
Cl1—Ti1—S1166.765 (8)C12—C11—H11A109.6
S2—Ti1—S180.384 (7)C10—C11—H11B109.6
C13—S2—C8102.88 (3)C12—C11—H11B109.6
C13—S2—Ti194.61 (2)H11A—C11—H11B108.1
C8—S2—Ti1104.946 (18)C11—C10—C9109.95 (5)
C2—S1—C7104.18 (3)C11—C10—H10A109.7
C2—S1—Ti194.63 (2)C9—C10—H10A109.7
C7—S1—Ti1104.983 (18)C11—C10—H10B109.7
C14—O2—Ti1130.45 (4)C9—C10—H10B109.7
C1—O1—Ti1131.45 (4)H10A—C10—H10B108.2
O2—C14—C15120.87 (5)C10—C9—C8111.71 (5)
O2—C14—C13119.76 (5)C10—C9—H9A109.3
C15—C14—C13119.36 (5)C8—C9—H9A109.3
C18—C13—C14120.57 (5)C10—C9—H9B109.3
C18—C13—S2123.07 (5)C8—C9—H9B109.3
C14—C13—S2116.34 (4)H9A—C9—H9B107.9
C17—C18—C13119.55 (6)C3—C2—C1120.76 (5)
C17—C18—H18120.2C3—C2—S1123.28 (5)
C13—C18—H18120.2C1—C2—S1115.90 (4)
C18—C17—C16119.87 (6)O1—C1—C6121.24 (6)
C18—C17—H17120.1O1—C1—C2119.48 (5)
C16—C17—H17120.1C6—C1—C2119.24 (6)
C15—C16—C17120.96 (6)C5—C6—C1119.40 (6)
C15—C16—H16119.5C5—C6—H6120.3
C17—C16—H16119.5C1—C6—H6120.3
C16—C15—C14119.63 (6)C6—C5—C4121.28 (6)
C16—C15—H15120.2C6—C5—H5119.4
C14—C15—H15120.2C4—C5—H5119.4
C7—C8—C9111.59 (4)C3—C4—C5119.71 (6)
C7—C8—S2113.04 (4)C3—C4—H4120.1
C9—C8—S2109.93 (4)C5—C4—H4120.1
C7—C8—H8107.3C4—C3—C2119.58 (6)
C9—C8—H8107.3C4—C3—H3120.2
S2—C8—H8107.3C2—C3—H3120.2
C8—C7—C12111.80 (5)
O1—Ti1—S2—C13170.16 (2)C13—C18—C17—C161.93 (12)
O2—Ti1—S2—C136.57 (2)C18—C17—C16—C150.02 (12)
Cl2—Ti1—S2—C1368.16 (4)C17—C16—C15—C140.85 (11)
Cl1—Ti1—S2—C1390.73 (2)O2—C14—C15—C16178.40 (6)
S1—Ti1—S2—C1392.13 (2)C13—C14—C15—C160.19 (9)
O1—Ti1—S2—C865.51 (2)C13—S2—C8—C756.25 (4)
O2—Ti1—S2—C898.09 (2)Ti1—S2—C8—C742.16 (4)
Cl2—Ti1—S2—C836.49 (4)C13—S2—C8—C969.17 (4)
Cl1—Ti1—S2—C8164.615 (18)Ti1—S2—C8—C9167.58 (3)
S1—Ti1—S2—C812.519 (18)C9—C8—C7—C1252.39 (6)
O1—Ti1—S1—C27.49 (3)S2—C8—C7—C12176.90 (4)
O2—Ti1—S1—C2173.55 (2)C9—C8—C7—S1177.93 (4)
Cl2—Ti1—S1—C290.32 (2)S2—C8—C7—S157.55 (4)
Cl1—Ti1—S1—C282.05 (4)C2—S1—C7—C857.88 (4)
S2—Ti1—S1—C294.65 (2)Ti1—S1—C7—C840.96 (4)
O1—Ti1—S1—C798.54 (2)C2—S1—C7—C1268.26 (4)
O2—Ti1—S1—C767.52 (2)Ti1—S1—C7—C12167.10 (3)
Cl2—Ti1—S1—C7163.655 (18)C8—C7—C12—C1155.21 (6)
Cl1—Ti1—S1—C723.98 (4)S1—C7—C12—C11178.08 (4)
S2—Ti1—S1—C711.383 (18)C7—C12—C11—C1058.77 (7)
O1—Ti1—O2—C1453.67 (9)C12—C11—C10—C959.51 (7)
Cl2—Ti1—O2—C14177.69 (5)C11—C10—C9—C856.91 (7)
Cl1—Ti1—O2—C1476.70 (5)C7—C8—C9—C1053.41 (7)
S2—Ti1—O2—C148.53 (5)S2—C8—C9—C10179.65 (4)
S1—Ti1—O2—C1489.99 (5)C7—S1—C2—C382.14 (5)
O2—Ti1—O1—C148.06 (9)Ti1—S1—C2—C3171.13 (5)
Cl2—Ti1—O1—C175.73 (6)C7—S1—C2—C1100.72 (5)
Cl1—Ti1—O1—C1178.05 (5)Ti1—S1—C2—C16.02 (4)
S2—Ti1—O1—C192.16 (6)Ti1—O1—C1—C6167.58 (5)
S1—Ti1—O1—C110.95 (5)Ti1—O1—C1—C210.15 (9)
Ti1—O2—C14—C15171.68 (4)C3—C2—C1—O1176.67 (6)
Ti1—O2—C14—C136.91 (8)S1—C2—C1—O10.55 (7)
O2—C14—C13—C18176.49 (6)C3—C2—C1—C61.10 (9)
C15—C14—C13—C182.12 (9)S1—C2—C1—C6178.32 (5)
O2—C14—C13—S22.04 (7)O1—C1—C6—C5176.31 (6)
C15—C14—C13—S2179.35 (5)C2—C1—C6—C51.42 (9)
C8—S2—C13—C1881.11 (6)C1—C6—C5—C41.43 (10)
Ti1—S2—C13—C18172.40 (5)C6—C5—C4—C31.08 (10)
C8—S2—C13—C14100.40 (5)C5—C4—C3—C20.73 (10)
Ti1—S2—C13—C146.09 (4)C1—C2—C3—C40.76 (9)
C14—C13—C18—C172.99 (10)S1—C2—C3—C4177.77 (5)
S2—C13—C18—C17178.58 (6)
(IIb) dichlorido{2,2'-[cyclohexane-1,2-diylbis(sulfanediyl)]diphenolato}titanium(IV) toluene hemisolvate top
Crystal data top
[Ti(C18H18O2S2)Cl2]·0.5C7H8F(000) = 1020
Mr = 445.31Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7622 (3) ÅCell parameters from 8975 reflections
b = 16.3667 (4) Åθ = 2.5–38.8°
c = 14.5713 (4) ŵ = 0.83 mm1
β = 106.899 (1)°T = 100 K
V = 2227.60 (11) Å3Fragment, red
Z = 40.36 × 0.22 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
20925 independent reflections
Radiation source: fine-focus sealed tube13853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 47.8°, θmin = 2.2°
Absorption correction: multi-scan
(PLATON in MULABS; Spek, 2009)
h = 2018
Tmin = 0.755, Tmax = 0.922k = 3333
179195 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
20925 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ti(C18H18O2S2)Cl2]·0.5C7H8V = 2227.60 (11) Å3
Mr = 445.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7622 (3) ŵ = 0.83 mm1
b = 16.3667 (4) ÅT = 100 K
c = 14.5713 (4) Å0.36 × 0.22 × 0.10 mm
β = 106.899 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
20925 independent reflections
Absorption correction: multi-scan
(PLATON in MULABS; Spek, 2009)
13853 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.922Rint = 0.067
179195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.97Δρmax = 0.73 e Å3
20925 reflectionsΔρmin = 0.47 e Å3
290 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.041197 (12)0.286190 (7)0.156257 (8)0.01464 (2)
S10.118760 (18)0.378771 (11)0.230720 (11)0.01575 (3)
S20.138962 (17)0.429596 (10)0.130125 (11)0.01455 (3)
Cl10.18707 (2)0.233422 (13)0.076972 (14)0.02423 (4)
Cl20.06435 (2)0.179752 (11)0.206305 (14)0.02203 (4)
O10.11228 (5)0.31199 (3)0.04852 (3)0.01663 (8)
O20.18164 (5)0.30299 (3)0.27280 (4)0.01707 (9)
C10.24227 (7)0.34235 (5)0.04379 (5)0.01745 (11)
C20.26617 (7)0.37672 (5)0.12607 (5)0.01907 (12)
C30.40278 (9)0.40227 (6)0.12514 (6)0.02968 (18)
H30.41920.42350.18170.036*
C40.51458 (9)0.39651 (8)0.04111 (7)0.0389 (2)
H40.60770.41450.03970.047*
C50.49008 (9)0.36432 (7)0.04116 (7)0.0361 (2)
H50.56710.36080.09850.043*
C60.35504 (8)0.33733 (6)0.04088 (5)0.02439 (15)
H60.33960.31570.09760.029*
C70.04673 (7)0.48290 (4)0.23326 (5)0.01496 (10)
H70.03860.48650.29110.018*
C80.00470 (7)0.50249 (4)0.14639 (5)0.01525 (10)
H80.08030.49850.08830.018*
C90.06174 (8)0.59004 (5)0.15029 (6)0.02065 (12)
H9A0.14930.59540.20510.025*
H9B0.08750.60190.09080.025*
C100.04993 (10)0.65164 (5)0.16116 (7)0.02612 (15)
H10A0.00980.70750.16550.031*
H10B0.13500.64920.10420.031*
C110.09385 (10)0.63286 (5)0.25107 (7)0.02543 (15)
H11B0.16670.67290.25730.031*
H11A0.00960.63790.30830.031*
C120.15506 (8)0.54645 (5)0.24612 (6)0.02106 (13)
H12B0.24350.54270.19170.025*
H12A0.18040.53470.30580.025*
C130.27574 (7)0.43012 (4)0.24071 (5)0.01487 (10)
C140.27983 (7)0.36233 (4)0.30054 (5)0.01440 (10)
C150.38773 (7)0.35644 (4)0.38758 (5)0.01746 (11)
H150.39110.31100.42880.021*
C160.48990 (8)0.41767 (5)0.41316 (6)0.02184 (13)
H160.56340.41390.47230.026*
C170.48676 (8)0.48460 (5)0.35371 (6)0.02361 (14)
H170.55740.52610.37260.028*
C180.38027 (7)0.49079 (4)0.26669 (5)0.01908 (12)
H180.37870.53590.22530.023*
C190.0738 (2)0.35039 (13)0.48981 (13)0.0330 (4)0.50
H19A0.09450.34270.42850.050*0.50
H19B0.00170.31240.49400.050*0.50
H19C0.16060.33980.54260.050*0.50
C200.02500 (17)0.43645 (11)0.49653 (11)0.0205 (3)0.50
C210.1140 (2)0.50270 (16)0.49496 (13)0.0279 (3)0.50
H210.20600.49350.48690.033*0.50
C220.0700 (3)0.58138 (15)0.50497 (14)0.0376 (5)0.50
H220.13300.62570.50540.045*0.50
C230.0653 (3)0.59670 (12)0.51447 (13)0.0350 (4)0.50
H230.09560.65110.52030.042*0.50
C240.1555 (2)0.53149 (12)0.51528 (12)0.0269 (3)0.50
H240.24830.54090.52180.032*0.50
C250.10965 (17)0.45266 (13)0.50657 (12)0.0197 (3)0.50
H250.17200.40830.50750.024*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01347 (4)0.01610 (5)0.01207 (4)0.00095 (3)0.00013 (3)0.00192 (3)
S10.01704 (7)0.01911 (7)0.01160 (6)0.00099 (5)0.00495 (5)0.00059 (5)
S20.01368 (6)0.01941 (7)0.01053 (6)0.00182 (5)0.00347 (5)0.00036 (5)
Cl10.01813 (7)0.02942 (9)0.02360 (8)0.00511 (6)0.00363 (6)0.00880 (7)
Cl20.02056 (7)0.01707 (7)0.02458 (8)0.00248 (5)0.00047 (6)0.00089 (6)
O10.01322 (19)0.0229 (2)0.01230 (18)0.00279 (16)0.00146 (14)0.00201 (16)
O20.0171 (2)0.0169 (2)0.01371 (18)0.00198 (16)0.00096 (15)0.00005 (15)
C10.0131 (2)0.0243 (3)0.0142 (2)0.0009 (2)0.00275 (19)0.0011 (2)
C20.0140 (3)0.0277 (3)0.0157 (3)0.0005 (2)0.0047 (2)0.0029 (2)
C30.0159 (3)0.0482 (5)0.0265 (4)0.0001 (3)0.0086 (3)0.0111 (4)
C40.0143 (3)0.0665 (7)0.0341 (5)0.0066 (4)0.0042 (3)0.0156 (5)
C50.0145 (3)0.0621 (7)0.0266 (4)0.0068 (4)0.0021 (3)0.0120 (4)
C60.0148 (3)0.0390 (4)0.0169 (3)0.0035 (3)0.0007 (2)0.0045 (3)
C70.0160 (2)0.0169 (2)0.0123 (2)0.00183 (19)0.00474 (19)0.00093 (19)
C80.0146 (2)0.0190 (3)0.0124 (2)0.0037 (2)0.00429 (18)0.00319 (19)
C90.0222 (3)0.0190 (3)0.0228 (3)0.0027 (2)0.0098 (2)0.0052 (2)
C100.0298 (4)0.0199 (3)0.0315 (4)0.0077 (3)0.0135 (3)0.0085 (3)
C110.0303 (4)0.0195 (3)0.0305 (4)0.0064 (3)0.0150 (3)0.0015 (3)
C120.0218 (3)0.0212 (3)0.0235 (3)0.0052 (2)0.0118 (3)0.0021 (2)
C130.0128 (2)0.0175 (3)0.0135 (2)0.00176 (19)0.00254 (18)0.00017 (19)
C140.0130 (2)0.0159 (2)0.0130 (2)0.00058 (18)0.00161 (18)0.00121 (19)
C150.0163 (3)0.0176 (3)0.0152 (2)0.0007 (2)0.0006 (2)0.0006 (2)
C160.0175 (3)0.0213 (3)0.0206 (3)0.0011 (2)0.0041 (2)0.0008 (2)
C170.0179 (3)0.0209 (3)0.0264 (3)0.0038 (2)0.0023 (2)0.0018 (3)
C180.0153 (3)0.0191 (3)0.0210 (3)0.0007 (2)0.0023 (2)0.0026 (2)
C190.0393 (10)0.0374 (10)0.0218 (7)0.0170 (8)0.0081 (7)0.0007 (7)
C200.0190 (6)0.0279 (7)0.0141 (5)0.0032 (5)0.0039 (4)0.0002 (5)
C210.0197 (7)0.0429 (12)0.0190 (7)0.0066 (8)0.0022 (5)0.0020 (7)
C220.0491 (13)0.0374 (11)0.0211 (8)0.0235 (10)0.0021 (8)0.0017 (7)
C230.0562 (13)0.0223 (8)0.0190 (7)0.0007 (8)0.0006 (8)0.0032 (6)
C240.0255 (8)0.0331 (9)0.0181 (6)0.0073 (7)0.0001 (5)0.0054 (6)
C250.0174 (6)0.0234 (8)0.0175 (6)0.0005 (6)0.0037 (5)0.0035 (6)
Geometric parameters (Å, º) top
Ti1—O21.8670 (5)C10—H10B0.9900
Ti1—O11.8763 (5)C11—C121.5288 (12)
Ti1—Cl12.2506 (2)C11—H11B0.9900
Ti1—Cl22.2506 (2)C11—H11A0.9900
Ti1—S22.6031 (2)C12—H12B0.9900
Ti1—S12.6261 (2)C12—H12A0.9900
S1—C21.7668 (7)C13—C181.3951 (10)
S1—C71.8400 (7)C13—C141.4045 (9)
S2—C131.7688 (6)C14—C151.3967 (9)
S2—C81.8379 (7)C15—C161.3864 (10)
O1—C11.3457 (8)C15—H150.9500
O2—C141.3416 (8)C16—C171.3912 (11)
C1—C61.3969 (10)C16—H160.9500
C1—C21.4040 (10)C17—C181.3902 (10)
C2—C31.3939 (11)C17—H170.9500
C3—C41.3865 (13)C18—H180.9500
C3—H30.9500C19—C201.499 (3)
C4—C51.3924 (14)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.3892 (11)C19—H19C0.9800
C5—H50.9500C20—C251.390 (2)
C6—H60.9500C20—C211.394 (3)
C7—C81.5253 (9)C21—C221.379 (4)
C7—C121.5331 (10)C21—H210.9500
C7—H71.0000C22—C231.391 (4)
C8—C91.5324 (10)C22—H220.9500
C8—H81.0000C23—C241.386 (3)
C9—C101.5265 (11)C23—H230.9500
C9—H9A0.9900C24—C251.383 (3)
C9—H9B0.9900C24—H240.9500
C10—C111.5235 (12)C25—H250.9500
C10—H10A0.9900
O2—Ti1—O1157.61 (2)C8—C9—H9B109.4
O2—Ti1—Cl196.689 (18)H9A—C9—H9B108.0
O1—Ti1—Cl197.320 (17)C11—C10—C9110.12 (6)
O2—Ti1—Cl295.948 (17)C11—C10—H10A109.6
O1—Ti1—Cl296.654 (18)C9—C10—H10A109.6
Cl1—Ti1—Cl2106.674 (9)C11—C10—H10B109.6
O2—Ti1—S278.271 (17)C9—C10—H10B109.6
O1—Ti1—S284.964 (18)H10A—C10—H10B108.2
Cl1—Ti1—S287.553 (8)C10—C11—C12110.48 (7)
Cl2—Ti1—S2165.282 (8)C10—C11—H11B109.6
O2—Ti1—S184.656 (18)C12—C11—H11B109.6
O1—Ti1—S177.861 (16)C10—C11—H11A109.6
Cl1—Ti1—S1167.027 (9)C12—C11—H11A109.6
Cl2—Ti1—S185.957 (8)H11B—C11—H11A108.1
S2—Ti1—S180.068 (6)C11—C12—C7111.05 (6)
C2—S1—C7104.22 (3)C11—C12—H12B109.4
C2—S1—Ti193.75 (2)C7—C12—H12B109.4
C7—S1—Ti1105.85 (2)C11—C12—H12A109.4
C13—S2—C8104.90 (3)C7—C12—H12A109.4
C13—S2—Ti194.75 (2)H12B—C12—H12A108.0
C8—S2—Ti1105.12 (2)C18—C13—C14120.48 (6)
C1—O1—Ti1129.62 (4)C18—C13—S2123.34 (5)
C14—O2—Ti1130.70 (4)C14—C13—S2116.07 (5)
O1—C1—C6120.85 (6)O2—C14—C15120.52 (6)
O1—C1—C2119.51 (6)O2—C14—C13119.73 (6)
C6—C1—C2119.60 (6)C15—C14—C13119.74 (6)
C3—C2—C1120.53 (7)C16—C15—C14119.21 (6)
C3—C2—S1122.66 (6)C16—C15—H15120.4
C1—C2—S1116.66 (5)C14—C15—H15120.4
C4—C3—C2119.57 (8)C15—C16—C17121.19 (6)
C4—C3—H3120.2C15—C16—H16119.4
C2—C3—H3120.2C17—C16—H16119.4
C3—C4—C5119.86 (8)C18—C17—C16120.04 (7)
C3—C4—H4120.1C18—C17—H17120.0
C5—C4—H4120.1C16—C17—H17120.0
C6—C5—C4121.21 (8)C17—C18—C13119.32 (7)
C6—C5—H5119.4C17—C18—H18120.3
C4—C5—H5119.4C13—C18—H18120.3
C5—C6—C1119.17 (7)C25—C20—C21117.82 (17)
C5—C6—H6120.4C25—C20—C19120.97 (18)
C1—C6—H6120.4C21—C20—C19121.20 (18)
C8—C7—C12111.35 (5)C22—C21—C20120.65 (19)
C8—C7—S1113.20 (5)C22—C21—H21119.7
C12—C7—S1110.96 (5)C20—C21—H21119.7
C8—C7—H7107.0C21—C22—C23120.88 (18)
C12—C7—H7107.0C21—C22—H22119.6
S1—C7—H7107.0C23—C22—H22119.6
C7—C8—C9111.68 (6)C24—C23—C22119.1 (2)
C7—C8—S2112.94 (4)C24—C23—H23120.5
C9—C8—S2110.29 (5)C22—C23—H23120.5
C7—C8—H8107.2C25—C24—C23119.62 (19)
C9—C8—H8107.2C25—C24—H24120.2
S2—C8—H8107.2C23—C24—H24120.2
C10—C9—C8111.02 (6)C24—C25—C20121.93 (18)
C10—C9—H9A109.4C24—C25—H25119.0
C8—C9—H9A109.4C20—C25—H25119.0
C10—C9—H9B109.4
O2—Ti1—S1—C2177.38 (3)C2—C1—C6—C51.92 (13)
O1—Ti1—S1—C211.46 (3)C2—S1—C7—C861.36 (5)
Cl1—Ti1—S1—C280.78 (4)Ti1—S1—C7—C836.81 (5)
Cl2—Ti1—S1—C286.25 (3)C2—S1—C7—C1264.67 (5)
S2—Ti1—S1—C298.39 (3)Ti1—S1—C7—C12162.84 (4)
O2—Ti1—S1—C771.46 (3)C12—C7—C8—C953.30 (7)
O1—Ti1—S1—C794.47 (3)S1—C7—C8—C9179.13 (5)
Cl1—Ti1—S1—C725.15 (4)C12—C7—C8—S2178.29 (5)
Cl2—Ti1—S1—C7167.83 (2)S1—C7—C8—S255.89 (6)
S2—Ti1—S1—C77.54 (2)C13—S2—C8—C754.89 (5)
O2—Ti1—S2—C134.46 (3)Ti1—S2—C8—C744.36 (5)
O1—Ti1—S2—C13169.53 (3)C13—S2—C8—C970.85 (5)
Cl1—Ti1—S2—C1392.90 (2)Ti1—S2—C8—C9170.10 (4)
Cl2—Ti1—S2—C1372.50 (4)C7—C8—C9—C1055.03 (8)
S1—Ti1—S2—C1391.00 (2)S2—C8—C9—C10178.52 (5)
O2—Ti1—S2—C8102.39 (3)C8—C9—C10—C1157.56 (9)
O1—Ti1—S2—C862.69 (3)C9—C10—C11—C1258.84 (9)
Cl1—Ti1—S2—C8160.26 (2)C10—C11—C12—C757.44 (9)
Cl2—Ti1—S2—C834.35 (4)C8—C7—C12—C1154.53 (8)
S1—Ti1—S2—C815.84 (2)S1—C7—C12—C11178.41 (5)
O2—Ti1—O1—C155.74 (10)C8—S2—C13—C1879.62 (7)
Cl1—Ti1—O1—C1175.94 (6)Ti1—S2—C13—C18173.35 (6)
Cl2—Ti1—O1—C168.11 (6)C8—S2—C13—C14104.16 (5)
S2—Ti1—O1—C197.19 (6)Ti1—S2—C13—C142.88 (5)
S1—Ti1—O1—C116.29 (6)Ti1—O2—C14—C15171.11 (5)
O1—Ti1—O2—C1449.66 (10)Ti1—O2—C14—C137.63 (10)
Cl1—Ti1—O2—C1478.76 (6)C18—C13—C14—O2177.47 (6)
Cl2—Ti1—O2—C14173.62 (6)S2—C13—C14—O21.13 (8)
S2—Ti1—O2—C147.33 (6)C18—C13—C14—C151.28 (10)
S1—Ti1—O2—C1488.26 (6)S2—C13—C14—C15177.61 (5)
Ti1—O1—C1—C6162.71 (6)O2—C14—C15—C16178.32 (7)
Ti1—O1—C1—C214.88 (10)C13—C14—C15—C160.42 (10)
O1—C1—C2—C3174.58 (8)C14—C15—C16—C170.06 (12)
C6—C1—C2—C33.04 (12)C15—C16—C17—C180.30 (13)
O1—C1—C2—S11.11 (10)C16—C17—C18—C131.14 (12)
C6—C1—C2—S1178.73 (6)C14—C13—C18—C171.63 (11)
C7—S1—C2—C386.40 (8)S2—C13—C18—C17177.69 (6)
Ti1—S1—C2—C3166.20 (7)C25—C20—C21—C221.2 (2)
C7—S1—C2—C198.01 (6)C19—C20—C21—C22177.44 (16)
Ti1—S1—C2—C19.38 (6)C20—C21—C22—C231.6 (3)
C1—C2—C3—C42.50 (14)C21—C22—C23—C241.0 (3)
S1—C2—C3—C4177.92 (9)C22—C23—C24—C250.1 (3)
C2—C3—C4—C50.86 (17)C23—C24—C25—C200.3 (3)
C3—C4—C5—C60.24 (19)C21—C20—C25—C240.3 (2)
C4—C5—C6—C10.30 (17)C19—C20—C25—C24178.37 (16)
O1—C1—C6—C5175.66 (9)

Experimental details

(I)(IIa)(IIb)
Crystal data
Chemical formula[Ti(C20H22O2S2)Cl2][Ti(C18H18O2S2)Cl2][Ti(C18H18O2S2)Cl2]·0.5C7H8
Mr477.30449.24445.31
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100100
a, b, c (Å)10.7948 (2), 10.9672 (2), 18.5874 (3)9.4627 (7), 16.8985 (4), 12.0810 (11)9.7622 (3), 16.3667 (4), 14.5713 (4)
β (°) 101.105 (1) 104.195 (6) 106.899 (1)
V3)2159.34 (7)1872.8 (2)2227.60 (11)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.850.980.83
Crystal size (mm)0.29 × 0.24 × 0.150.30 × 0.22 × 0.180.36 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(PLATON in MULABS; Spek, 2009)
Tmin, Tmax0.791, 0.8830.759, 0.8440.755, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
52551, 10145, 7452 257682, 28176, 22536 179195, 20925, 13853
Rint0.0600.0530.067
(sin θ/λ)max1)1.0431.2181.042
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.07 0.049, 0.098, 1.24 0.035, 0.087, 0.97
No. of reflections101452817620925
No. of parameters134226290
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.750.84, 0.730.73, 0.47

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds