Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title 3-nitro­phthalate-calcium coordination polymer, {[Ca(C8H3NO6)(H2O)2]·H2O}n, crystallizes as a one-dimensional framework. The CaII centre has a distorted penta­gonal-bipyramidal geometry, being seven-coordinated by five O atoms from three different 3-nitro­phthalate groups and by two water mol­ecules, resulting in a one-dimensional zigzag chain along the a-axis direction by the inter­connection of the four O atoms from the two carboxyl­ate groups. There is a D3 water cluster composed of the coordinated and the solvent water molecules within such chains. Adjacent chains are aggregated into two-dimensional layers via hydrogen bonds in the c-axis direction. The whole three-dimensional structure is further stabilized by weak O-H...O hydrogen bonds between the O atoms of the nitro group and the water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109036130/sk3344sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036130/sk3344Isup2.hkl
Contains datablock I

CCDC reference: 755976

Comment top

The vast majority of current work in crystal engineering centers on the controlled assembly of donor and acceptor building blocks in order to tune the properties of metal–organic frameworks (Guilera & Steed, 1999; Burrows et al., 2000; Guo & Guo, 2009). Aromatic multidentate carboxylic acids are often ligands of choice for the design of metal–organic frameworks or molecular assemblies (Volkringer et al., 2007). Several CaII complexes are known with the ligands 1,2-benzenedicarboxylic acid (Schuckmann et al., 1978), 1,3-benzenedicarboxylic acid (Dale & Elsegood, 2003a), 1,4-benzenedicarboxylic acid (Dale & Elsegood, 2003b), 1,2,4-benzenetricarboxylic acid (Volkringer et al., 2007), 1,3,5-benzenetricarboxylic acid (Yang et al., 2004), 1,3,5-benzenetriacetic acid (Zhu et al., 2005), 2,6-naphathalenedicarboxylic acid and 4,4'-biphenyldicarboxylic acid (Volkringer et al., 2008). 3-Nitrophthalic acid, which has two carboxylate groups and a nitro group, can act as a good building block in constructing metal-organic frameworks. Some lanthanide complexes containing one bidentate 1,3-chelating carboxylate group and two 1,6-chelating carboxylate groups have been reported, e.g. in bis(l-3-nitrobenzene-1,2-dicarboxylato) -κ8O1,O2:O2,O3;O3,O2:O2,O1-bis[triaqua (2-carboxy-3-nitrobenzoato-κ2O,O')lanthanum(III)] dihydrate (Xiong & Qi, 2007) and in its isotypic structure complexes of DyIII, TbIII, PrIII and EuIII (Huang et al., 2007). The example of the nitro group of the 3-nitrophthalate dianion coordinated to the metal ion has also been reported in poly[[di-µ-aqua-tetraaquadi-µ-hydroxido-bis(µ3-3-nitrophthalato)- tricopper(II)] dihydrate] (Wang et al., 2009). We report here the crystal structure of a novel one-dimensional calcium(II) polymer, {[Ca(C8H3NO6)(H2O)2].(H2O)}n, (I), constructed from the 3-nitrophthalate dianionic ligand.

The asymmetric unit in the structure of (I) comprises one Ca atom, one complete 3-nitrophthalate dianion, two coordinated water molecules and one solvent water molecule, and is shown in Fig. 1 in a symmetry-expanded view which displays the full coordination of the Ca atom. Selected geometric parameters are given in Table 1.

The Ca atom in (I) is surrounded by an O7 donor set in a distorted pentagonal–bipyramidal geometry. The five equatorial sites are occupied by one O atom of a water molecule (O8), two 1,6-chelating O atoms (O2 and O3) and two 1,3-bidentate chelating O atoms (O3ii and O4ii; see Fig. 1 for symmetry codes). Atom O7 from the other coordinated water molecule and bridging atom O1i occupy the two opposing apical sites of the pentagonal bipyramid. The cis-O—Ca—O angles range from 71.65 (6) to 107.92 (6)°, except for O3ii—Ca—O4ii, which is 58.58 (5)°; the trans-O1i—Ca—-O7 angle is 158.98 (6)°. The Ca—Owater distances in (I) are slightly shorter than those in seven-coordinate calcium phthalate monohydrate (Schuckmann et al., 1978) and in eight-coordinate catena-[(µ5-hydrogen 1,2,4-benzenetricarboxylato-O,O,O',O'',O'',O''', O'''')aquacalcium] (Volkringer et al., 2007), while the Ca—O(3-nitrophthalate) distances are comparable to the values reported for calcium phthalate monohydrate (Schuckmann et al., 1978).

As is observed in a related 3-nitrophthalate–CdII framework, the two carboxylate groups are noncoplanar (Guo et al., 2007). The O1/C1/O2 carboxylate group is rotated by 76.7 (2)° out of the benzene ring plane, while the other, O3/C3/O4, forms an angle with the same plane of 40.9 (2)°. These deviations contribute to the coordination modes and the conformation of the supramolecular structure. In the present structure, the versatility of the dianionic 3-nitrophthalate ligands can be clearly seen. Bidentate 1,3-chelating, bidentate 1,3-bridging, 1,6-chelating and 1,6-bridging modes via the benzene ring are present (Figs. 1 and 2). Atoms O2 and O3 adopt a 1,6-chelating mode via the benzene ring to connect with atom Ca1; at the same time, atom O3 also acts as a bridge atom via a bidentate 1,3-chelating mode to atom Ca1ii. Atom O1 coordinates to atom Ca1i via a 1,3-bridging mode. In this way, each dianionic 3-nitrophthalate ligand binds to three Ca atoms. Each Ca atom is coordinated by five O atoms of four different carboxylate groups. The two Ca atoms are linked into a binuclear unit by two bridge atoms (O3 and O3ii) from two different dianionic 3-nitrophthalate ligands. All the binuclear units are connected by two carboxylate O atoms (O1 and O1i), giving rise to one-dimensional Ca—O—Ca—O—C—O—Ca chains along the a-axis direction. In the chain, atoms O1 and O4 adopt a 1,6-bridging mode. The 3-nitrophthalate dianion interconnects Ca atoms to form different rings, namely a seven-membered ring, two four-membered rings and an eight-membered ring, and these are arranged alternately along the infinite one-dimensional chains (see Fig. 2). These result in Ca···Caii and Ca···Cai separations within the chains of 3.897 (1) and 4.949 (1) Å, respectively, and a Ca1i···Ca1···Ca1ii angle of 88.42 (1)°.

A comparison with the previously reported structure of calcium phthalate monohydrate (Schuckmann et al., 1978) reveals that the two structures contain different numbers of water molecules. The two water molecules within the coordination sphere of the Ca atom and the solvent water molecule in the present structure engage in distinct hydrogen-bonding interactions (see Table 2). Along the a-axis direction, the three water molecules are connected to one another through hydrogen bonds and produce a D3 water cluster (Infantes & Motherwell, 2002); this plays an important role in the propagation of the one-dimensional chain structure, owing to its contribution to an eight-membered hydrogen-bonded ring [graph set R32(8); Bernstein et al., 1995] via an intermolecular O7—H7A···O2iii hydrogen bond. These D3 water clusters and an intermolecular O8—H8A···O4v hydrogen bond are also involved in forming a 16-membered hydrogen-bonded ring [graph set R64(16)] and an eight-membered hydrogen-bonded ring [graph set R22(8)] in the ac plane direction. In this way, a complete two-dimensional layer is formed. The O atoms of the nitro group as a hydrogen-bond acceptor take part in the formation of the polymeric networks. In the bc plane, neighbouring chains are linked together via weak O9—H9B···O5iv hydrogen-bond interactions. This also results in the aryl rings of the 3-nitrophthalate ligands stacking in an offset fashion along the b-axis direction. Thus, the three-dimensional connectivity of the structure is achieved.

Experimental top

The title complex was prepared under continuous stirring with successive addition of 3-nitrophthalic acid (0.42 g, 2 mmol) and CaCO3 (0.25 g, 2.5 mmol) to distilled water (15 ml) at room temperature. After filtration, slow evaporation over a period of one week at room temperature provided colorless prismatic crystals of (I).

Refinement top

H atoms of the water molecules were found in difference Fourier maps. However, during refinement, they were fixed at O—H distances of 0.85 Å and their Uiso(H) values were set at 1.2Ueq(O). H atoms of CH groups were treated as riding [with C—H = 0.93 Å and Uiso (H) = 1.2Ueq(C)].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme and coordination environment for the Ca atom. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.]
[Figure 2] Fig. 2. A partial packing diagram for (I), viewed down the b axis, showing a two-dimensional layer in the ac plane formed via hydrogen bonds.
Poly[[diaqua(µ3-3-nitrophthalato)calcium(II)] monohydrate] top
Crystal data top
[Ca(C8H3NO6)(H2O)2]·H2OF(000) = 624
Mr = 303.24Dx = 1.736 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3425 reflections
a = 6.2142 (12) Åθ = 2.3–27.5°
b = 20.959 (4) ŵ = 0.59 mm1
c = 8.9443 (18) ÅT = 133 K
β = 95.24 (3)°Prism, colourless
V = 1160.1 (4) Å30.14 × 0.08 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2052 independent reflections
Radiation source: rotating anode1938 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 27.723 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 76
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2324
Tmin = 0.940, Tmax = 0.972l = 1010
8389 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
2052 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ca(C8H3NO6)(H2O)2]·H2OV = 1160.1 (4) Å3
Mr = 303.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2142 (12) ŵ = 0.59 mm1
b = 20.959 (4) ÅT = 133 K
c = 8.9443 (18) Å0.14 × 0.08 × 0.06 mm
β = 95.24 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1938 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.972Rint = 0.026
8389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2052 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.16917 (6)0.467475 (18)0.34358 (4)0.02424 (15)
O10.6225 (2)0.43961 (7)0.65994 (17)0.0383 (4)
O20.4693 (2)0.40527 (7)0.43834 (15)0.0332 (3)
O30.1100 (2)0.45575 (7)0.59755 (15)0.0317 (3)
O40.0504 (2)0.45461 (8)0.83627 (15)0.0378 (4)
C10.5098 (3)0.40183 (9)0.5778 (2)0.0273 (4)
C20.4033 (3)0.34895 (9)0.6616 (2)0.0261 (4)
C30.4752 (3)0.28590 (10)0.6698 (2)0.0343 (5)
C40.3750 (4)0.23917 (10)0.7482 (3)0.0457 (6)
H40.42450.19730.74870.055*
C50.2012 (4)0.25546 (12)0.8255 (3)0.0481 (6)
H50.13360.22470.87970.058*
C60.1278 (4)0.31752 (11)0.8222 (2)0.0390 (5)
H60.01250.32860.87630.047*
C70.2245 (3)0.36391 (9)0.7387 (2)0.0284 (4)
C80.1248 (3)0.42928 (10)0.7250 (2)0.0282 (4)
N10.6648 (3)0.26738 (9)0.5931 (2)0.0456 (5)
O50.6998 (5)0.21073 (10)0.5778 (3)0.0982 (9)
O60.7776 (3)0.30861 (9)0.5467 (2)0.0539 (5)
O70.1284 (3)0.39839 (8)0.29399 (18)0.0476 (4)
H7A0.23430.39460.34790.057*
H7B0.14840.37930.21030.057*
O80.2621 (3)0.42870 (9)0.11269 (17)0.0513 (5)
H8A0.17510.44110.03970.062*
H8B0.39330.43590.09840.062*
O90.3420 (3)0.42580 (10)0.0011 (2)0.0632 (5)
H9A0.36330.45340.06840.076*
H9B0.30600.39080.03780.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0249 (2)0.0271 (2)0.0209 (2)0.00123 (15)0.00306 (15)0.00001 (14)
O10.0346 (8)0.0338 (8)0.0464 (9)0.0078 (7)0.0032 (7)0.0009 (7)
O20.0316 (8)0.0393 (8)0.0296 (8)0.0088 (6)0.0069 (6)0.0074 (6)
O30.0357 (8)0.0374 (8)0.0228 (7)0.0096 (6)0.0069 (6)0.0064 (6)
O40.0393 (8)0.0517 (9)0.0232 (7)0.0137 (7)0.0069 (6)0.0028 (6)
C10.0234 (10)0.0254 (10)0.0337 (11)0.0048 (8)0.0059 (8)0.0025 (8)
C20.0273 (10)0.0256 (9)0.0246 (10)0.0007 (8)0.0018 (7)0.0014 (7)
C30.0390 (12)0.0292 (10)0.0339 (11)0.0032 (9)0.0010 (9)0.0018 (8)
C40.0605 (16)0.0262 (11)0.0489 (14)0.0014 (10)0.0033 (11)0.0094 (10)
C50.0547 (15)0.0387 (13)0.0507 (15)0.0112 (11)0.0030 (12)0.0192 (11)
C60.0371 (12)0.0452 (13)0.0348 (12)0.0042 (10)0.0040 (9)0.0114 (9)
C70.0286 (10)0.0312 (10)0.0247 (10)0.0018 (8)0.0008 (8)0.0050 (8)
C80.0219 (9)0.0369 (11)0.0256 (10)0.0000 (8)0.0009 (7)0.0028 (8)
N10.0524 (12)0.0357 (11)0.0485 (12)0.0152 (9)0.0040 (9)0.0031 (9)
O50.118 (2)0.0382 (11)0.147 (2)0.0320 (12)0.0568 (18)0.0020 (13)
O60.0481 (10)0.0517 (11)0.0640 (12)0.0163 (9)0.0167 (9)0.0099 (9)
O70.0448 (9)0.0589 (11)0.0407 (9)0.0196 (8)0.0117 (7)0.0124 (8)
O80.0404 (9)0.0853 (13)0.0283 (8)0.0133 (9)0.0032 (7)0.0099 (8)
O90.0616 (12)0.0759 (13)0.0549 (11)0.0059 (10)0.0215 (9)0.0141 (10)
Geometric parameters (Å, º) top
Ca1—O1i2.3402 (15)C3—N11.469 (3)
Ca1—O22.3679 (14)C4—C51.377 (4)
Ca1—O32.3470 (14)C4—H40.9300
Ca1—O3ii2.4581 (14)C5—C61.378 (3)
Ca1—O4ii2.5915 (16)C5—H50.9300
Ca1—O72.3587 (16)C6—C71.395 (3)
Ca1—O82.3402 (16)C6—H60.9300
Ca1—Ca1ii3.8966 (12)C7—C81.504 (3)
O1—C11.250 (2)N1—O61.209 (3)
O2—C11.252 (2)N1—O51.217 (3)
O3—C81.263 (2)O7—H7A0.8539
O4—C81.253 (2)O7—H7B0.8477
C1—C21.523 (3)O8—H8A0.8499
C2—C31.395 (3)O8—H8B0.8500
C2—C71.396 (3)O9—H9A0.8501
C3—C41.386 (3)O9—H9B0.8501
O1i—Ca1—O292.55 (5)O1i—Ca1—H8B82.5
O1i—Ca1—O3103.64 (6)O3—Ca1—H8B150.7
O1i—Ca1—O3ii81.96 (5)O7—Ca1—H8B98.4
O1i—Ca1—O7158.98 (6)O2—Ca1—H8B73.6
O1i—Ca1—O895.49 (6)O3ii—Ca1—H8B137.6
O2—Ca1—O377.51 (5)O4ii—Ca1—H8B86.2
O2—Ca1—O7107.92 (6)C8ii—Ca1—H8B111.5
O2—Ca1—O882.81 (6)C1—Ca1—H8B93.8
O3—Ca1—O3ii71.65 (6)Ca1ii—Ca1—H8B172.2
O3—Ca1—O785.89 (6)H8A—Ca1—H8B29.4
O3—Ca1—O8152.98 (6)C1—O1—Ca1i143.14 (14)
O3ii—Ca1—O8130.71 (6)C1—O2—Ca1117.95 (12)
O7—Ca1—O882.72 (6)C8—O3—Ca1156.08 (13)
O7—Ca1—O3ii83.43 (6)C8—O3—Ca1ii95.11 (12)
O2—Ca1—O3ii146.29 (5)Ca1—O3—Ca1ii108.35 (6)
O8—Ca1—O4ii80.18 (6)C8—O4—Ca1ii89.16 (11)
O1i—Ca1—O4ii74.21 (6)O1—C1—O2126.86 (18)
O3—Ca1—O4ii123.13 (5)O1—C1—C2114.66 (17)
O7—Ca1—O4ii84.88 (6)O2—C1—C2118.38 (17)
O2—Ca1—O4ii157.22 (5)O1—C1—Ca1114.82 (13)
O3ii—Ca1—O4ii51.58 (5)C2—C1—Ca1110.42 (11)
O8—Ca1—C8ii106.12 (6)C3—C2—C7116.93 (18)
O1i—Ca1—C8ii73.20 (6)C3—C2—C1124.32 (18)
O3—Ca1—C8ii97.65 (5)C7—C2—C1118.74 (17)
O7—Ca1—C8ii87.11 (6)C4—C3—C2122.7 (2)
O2—Ca1—C8ii163.61 (6)C4—C3—N1117.8 (2)
O3ii—Ca1—C8ii26.08 (5)C2—C3—N1119.53 (19)
O4ii—Ca1—C8ii25.97 (5)C5—C4—C3119.2 (2)
O8—Ca1—C1103.29 (6)C5—C4—H4120.4
O1i—Ca1—C191.91 (5)C3—C4—H4120.4
O3—Ca1—C157.76 (5)C4—C5—C6119.8 (2)
O7—Ca1—C1108.92 (6)C4—C5—H5120.1
O2—Ca1—C120.52 (5)C6—C5—H5120.1
O3ii—Ca1—C1125.95 (5)C5—C6—C7120.8 (2)
O4ii—Ca1—C1166.02 (5)C5—C6—H6119.6
C8ii—Ca1—C1148.04 (5)C7—C6—H6119.6
O8—Ca1—Ca1ii161.45 (4)C6—C7—C2120.59 (19)
O1i—Ca1—Ca1ii93.09 (4)C6—C7—C8118.99 (18)
O3—Ca1—Ca1ii36.78 (4)C2—C7—C8120.32 (17)
O7—Ca1—Ca1ii83.38 (4)O4—C8—O3121.91 (19)
O2—Ca1—Ca1ii113.24 (4)O4—C8—C7120.01 (17)
O3ii—Ca1—Ca1ii34.87 (3)O3—C8—C7117.99 (17)
O4ii—Ca1—Ca1ii86.40 (4)O4—C8—Ca1ii64.87 (11)
C8ii—Ca1—Ca1ii60.89 (4)O3—C8—Ca1ii58.81 (10)
C1—Ca1—Ca1ii92.81 (4)C7—C8—Ca1ii162.99 (13)
O8—Ca1—H8A16.4O6—N1—O5122.9 (2)
O1i—Ca1—H8A95.5O6—N1—C3119.06 (18)
O3—Ca1—H8A160.7O5—N1—C3118.0 (2)
O7—Ca1—H8A76.9Ca1—O7—H7A125.6
O2—Ca1—H8A99.2Ca1—O7—H7B120.3
O3ii—Ca1—H8A114.4H7A—O7—H7B113.3
O4ii—Ca1—H8A64.6Ca1—O8—H8A112.4
C8ii—Ca1—H8A90.3Ca1—O8—H8B112.9
C1—Ca1—H8A119.7H8A—O8—H8B112.4
Ca1ii—Ca1—H8A146.0H9A—O9—H9B108.5
O8—Ca1—H8B16.3
O8—Ca1—O2—C1176.13 (15)O8—Ca1—C1—C2106.21 (13)
O1i—Ca1—O2—C188.65 (14)O1i—Ca1—C1—C2157.68 (12)
O3—Ca1—O2—C114.76 (14)O3—Ca1—C1—C252.73 (12)
O7—Ca1—O2—C196.20 (15)O7—Ca1—C1—C219.46 (14)
O3ii—Ca1—O2—C19.34 (19)O2—Ca1—C1—C2110.2 (2)
O4ii—Ca1—O2—C1141.95 (15)O3ii—Ca1—C1—C276.22 (14)
C8ii—Ca1—O2—C159.6 (2)O4ii—Ca1—C1—C2150.87 (18)
Ca1ii—Ca1—O2—C15.81 (15)C8ii—Ca1—C1—C297.20 (15)
O8—Ca1—O3—C818.8 (4)Ca1ii—Ca1—C1—C264.49 (12)
O1i—Ca1—O3—C8115.1 (3)O1—C1—C2—C3103.5 (2)
O7—Ca1—O3—C883.9 (3)O2—C1—C2—C379.9 (2)
O2—Ca1—O3—C825.5 (3)Ca1—C1—C2—C3124.96 (17)
O3ii—Ca1—O3—C8168.3 (4)O1—C1—C2—C775.1 (2)
O4ii—Ca1—O3—C8165.0 (3)O2—C1—C2—C7101.5 (2)
C8ii—Ca1—O3—C8170.4 (3)Ca1—C1—C2—C756.46 (19)
C1—Ca1—O3—C831.5 (3)C7—C2—C3—C40.8 (3)
Ca1ii—Ca1—O3—C8168.3 (4)C1—C2—C3—C4179.4 (2)
O8—Ca1—O3—Ca1ii149.56 (11)C7—C2—C3—N1179.02 (18)
O1i—Ca1—O3—Ca1ii76.58 (7)C1—C2—C3—N10.4 (3)
O7—Ca1—O3—Ca1ii84.43 (7)C2—C3—C4—C52.0 (4)
O2—Ca1—O3—Ca1ii166.19 (7)N1—C3—C4—C5177.9 (2)
O3ii—Ca1—O3—Ca1ii0.0C3—C4—C5—C60.8 (4)
O4ii—Ca1—O3—Ca1ii3.28 (8)C4—C5—C6—C71.5 (4)
C8ii—Ca1—O3—Ca1ii2.09 (7)C5—C6—C7—C22.7 (3)
C1—Ca1—O3—Ca1ii160.12 (8)C5—C6—C7—C8173.6 (2)
Ca1i—O1—C1—O20.5 (4)C3—C2—C7—C61.5 (3)
Ca1i—O1—C1—C2176.74 (15)C1—C2—C7—C6177.22 (18)
Ca1i—O1—C1—Ca147.3 (3)C3—C2—C7—C8174.72 (17)
Ca1—O2—C1—O186.8 (2)C1—C2—C7—C86.6 (3)
Ca1—O2—C1—C289.31 (18)Ca1ii—O4—C8—O314.96 (19)
O8—Ca1—C1—O1122.28 (14)Ca1ii—O4—C8—C7161.59 (16)
O1i—Ca1—C1—O126.17 (16)Ca1—O3—C8—O4175.3 (2)
O3—Ca1—C1—O178.77 (14)Ca1ii—O3—C8—O415.9 (2)
O7—Ca1—C1—O1150.97 (13)Ca1—O3—C8—C78.1 (4)
O2—Ca1—C1—O1118.3 (2)Ca1ii—O3—C8—C7160.76 (15)
O3ii—Ca1—C1—O155.28 (16)Ca1—O3—C8—Ca1ii168.9 (4)
O4ii—Ca1—C1—O119.4 (3)C6—C7—C8—O440.0 (3)
C8ii—Ca1—C1—O134.3 (2)C2—C7—C8—O4143.77 (19)
Ca1ii—Ca1—C1—O167.01 (14)C6—C7—C8—O3136.7 (2)
O8—Ca1—C1—O23.95 (15)C2—C7—C8—O339.5 (3)
O1i—Ca1—C1—O292.16 (14)C6—C7—C8—Ca1ii62.2 (5)
O3—Ca1—C1—O2162.90 (16)C2—C7—C8—Ca1ii114.0 (4)
O7—Ca1—C1—O290.70 (15)C4—C3—N1—O6167.0 (2)
O3ii—Ca1—C1—O2173.61 (13)C2—C3—N1—O612.8 (3)
O4ii—Ca1—C1—O299.0 (2)C4—C3—N1—O513.7 (3)
C8ii—Ca1—C1—O2152.64 (14)C2—C3—N1—O5166.4 (2)
Ca1ii—Ca1—C1—O2174.66 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2iii0.852.092.920 (2)164
O7—H7A···O6iii0.852.533.039 (3)119
O7—H7B···O90.852.342.885 (3)122
O7—H7B···O5iv0.852.383.120 (3)147
O8—H8A···O4v0.851.932.747 (2)160
O8—H8B···O9vi0.851.942.738 (2)156
O9—H9A···O1vii0.852.443.053 (3)130
O9—H9B···O5iv0.852.372.949 (3)126
Symmetry codes: (iii) x1, y, z; (iv) x1, y+1/2, z1/2; (v) x, y, z1; (vi) x+1, y, z; (vii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Ca(C8H3NO6)(H2O)2]·H2O
Mr303.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)6.2142 (12), 20.959 (4), 8.9443 (18)
β (°) 95.24 (3)
V3)1160.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.14 × 0.08 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.940, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8389, 2052, 1938
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.07
No. of reflections2052
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ca1—O1i2.3402 (15)Ca1—O82.3402 (16)
Ca1—O22.3679 (14)Ca1—Ca1ii3.8966 (12)
Ca1—O32.3470 (14)O1—C11.250 (2)
Ca1—O3ii2.4581 (14)O2—C11.252 (2)
Ca1—O4ii2.5915 (16)O3—C81.263 (2)
Ca1—O72.3587 (16)O4—C81.253 (2)
O1i—Ca1—O292.55 (5)O7—Ca1—O882.72 (6)
O1i—Ca1—O3103.64 (6)O7—Ca1—O3ii83.43 (6)
O1i—Ca1—O3ii81.96 (5)O8—Ca1—O4ii80.18 (6)
O1i—Ca1—O895.49 (6)O1i—Ca1—O4ii74.21 (6)
O2—Ca1—O377.51 (5)O7—Ca1—O4ii84.88 (6)
O2—Ca1—O7107.92 (6)O3ii—Ca1—O4ii51.58 (5)
O2—Ca1—O882.81 (6)O1—C1—O2126.86 (18)
O3—Ca1—O3ii71.65 (6)O4—C8—O3121.91 (19)
O3—Ca1—O785.89 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2iii0.852.092.920 (2)164
O7—H7A···O6iii0.852.533.039 (3)119
O7—H7B···O90.852.342.885 (3)122
O7—H7B···O5iv0.852.383.120 (3)147
O8—H8A···O4v0.851.932.747 (2)160
O8—H8B···O9vi0.851.942.738 (2)156
O9—H9A···O1vii0.852.443.053 (3)130
O9—H9B···O5iv0.852.372.949 (3)126
Symmetry codes: (iii) x1, y, z; (iv) x1, y+1/2, z1/2; (v) x, y, z1; (vi) x+1, y, z; (vii) x1, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds