Download citation
Download citation
link to html
A crystallographic investigation of the title compound, C22H28Cl2N4O4, using crystals obtained under different crystallization conditions, revealed the presence of two distinct polymorphic forms. The mol­ecular conformation in the two polymorphs is very different: one adopts a `C' shape, whereas the other adopts an `S' shape. In the latter, the molecule lies across a crystallographic twofold axis. The `S'-shaped polymorph undergoes a reversible ortho­rhom­bic-to-monoclinic phase transition on cooling, whereas the structure of the `C'-shaped polymorph is temperature insensitive.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109024457/sk3332sup1.cif
Contains datablocks 1, 2rt, 2lt, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109024457/sk33321sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109024457/sk33322rtsup3.hkl
Contains datablock 2rt

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109024457/sk33322ltsup4.hkl
Contains datablock 2lt

CCDC references: 746074; 746075; 746076

Comment top

Sporidesmins are a diverse class of natural products containing molecules with one or two epidithiodioxopiperazine (ETP) rings that display a wide variety of biological activities (Waksman & Bugie, 1944; Saito et al., 1988; Fujimoto et al., 2004; Gardiner et al., 2005; Li et al., 2006). While toxic to mammalian cells, studies have suggested that certain sporidesmins, namely bis-ETPs chetomin (Waksman & Bugie, 1944) and chaetocin (Hauser et al.,1970), may possess anticancer activity due to their ability to suppress neovascularization (Waksman & Bugie, 1944; Hauser et al., 1970; McInnes et al., 1976; Brewer et al., 1978; Kung, et al., 2004). In order to understand better the chemistry and biology of the bridged bis-ETPs, diketopiperazines (1,4-piperazine-2,5-diones, DKPs) (Martins & Carvalho, 2007) and bridged bis-DKP structures lacking a disulfide bridge must also be studied. Even in the absence of the disulfide bridge many compounds of this class exhibit a broad spectrum of interesting biological activity. Natural products, such as ditryptophenaline (Springer et al., 1977), WIN-64821,WIN-64745, (Barrow et al., 1993; Popp et al., 1994) and Leptosin S (Yamada et al., 2004) incorporate a 3a,3a'-bispyrrolidinoindoline core with contiguous stereogenic quaternary carbons and display cytotoxicity in various cell lines. Perhaps the most interesting is a C2-symmetrical piperazine-2,5-dione WIN-64821, which is a competitive substance- P antagonist against the human NK1 receptor at submicromolar concentrations (Barrow et al., 1993; Popp et al., 1994; Oleynek et al., 1994; Sedlock, et al. 1994) and also serves as an antagonist of the cholecystokinin type-B receptor (Hiramoto et al., 1994). The title compound was synthesized as part of a wider project to develop new synthetic methods for the preparation of bridged bis-DKPs (Polaske et al., 2009). Unlike other model compounds, which we observed to crystallize consistently in one form only, this compound crystallizes as at least two polymorphic forms, obtained by different methods of crystallization. The molecular structures of the polymorphs are very different: one adopts a `C' shape (1) while the other adopts an `S' shape (2). The `S'-shaped polymorph also undergoes a reversible orthorhombic-to-monoclinic phase transition upon cooling (the `C'-shaped structure is insensitive to temperature).

The molecular structure of polymorph (1) is shown in Fig. 1. The `C' shape is supported by weak, distorted intra- and intermolecular C–H···O interactions and by Cl···Cl interactions (Fig. 2). The refined Cl1···Cl2i [(i) = x-1, y, z-1] distance is 3.445 (4) Å and the pertinent angles are C5-Cl1···Cl2i,143.9 (4)° and C22i-Cl2i···Cl1, 168.9 (5)°. This is slightly longer than a mean Cl···Cl distance of 3.38 Å obtained by a search of the Cambridge Structural Database (CSD, version 5.30 plus three updates; Allen, 2002) for Cl···Cl contact distances between two Cl atoms (not including those reported structures with Cl···Cl interactions between dichloromethane and chloroform), yielding 774 hits. Two R22(8) rings, one intermolecular, one intramolecular, are formed by C–H···O interactions. In all cases the C–H···O interactions are weak, with poorly activated H atoms, long H···O distances and the motif is rather distorted. Nevertheless, these motifs represent the favorable arrangement of mildy electropositive and electronegative sites such as to maximize electrostatic interaction; they are not a direct cause of the `C' shape, nor are they merely an effect of the shape.

The molecular structure of the polymorph determined at room temperature, (2rt), is shown in Fig. 3. The `S'-shaped molecule has crystallographic twofold rotational symmetry and as with (1) the crystal packing is dominated by an extensive network of weak intermolecular C–H···O interactions with all O atoms acting as bifurcated 'acceptors' although as in the case of (1) the geometry of the interactions and the poorly acidic nature of each donor H atom are indicative of very weak hydrogen bonding. There are no intramolecular interactions in this structure but here the Cl1···Cl1i [(i) = 2-x, 1-y, z] distance, at 3.319 (1) Å, is shorter than that observed in (1). The arrangement of C–H···O interactions is not trivial; contacts from the discrete crystallographically unique molecule touch eight adjacent molecules but do not form small cyclic motifs as in (1) and this is most easily seen by considering a perspective c-axis plot (Fig. 4). In Fig. 4 the discrete unique molecule is colored red and hydrogen- bonding contacts have been expanded to show all eight acceptor molecules.

The structural behavior of (2) was first noted by comparison of experimental X-ray powder diffraction patterns, which were measured at room temperature, with calculated X-ray powder diffraction patterns based on a low-temperature (100 K) single-crystal structure. The two did not match and it was then that a room-temperature single-crystal analysis was carried out. Although we have not carried out a systematic variable-temperature study of this compound, flash cooling to 100 K produces a single-crystal structure, (2lt), with some striking differences when compared with (2rt). The compound undergoes an orthorhombic-to-monoclinic phase transition; the obvious effect of this reduction in symmetry is loss of the twofold axis and consequently loss of crystallographically imposed symmetry on the discrete molecule (Fig. 5). Although the molecule retains an `S' shape, the two piperazinedione rings are able to twist further away from the central benzene ring. In (2lt) the torsion angles about the methylene linker are 109.9 (3)° (C2–C8–C9–C14) and 94.2 (4)° (C13–C12–C15–C16) whereas in (2rt) the equivalent torsion angle is 76.0 (3)°. This reduction in symmetry also causes the onset of non-merohedral twinning in the monoclinic structure; this is typical behavior in such situations. The crystal packing of (2lt) is not significantly different from that of (2rt) except that the twisting of the piperazinedione rings causes a change in the weak hydrogen-bonding geometry, bringing the oxygen acceptor sites into closer proximity with potential weak hydrogen donor sites. For example in (2rt) the approximate distance between H2 and O1i [(i) = 1/2+x, 1/2-y, 1-z] is approximately 2.81 Å; in (2lt) the equivalent distance, H2···O3vi [(vi) = -x, 1/2 + y, 1 - z] is approximately 2.56 Å. The Cl1···Cl2ii [(ii) = x, 1/2+y, z-1] distance in (2lt) is the shortest of all three structures, 3.2414 (11) Å. This behaviour of polymorph (2) was found to be reversible and the crystal suffered no physical defects (e.g. cracking) as a result of the phase change.

In summary, two polymorphs of the title compound have been identified. Both polymorphs differ entirely in their molecular structure and consequently in the crystal packing. `C'-shaped monoclinic polymorph (1) is insensitive to temperature change; `S'-shaped polymorph (2) is orthorhombic at room temperature but forms a monoclinic non-merohedrally twinned structure when flash cooled to 100 K. The weak inter- and intramolecular interactions in (1) are more conducive to retaining the `C' shape as is and probably prevent such temperature-induced behavior.

Related literature top

For related literature, see: Allen (2002); Barrow et al. (1993); Brewer et al. (1978); Flack (1983); Fujimoto et al. (2004); Gardiner et al. (2005); Hauser et al. (1970); Hiramoto et al. (1994); Kung et al. (2004); Li et al. (2006); Martins & Carvalho (2007); McInnes et al. (1976); Oleynek et al. (1994); Polaske et al. (2009); Popp et al. (1994); Saito et al. (1988); Sedlock et al. (1994); Springer et al. (1977); Waksman & Bugie (1944); Yamada et al. (2004).

Experimental top

To a suspension of 3,3'-[1,4-phenylene-bis-(methylene)]-bis-[6-(hydroxymethyl)-1,4-dimethyl-2,5-piperazinedione] (Polaske et al., 2009) (45 mg, 0.10 mmol) in CH2Cl2 (5 ml), triphenylphosphine (130 mg, 0.50 mmol) and hexachloroacetone (76 µl, 0.50 mmol) were added. After stirring at room temperature for 18 h, the solvent was removed and the residue resuspended in a 1:1 solution of acetonitrile and water (5 ml). The solids were filtered off and the filtrate was purified by semi-preparative HPLC using a 5–95% gradient of 0.05% trifluoroacetic acid in acetonitrile, yielding crystals of form (1) as small colorless rods followed by recrystallization from ethanol to yield crystals of form (2) (26 mg, 54% yield) as colorless prisms. 1H NMR (500 MHz, CDCl3) δ 6.95 (4H, s), 4.28 (2H, br t, J=2.5 Hz), 4.02 (2H, dd, J=12.5 Hz and 1.5 Hz), 3.74 (2H, dd, J=12.5 Hz and 3.5 Hz), 3.43 (2H, dd, J=14 Hz and 2.5 Hz), 3.24 (2H, br s), 3.11 (2H, dd, J=14 Hz and 5 Hz), 3.06 (6H, s), 2.88 (6H, s). 13C NMR (150 MHz, CDCl3) δ 165.6, 163.6, 134.2, 129.8, 69.24, 60.52, 44.19, 37.16, 32.63, 30.68. HRMS (FAB, [M+H]+) found: 483.1570, C22H29Cl2N4O4 requires 483.1566.

Refinement top

Polymorph (1) showed surprisingly weak diffraction, necessitating exposures of 120 s per frame and even this was sufficient only to yield data with an Rσ < 30% cutoff of 2θ = 45°. Owing to this, the value of the Flack absolute structure parameter (Flack, 1983) is indeterminate and Friedel pairs were merged. Polymorph (2rt) has a Flack parameter of -0.03 (8) from 953 Friedel pairs. Polymorph (2lt) has a Flack parameter of 0.07 (7) and a non-merohedral twin scale factor of 0.44487. For all structures, H atoms were either placed geometrically (1) or first located in a difference map (2) and then refined with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all others. Fixed C–H distances of 0.95Å (aryl), 0.98Å (methyl & R3CH) and 0.99Å (methylene) were used.

Computing details top

Data collection: COLLECT (Nonius, 1998) for (1); APEX2 (Bruker, 2007) for 2rt, 2lt. Cell refinement: EVALCCD (Duisenberg et al., 2003) for (1); SAINT (Bruker, 2007) for 2rt; CELL_NOW (Sheldrick, 2004) and SAINT (Bruker, 2007) for 2lt. Data reduction: EVALCCD (Duisenberg et al., 2003) for (1); SAINT (Bruker, 2007) for 2rt, 2lt. For all compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009) and local programs.

Figures top
[Figure 1] Fig. 1. The `C'-shaped molecular structure of (1) with displacement ellipsoids at the 30% probability level and H atoms omitted.
[Figure 2] Fig. 2. Weak C–H···O (dotted blue lines) and Cl···Cl (dotted green lines) link adjacent molecules of (1) into a chain. Red dotted lines indicate continuation of the interactions.
[Figure 3] Fig. 3. The `S'-shaped molecular structure of (2rt) with displacement ellipsoids at the 30% probability level and H atoms omitted. Symmetry operator (twofold rotation) (i): -x + 1, -y, z.
[Figure 4] Fig. 4. A perspective c-axis plot of part of the crystal packing of (2rt). The discrete unique molecule in the centre of the plot (colored red in the online version of the journal) is surrounded by eight hydrogen- bonding acceptor molecules, although hydrogen bonding does not form small cyclic motifs.
[Figure 5] Fig. 5. The `S'-shaped molecular structure of (2lt) with displacement ellipsoids at the 30% probability level and H atoms omitted.
(1) 6,6'-bis(chloromethyl)-1,1',4,4'-tetramethyl-3,3'- (p-phenylenedimethylene)bis(piperazine-2,5-dione) top
Crystal data top
C22H28Cl2N4O4F(000) = 508
Mr = 483.38Dx = 1.321 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1266 reflections
a = 8.4158 (17) Åθ = 2.5–25.0°
b = 14.779 (3) ŵ = 0.30 mm1
c = 10.438 (2) ÅT = 150 K
β = 110.58 (3)°Block, colourless
V = 1215.3 (4) Å30.32 × 0.13 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1649 independent reflections
Radiation source: sealed tube1123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.128
ϕ and ω scansθmax = 22.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS 2008/1; Sheldrick, 1996)
h = 99
Tmin = 0.664, Tmax = 0.917k = 1515
8536 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: difference Fourier map
wR(F2) = 0.134H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + 2.8P]
where P = (Fo2 + 2Fc2)/3
1649 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C22H28Cl2N4O4V = 1215.3 (4) Å3
Mr = 483.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.4158 (17) ŵ = 0.30 mm1
b = 14.779 (3) ÅT = 150 K
c = 10.438 (2) Å0.32 × 0.13 × 0.07 mm
β = 110.58 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1649 independent reflections
Absorption correction: multi-scan
(SADABS 2008/1; Sheldrick, 1996)
1123 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.917Rint = 0.128
8536 measured reflectionsθmax = 22.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0801 restraint
wR(F2) = 0.134H-atom parameters constrained
S = 1.18Δρmax = 0.30 e Å3
1649 reflectionsΔρmin = 0.29 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.4483 (4)1.0182 (3)0.1745 (3)0.0475 (10)
Cl21.1416 (4)0.9609 (2)0.8668 (3)0.0504 (11)
O10.6453 (10)0.8232 (6)0.3582 (8)0.039 (2)
O20.7071 (10)0.8997 (6)0.1244 (8)0.045 (3)
O31.2908 (10)0.7143 (6)0.7559 (8)0.036 (2)
O41.0493 (11)1.0258 (6)0.4970 (8)0.040 (2)
N10.6002 (12)0.7813 (7)0.1396 (10)0.033 (3)
N20.7484 (11)0.9417 (6)0.0952 (9)0.025 (3)
N31.0657 (13)0.8045 (7)0.6558 (9)0.025 (2)
N41.2720 (13)0.9280 (7)0.5822 (9)0.031 (3)
C10.6614 (15)0.8375 (9)0.2453 (12)0.029 (4)
C20.6520 (15)0.7884 (9)0.0204 (11)0.031 (3)
H20.55140.77030.06060.038*
C30.7013 (15)0.8831 (10)0.0093 (12)0.034 (4)
C40.7471 (14)0.9257 (8)0.2306 (11)0.023 (3)
H40.86820.92150.29300.028*
C50.6691 (13)1.0022 (9)0.2806 (11)0.032 (3)
H5A0.73301.05850.28060.038*
H5B0.67720.99000.37600.038*
C60.5103 (17)0.6993 (9)0.1539 (13)0.044 (4)
H6A0.58970.64820.17800.067*
H6B0.41850.68650.06720.067*
H6C0.46260.70820.22620.067*
C70.8322 (16)1.0276 (10)0.0761 (12)0.049 (4)
H7A0.84341.02730.01430.073*
H7B0.94501.03220.14710.073*
H7C0.76311.07950.08290.073*
C80.7960 (15)0.7206 (8)0.0281 (11)0.030 (3)
H8A0.75530.65800.03100.036*
H8B0.82610.72660.05510.036*
C90.9541 (16)0.7379 (9)0.1554 (12)0.034 (3)
C100.9755 (15)0.6891 (8)0.2735 (12)0.031 (3)
H100.89370.64460.27270.037*
C111.1141 (17)0.7034 (9)0.3936 (12)0.034 (3)
H111.12410.66830.47240.041*
C121.2383 (15)0.7678 (9)0.4013 (11)0.030 (3)
C131.2131 (15)0.8166 (8)0.2794 (12)0.033 (3)
H131.29430.86130.27930.039*
C141.0751 (16)0.8026 (9)0.1595 (12)0.032 (3)
H141.06380.83750.08020.039*
C151.3881 (14)0.7843 (8)0.5288 (11)0.032 (3)
H15A1.47660.81650.50430.039*
H15B1.43580.72530.56920.039*
C161.3446 (15)0.8413 (9)0.6396 (12)0.035 (3)
H161.45260.85300.71780.042*
C171.2291 (16)0.7834 (9)0.6921 (11)0.027 (3)
C181.0015 (14)0.8919 (8)0.6095 (11)0.025 (3)
H180.89310.88210.53090.030*
C191.1092 (15)0.9538 (10)0.5562 (10)0.026 (3)
C200.9540 (17)0.7419 (9)0.6899 (13)0.045 (4)
H20A0.95570.68340.64640.067*
H20B0.83820.76600.65700.067*
H20C0.99270.73410.78940.067*
C211.3839 (16)0.9928 (10)0.5476 (13)0.049 (4)
H21A1.37420.98420.45210.074*
H21B1.50170.98250.60760.074*
H21C1.35031.05470.56020.074*
C220.9545 (15)0.9456 (10)0.7150 (11)0.041 (4)
H22A0.86610.91280.73900.050*
H22B0.90811.00530.67680.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.031 (2)0.052 (3)0.054 (2)0.006 (2)0.0083 (17)0.010 (2)
Cl20.067 (3)0.052 (3)0.0263 (17)0.010 (2)0.0095 (17)0.0053 (19)
O10.034 (6)0.048 (7)0.039 (5)0.013 (5)0.018 (5)0.001 (5)
O20.036 (6)0.071 (7)0.019 (5)0.015 (5)0.002 (4)0.000 (5)
O30.024 (5)0.030 (6)0.045 (5)0.009 (4)0.001 (4)0.010 (5)
O40.057 (6)0.034 (6)0.028 (5)0.001 (6)0.012 (4)0.006 (5)
N10.029 (7)0.045 (8)0.029 (6)0.019 (6)0.017 (5)0.010 (6)
N20.029 (6)0.028 (8)0.024 (6)0.001 (5)0.016 (5)0.002 (5)
N30.023 (6)0.032 (7)0.023 (5)0.011 (5)0.010 (5)0.004 (5)
N40.021 (6)0.035 (8)0.036 (6)0.006 (6)0.008 (5)0.005 (5)
C10.031 (9)0.047 (10)0.011 (7)0.019 (7)0.008 (6)0.007 (7)
C20.032 (8)0.032 (9)0.021 (7)0.004 (7)0.002 (6)0.006 (6)
C30.028 (8)0.056 (11)0.017 (7)0.018 (7)0.007 (6)0.012 (7)
C40.019 (7)0.027 (9)0.023 (7)0.009 (6)0.007 (6)0.006 (6)
C50.014 (7)0.039 (10)0.041 (7)0.003 (6)0.008 (6)0.001 (7)
C60.055 (10)0.039 (10)0.047 (8)0.020 (8)0.026 (8)0.002 (7)
C70.049 (9)0.051 (11)0.049 (8)0.008 (9)0.023 (7)0.007 (9)
C80.039 (8)0.020 (8)0.035 (7)0.009 (7)0.020 (7)0.002 (6)
C90.050 (9)0.034 (9)0.022 (7)0.005 (8)0.018 (7)0.007 (7)
C100.026 (8)0.018 (8)0.047 (8)0.009 (6)0.010 (7)0.012 (7)
C110.043 (9)0.033 (9)0.025 (7)0.005 (7)0.010 (7)0.013 (6)
C120.027 (8)0.043 (10)0.021 (7)0.004 (7)0.011 (6)0.005 (6)
C130.027 (8)0.039 (10)0.041 (8)0.002 (7)0.023 (7)0.007 (7)
C140.045 (9)0.029 (9)0.025 (7)0.004 (7)0.015 (7)0.007 (6)
C150.028 (8)0.030 (9)0.033 (7)0.011 (6)0.003 (6)0.007 (7)
C160.024 (8)0.044 (10)0.030 (7)0.006 (7)0.001 (6)0.005 (7)
C170.024 (8)0.026 (9)0.024 (7)0.000 (7)0.001 (6)0.005 (7)
C180.019 (7)0.029 (9)0.024 (7)0.005 (6)0.003 (6)0.012 (7)
C190.032 (9)0.039 (10)0.006 (6)0.004 (8)0.006 (6)0.001 (7)
C200.052 (10)0.047 (11)0.039 (8)0.010 (9)0.021 (7)0.007 (8)
C210.034 (9)0.062 (12)0.061 (9)0.002 (8)0.029 (7)0.002 (8)
C220.032 (8)0.059 (11)0.032 (7)0.012 (8)0.011 (6)0.008 (8)
Geometric parameters (Å, º) top
Cl1—C51.814 (11)C7—H7C0.980
Cl2—C221.813 (12)C8—H8A0.990
O1—C11.251 (12)C8—H8B0.990
O2—C31.244 (13)C8—C91.536 (15)
O3—C171.231 (13)C9—C101.385 (15)
O4—C191.244 (14)C9—C141.387 (16)
N1—C11.332 (14)C10—H100.950
N1—C21.460 (14)C10—C111.396 (15)
N1—C61.465 (15)C11—H110.950
N2—C31.339 (14)C11—C121.395 (16)
N2—C41.437 (13)C12—C131.413 (15)
N2—C71.499 (15)C12—C151.497 (15)
N3—C171.329 (14)C13—H130.950
N3—C181.419 (14)C13—C141.392 (15)
N3—C201.449 (14)C14—H140.950
N4—C161.456 (15)C15—H15A0.990
N4—C191.354 (14)C15—H15B0.990
N4—C211.474 (15)C15—C161.574 (16)
C1—C41.523 (16)C16—H161.000
C2—H21.000C16—C171.533 (16)
C2—C31.523 (17)C18—H181.000
C2—C81.553 (15)C18—C191.523 (16)
C4—H41.000C18—C221.518 (16)
C4—C51.491 (15)C20—H20A0.980
C5—H5A0.990C20—H20B0.980
C5—H5B0.990C20—H20C0.980
C6—H6A0.980C21—H21A0.980
C6—H6B0.980C21—H21B0.980
C6—H6C0.980C21—H21C0.980
C7—H7A0.980C22—H22A0.990
C7—H7B0.980C22—H22B0.990
C1—N1—C2121.1 (10)C9—C10—H10119.1
C1—N1—C6119.7 (10)C9—C10—C11121.8 (12)
C2—N1—C6117.8 (10)H10—C10—C11119.1
C3—N2—C4126.3 (10)C10—C11—H11119.1
C3—N2—C7117.2 (10)C10—C11—C12121.9 (11)
C4—N2—C7115.9 (9)H11—C11—C12119.1
C17—N3—C18122.9 (10)C11—C12—C13115.1 (11)
C17—N3—C20118.4 (11)C11—C12—C15122.8 (11)
C18—N3—C20117.6 (10)C13—C12—C15122.0 (12)
C16—N4—C19125.4 (11)C12—C13—H13118.4
C16—N4—C21117.4 (10)C12—C13—C14123.2 (12)
C19—N4—C21117.2 (11)H13—C13—C14118.4
O1—C1—N1122.4 (12)C9—C14—C13120.1 (12)
O1—C1—C4116.9 (11)C9—C14—H14119.9
N1—C1—C4120.6 (10)C13—C14—H14119.9
N1—C2—H2106.5C12—C15—H15A108.9
N1—C2—C3115.1 (10)C12—C15—H15B108.9
N1—C2—C8111.8 (10)C12—C15—C16113.6 (10)
H2—C2—C3106.5H15A—C15—H15B107.7
H2—C2—C8106.5H15A—C15—C16108.9
C3—C2—C8109.9 (10)H15B—C15—C16108.9
O2—C3—N2124.0 (12)N4—C16—C15109.9 (10)
O2—C3—C2118.9 (11)N4—C16—H16108.2
N2—C3—C2116.9 (10)N4—C16—C17114.2 (10)
N2—C4—C1114.1 (9)C15—C16—H16108.2
N2—C4—H4107.0C15—C16—C17107.7 (10)
N2—C4—C5112.0 (10)H16—C16—C17108.2
C1—C4—H4107.0O3—C17—N3123.1 (12)
C1—C4—C5109.3 (9)O3—C17—C16117.2 (11)
H4—C4—C5107.0N3—C17—C16119.3 (11)
Cl1—C5—C4111.6 (8)N3—C18—H18106.0
Cl1—C5—H5A109.3N3—C18—C19117.8 (10)
Cl1—C5—H5B109.3N3—C18—C22113.2 (10)
C4—C5—H5A109.3H18—C18—C19106.0
C4—C5—H5B109.3H18—C18—C22106.0
H5A—C5—H5B108.0C19—C18—C22107.0 (10)
N1—C6—H6A109.5O4—C19—N4123.0 (11)
N1—C6—H6B109.5O4—C19—C18120.3 (11)
N1—C6—H6C109.5N4—C19—C18116.6 (11)
H6A—C6—H6B109.5N3—C20—H20A109.5
H6A—C6—H6C109.5N3—C20—H20B109.5
H6B—C6—H6C109.5N3—C20—H20C109.5
N2—C7—H7A109.5H20A—C20—H20B109.5
N2—C7—H7B109.5H20A—C20—H20C109.5
N2—C7—H7C109.5H20B—C20—H20C109.5
H7A—C7—H7B109.5N4—C21—H21A109.5
H7A—C7—H7C109.5N4—C21—H21B109.5
H7B—C7—H7C109.5N4—C21—H21C109.5
C2—C8—H8A109.4H21A—C21—H21B109.5
C2—C8—H8B109.4H21A—C21—H21C109.5
C2—C8—C9111.1 (10)H21B—C21—H21C109.5
H8A—C8—H8B108.0Cl2—C22—C18109.3 (9)
H8A—C8—C9109.4Cl2—C22—H22A109.8
H8B—C8—C9109.4Cl2—C22—H22B109.8
C8—C9—C10119.0 (12)C18—C22—H22A109.8
C8—C9—C14123.0 (11)C18—C22—H22B109.8
C10—C9—C14117.9 (12)H22A—C22—H22B108.3
C2—N1—C1—O1166.2 (11)C11—C12—C13—C140.1 (17)
C2—N1—C1—C417.0 (17)C15—C12—C13—C14180.0 (11)
C6—N1—C1—O10.0 (18)C8—C9—C14—C13178.2 (11)
C6—N1—C1—C4176.8 (11)C10—C9—C14—C130.2 (18)
C1—N1—C2—C329.0 (15)C12—C13—C14—C90.2 (19)
C1—N1—C2—C897.3 (13)C11—C12—C15—C1677.0 (15)
C6—N1—C2—C3164.5 (11)C13—C12—C15—C16103.1 (13)
C6—N1—C2—C869.2 (13)C19—N4—C16—C15111.9 (12)
C4—N2—C3—O2178.8 (11)C19—N4—C16—C179.4 (15)
C4—N2—C3—C24.0 (17)C21—N4—C16—C1567.2 (13)
C7—N2—C3—O27.7 (18)C21—N4—C16—C17171.5 (10)
C7—N2—C3—C2167.2 (11)C12—C15—C16—N457.8 (14)
N1—C2—C3—O2162.8 (11)C12—C15—C16—C1767.3 (12)
N1—C2—C3—N222.1 (15)C18—N3—C17—O3165.9 (11)
C8—C2—C3—O269.9 (14)C18—N3—C17—C1621.2 (15)
C8—C2—C3—N2105.2 (12)C20—N3—C17—O31.7 (17)
C3—N2—C4—C18.5 (16)C20—N3—C17—C16171.2 (10)
C3—N2—C4—C5133.4 (12)N4—C16—C17—O3171.8 (10)
C7—N2—C4—C1179.8 (10)N4—C16—C17—N314.9 (15)
C7—N2—C4—C555.3 (13)C15—C16—C17—O365.7 (12)
O1—C1—C4—N2174.9 (10)C15—C16—C17—N3107.6 (12)
O1—C1—C4—C548.5 (14)C17—N3—C18—C1920.0 (15)
N1—C1—C4—N22.1 (16)C17—N3—C18—C22105.8 (12)
N1—C1—C4—C5128.5 (11)C20—N3—C18—C19172.3 (9)
N2—C4—C5—Cl162.4 (11)C20—N3—C18—C2261.9 (13)
C1—C4—C5—Cl165.1 (11)C16—N4—C19—O4174.1 (11)
N1—C2—C8—C960.1 (13)C16—N4—C19—C188.8 (15)
C3—C2—C8—C969.0 (12)C21—N4—C19—O45.0 (16)
C2—C8—C9—C1094.4 (13)C21—N4—C19—C18172.2 (10)
C2—C8—C9—C1483.5 (14)N3—C18—C19—O4170.0 (10)
C8—C9—C10—C11178.2 (11)N3—C18—C19—N412.8 (14)
C14—C9—C10—C110.2 (18)C22—C18—C19—O461.3 (13)
C9—C10—C11—C120.1 (19)C22—C18—C19—N4116.0 (11)
C10—C11—C12—C130.0 (18)N3—C18—C22—Cl260.7 (12)
C10—C11—C12—C15179.9 (11)C19—C18—C22—Cl270.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.493.487 (14)173
C4—H4···O41.002.643.379 (13)131
C5—H5A···O3ii0.992.333.188 (16)145
C15—H15A···O1iii0.992.423.301 (15)147
C16—H16···O2iv1.002.303.292 (14)170
C18—H18···O11.002.393.372 (14)167
C22—H22A···O2v0.992.283.171 (15)149
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1/2, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1.
(2rt) 3,3'-[1,4-phenylene-bis-(methylene)]-bis-[6-(chloromethyl)- 1,4-dimethyl-2,5-piperazinedione] top
Crystal data top
C22H28Cl2N4O4F(000) = 508
Mr = 483.38Dx = 1.384 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 4706 reflections
a = 9.7566 (5) Åθ = 2.2–22.6°
b = 12.7626 (6) ŵ = 0.32 mm1
c = 9.3138 (4) ÅT = 296 K
V = 1159.75 (9) Å3Prism, colourless
Z = 20.20 × 0.15 × 0.09 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2288 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: numerical
(SADABS 2008/1; Sheldrick, 1996)
h = 1212
Tmin = 0.641, Tmax = 0.745k = 1515
15349 measured reflectionsl = 511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.1338P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2288 reflectionsΔρmax = 0.22 e Å3
148 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C22H28Cl2N4O4V = 1159.75 (9) Å3
Mr = 483.38Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 9.7566 (5) ŵ = 0.32 mm1
b = 12.7626 (6) ÅT = 296 K
c = 9.3138 (4) Å0.20 × 0.15 × 0.09 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2288 independent reflections
Absorption correction: numerical
(SADABS 2008/1; Sheldrick, 1996)
1847 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.745Rint = 0.025
15349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.18 e Å3
2288 reflectionsAbsolute structure: Flack (1983)
148 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Experimental. Flack parameter from 953 Friedel pairs.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84190 (9)0.45208 (6)0.16838 (9)0.0910 (3)
O10.5898 (2)0.35297 (15)0.4250 (2)0.0780 (5)
O20.89126 (19)0.12669 (14)0.0653 (2)0.0763 (5)
N10.7504 (2)0.22967 (14)0.3946 (2)0.0541 (5)
N20.7185 (2)0.23960 (15)0.0965 (2)0.0559 (5)
C10.6584 (2)0.29701 (16)0.3456 (3)0.0545 (5)
C20.8289 (2)0.15828 (16)0.3047 (2)0.0547 (6)
H20.92570.16820.32940.066*
C30.8163 (2)0.17551 (17)0.1456 (3)0.0532 (5)
C40.6391 (2)0.30947 (16)0.1851 (3)0.0557 (6)
H40.54230.29540.16460.067*
C50.6650 (3)0.4227 (2)0.1484 (3)0.0762 (8)
H5A0.61140.46740.21130.091*
H5B0.63680.43620.05030.091*
C60.7736 (3)0.2262 (2)0.5494 (3)0.0815 (9)
H6A0.69070.20520.59690.122*
H6B0.80040.29440.58260.122*
H6C0.84490.17670.57030.122*
C70.7009 (4)0.2486 (2)0.0583 (3)0.0839 (9)
H7A0.71980.18220.10260.126*
H7B0.76290.30050.09510.126*
H7C0.60830.26900.07920.126*
C80.7935 (3)0.04213 (18)0.3380 (3)0.0670 (6)
H8A0.83940.00240.26870.080*
H8B0.82870.02450.43240.080*
C90.6422 (2)0.01950 (15)0.3342 (3)0.0543 (5)
C100.5694 (3)0.0095 (3)0.4588 (3)0.0836 (9)
H100.61500.01580.54600.100*
C110.5695 (3)0.0099 (2)0.2090 (2)0.0650 (7)
H110.61500.01690.12180.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1184 (7)0.0881 (5)0.0666 (4)0.0479 (4)0.0136 (4)0.0130 (4)
O10.0778 (13)0.0795 (11)0.0767 (12)0.0048 (10)0.0193 (10)0.0216 (9)
O20.0737 (12)0.0759 (10)0.0793 (12)0.0106 (10)0.0172 (9)0.0187 (10)
N10.0583 (11)0.0546 (11)0.0493 (10)0.0055 (9)0.0019 (8)0.0016 (9)
N20.0597 (12)0.0572 (11)0.0506 (11)0.0003 (9)0.0018 (9)0.0062 (9)
C10.0470 (12)0.0538 (12)0.0627 (13)0.0084 (10)0.0060 (12)0.0089 (11)
C20.0440 (11)0.0564 (13)0.0636 (15)0.0017 (10)0.0030 (10)0.0008 (10)
C30.0484 (12)0.0491 (11)0.0621 (14)0.0048 (10)0.0056 (11)0.0073 (10)
C40.0452 (12)0.0564 (12)0.0656 (14)0.0008 (10)0.0061 (10)0.0091 (11)
C50.096 (2)0.0602 (14)0.0723 (17)0.0128 (13)0.0166 (16)0.0024 (12)
C60.092 (2)0.096 (2)0.0571 (17)0.0088 (17)0.0059 (14)0.0022 (14)
C70.103 (2)0.094 (2)0.0551 (16)0.0049 (18)0.0098 (15)0.0099 (15)
C80.0616 (15)0.0546 (13)0.0847 (17)0.0043 (11)0.0121 (14)0.0095 (13)
C90.0673 (14)0.0383 (10)0.0573 (12)0.0011 (9)0.0044 (12)0.0064 (10)
C100.101 (2)0.108 (2)0.0423 (14)0.0420 (19)0.0146 (13)0.0140 (14)
C110.0803 (16)0.0696 (14)0.0451 (13)0.0220 (13)0.0084 (11)0.0067 (11)
Geometric parameters (Å, º) top
Cl1—C51.776 (3)C5—H5B0.970
O1—C11.227 (3)C6—H6A0.960
O2—C31.218 (3)C6—H6B0.960
N1—C11.324 (3)C6—H6C0.960
N1—C21.455 (3)C7—H7A0.960
N1—C61.459 (3)C7—H7B0.960
N2—C31.338 (3)C7—H7C0.960
N2—C41.441 (3)C8—H8A0.970
N2—C71.456 (3)C8—H8B0.970
C1—C41.515 (3)C8—C91.505 (3)
C2—H20.980C9—C101.366 (3)
C2—C31.503 (3)C9—C111.370 (3)
C2—C81.553 (3)C10—C10i1.375 (6)
C4—H40.980C10—H100.930
C4—C51.507 (3)C11—C11i1.379 (5)
C5—H5A0.970C11—H110.930
C1—N1—C2124.4 (2)H5A—C5—H5B108.2
C1—N1—C6117.8 (2)N1—C6—H6A109.5
C2—N1—C6117.9 (2)N1—C6—H6B109.5
C3—N2—C4124.5 (2)N1—C6—H6C109.5
C3—N2—C7118.1 (2)H6A—C6—H6B109.5
C4—N2—C7117.0 (2)H6A—C6—H6C109.5
O1—C1—N1122.6 (2)H6B—C6—H6C109.5
O1—C1—C4117.8 (2)N2—C7—H7A109.5
N1—C1—C4119.55 (19)N2—C7—H7B109.5
N1—C2—H2106.9N2—C7—H7C109.5
N1—C2—C3115.65 (18)H7A—C7—H7B109.5
N1—C2—C8111.45 (19)H7A—C7—H7C109.5
H2—C2—C3106.9H7B—C7—H7C109.5
H2—C2—C8106.9C2—C8—H8A108.9
C3—C2—C8108.57 (19)C2—C8—H8B108.9
O2—C3—N2122.1 (2)C2—C8—C9113.35 (18)
O2—C3—C2118.8 (2)H8A—C8—H8B107.7
N2—C3—C2119.0 (2)H8A—C8—C9108.9
N2—C4—C1115.66 (19)H8B—C8—C9108.9
N2—C4—H4107.0C8—C9—C10120.5 (2)
N2—C4—C5111.9 (2)C8—C9—C11123.0 (2)
C1—C4—H4107.0C10—C9—C11116.5 (2)
C1—C4—C5107.67 (19)C9—C10—C10i121.87 (15)
H4—C4—C5107.0C9—C10—H10119.1
Cl1—C5—C4109.98 (18)C10i—C10—H10119.1
Cl1—C5—H5A109.7C9—C11—C11i121.68 (14)
Cl1—C5—H5B109.7C9—C11—H11119.2
C4—C5—H5A109.7C11i—C11—H11119.2
C4—C5—H5B109.7
C2—N1—C1—O1176.8 (2)C3—N2—C4—C5115.8 (3)
C2—N1—C1—C45.5 (3)C7—N2—C4—C1179.2 (2)
C6—N1—C1—O12.6 (3)C7—N2—C4—C557.0 (3)
C6—N1—C1—C4175.2 (2)O1—C1—C4—N2177.97 (19)
C1—N1—C2—C39.1 (3)O1—C1—C4—C556.0 (3)
C1—N1—C2—C8115.5 (2)N1—C1—C4—N24.2 (3)
C6—N1—C2—C3171.6 (2)N1—C1—C4—C5121.9 (2)
C6—N1—C2—C863.8 (3)N2—C4—C5—Cl158.2 (2)
C4—N2—C3—O2171.5 (2)C1—C4—C5—Cl170.0 (2)
C4—N2—C3—C212.2 (3)N1—C2—C8—C951.9 (3)
C7—N2—C3—O21.2 (3)C3—C2—C8—C976.6 (3)
C7—N2—C3—C2175.1 (2)C2—C8—C9—C10102.6 (3)
N1—C2—C3—O2171.6 (2)C2—C8—C9—C1176.0 (3)
N1—C2—C3—N212.0 (3)C8—C9—C10—C10i179.0 (4)
C8—C2—C3—O262.3 (3)C11—C9—C10—C10i0.2 (5)
C8—C2—C3—N2114.1 (2)C8—C9—C11—C11i179.4 (3)
C3—N2—C4—C18.0 (3)C10—C9—C11—C11i0.7 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···O1ii0.962.423.255 (4)145
C8—H8B···O1iii0.972.683.463 (3)138
C5—H5B···O2iv0.972.673.323 (3)125
C7—H7C···O2v0.962.503.415 (4)158
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+1; (iv) x+3/2, y+1/2, z; (v) x1/2, y+1/2, z.
(2lt) 3,3'-[1,4-phenylene-bis-(methylene)]-bis-[6-(chloromethyl)- 1,4-dimethyl-2,5-piperazinedione] top
Crystal data top
C22H28Cl2N4O4F(000) = 508
Mr = 483.38Dx = 1.421 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1653 reflections
a = 9.2208 (13) Åθ = 2.7–27.6°
b = 12.6517 (19) ŵ = 0.33 mm1
c = 9.6894 (15) ÅT = 100 K
β = 92.123 (2)°Prism, colourless
V = 1129.6 (3) Å30.19 × 0.16 × 0.10 mm
Z = 2
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2919 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics2603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(TWINABS 2008/2; Sheldrick, 1996)
h = 1212
Tmin = 0.632, Tmax = 0.746k = 016
2919 measured reflectionsl = 012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2919 reflectionsΔρmax = 0.32 e Å3
294 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C22H28Cl2N4O4V = 1129.6 (3) Å3
Mr = 483.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2208 (13) ŵ = 0.33 mm1
b = 12.6517 (19) ÅT = 100 K
c = 9.6894 (15) Å0.19 × 0.16 × 0.10 mm
β = 92.123 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2919 independent reflections
Absorption correction: multi-scan
(TWINABS 2008/2; Sheldrick, 1996)
2603 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.746Rint = 0.034
2919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.32 e Å3
S = 1.02Δρmin = 0.23 e Å3
2919 reflectionsAbsolute structure: Flack (1983)
294 parametersAbsolute structure parameter: 0.07 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33843 (8)1.19205 (6)0.39512 (8)0.0325 (2)
Cl20.32739 (9)0.28478 (6)1.08306 (8)0.0325 (2)
O10.0896 (2)1.09490 (19)0.6629 (2)0.0275 (5)
O20.4453 (2)0.87240 (17)0.3538 (2)0.0241 (5)
O30.0580 (2)0.38588 (18)0.8309 (2)0.0250 (5)
O40.4258 (2)0.61604 (19)1.1450 (2)0.0276 (5)
N10.1162 (3)0.9680 (2)0.5037 (2)0.0198 (5)
N20.4185 (3)0.9841 (2)0.5311 (2)0.0199 (5)
N30.0919 (3)0.5056 (2)1.0011 (2)0.0188 (5)
N40.3925 (3)0.5039 (2)0.9675 (2)0.0197 (5)
C10.1676 (3)1.0390 (2)0.5937 (3)0.0191 (6)
C20.2036 (3)0.8988 (2)0.4195 (3)0.0188 (6)
H20.17250.91130.32090.023*
C30.3657 (3)0.9197 (2)0.4317 (3)0.0178 (6)
C40.3309 (3)1.0556 (3)0.6100 (3)0.0200 (6)
H40.35841.04450.70970.024*
C50.3640 (4)1.1698 (3)0.5767 (3)0.0272 (7)
H5A0.46541.18640.60600.033*
H5B0.29901.21690.62770.033*
C60.0419 (3)0.9581 (3)0.4875 (3)0.0262 (7)
H6A0.07910.92010.56690.039*
H6B0.06670.91900.40260.039*
H6C0.08561.02870.48220.039*
C70.5758 (3)0.9973 (3)0.5448 (3)0.0284 (7)
H7A0.62320.92870.53400.043*
H7B0.60171.02630.63620.043*
H7C0.60791.04600.47340.043*
C80.1763 (3)0.7805 (3)0.4501 (3)0.0222 (6)
H8A0.08260.75920.40520.027*
H8B0.25370.73780.40910.027*
C90.1727 (3)0.7565 (2)0.6016 (3)0.0198 (6)
C100.2953 (3)0.7609 (3)0.6903 (3)0.0246 (7)
H100.38690.77740.65410.029*
C110.2856 (3)0.7416 (3)0.8301 (3)0.0235 (6)
H110.37090.74490.88810.028*
C120.1541 (3)0.7173 (3)0.8877 (3)0.0211 (6)
C130.0336 (3)0.7095 (3)0.7989 (3)0.0273 (7)
H130.05710.69000.83480.033*
C140.0423 (3)0.7293 (3)0.6597 (3)0.0263 (7)
H140.04290.72430.60200.032*
C150.1433 (3)0.6963 (3)1.0400 (3)0.0239 (6)
H15A0.04320.71181.06770.029*
H15B0.20980.74461.09190.029*
C160.1817 (3)0.5804 (2)1.0797 (3)0.0188 (6)
H160.15990.57101.17940.023*
C170.3448 (3)0.5661 (3)1.0669 (3)0.0198 (6)
C180.3016 (3)0.4335 (2)0.8824 (3)0.0180 (6)
H180.31880.45090.78370.022*
C190.1388 (3)0.4421 (2)0.9026 (3)0.0181 (6)
C200.0648 (3)0.5046 (3)1.0253 (3)0.0276 (7)
H20A0.11820.52980.94230.041*
H20B0.08500.55111.10320.041*
H20C0.09550.43241.04640.041*
C210.5485 (3)0.4965 (3)0.9517 (3)0.0274 (7)
H21A0.59160.56720.95910.041*
H21B0.56800.46640.86110.041*
H21C0.59110.45101.02430.041*
C220.3438 (3)0.3181 (3)0.9050 (3)0.0267 (7)
H22A0.44510.30680.87770.032*
H22B0.27970.27210.84710.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0230 (4)0.0374 (5)0.0372 (4)0.0015 (4)0.0008 (3)0.0181 (4)
Cl20.0277 (4)0.0327 (5)0.0378 (4)0.0086 (3)0.0098 (3)0.0175 (4)
O10.0271 (11)0.0284 (12)0.0275 (12)0.0099 (10)0.0072 (9)0.0003 (9)
O20.0240 (11)0.0250 (12)0.0238 (11)0.0058 (10)0.0067 (8)0.0018 (9)
O30.0241 (11)0.0249 (11)0.0258 (11)0.0070 (10)0.0019 (9)0.0004 (9)
O40.0286 (11)0.0284 (12)0.0255 (12)0.0070 (10)0.0050 (9)0.0015 (9)
N10.0150 (11)0.0232 (13)0.0215 (12)0.0032 (10)0.0023 (9)0.0027 (10)
N20.0180 (12)0.0214 (13)0.0204 (12)0.0003 (10)0.0014 (9)0.0002 (10)
N30.0172 (11)0.0194 (13)0.0198 (12)0.0009 (10)0.0009 (9)0.0018 (10)
N40.0127 (11)0.0244 (13)0.0220 (12)0.0014 (10)0.0011 (9)0.0000 (10)
C10.0213 (14)0.0183 (16)0.0178 (14)0.0030 (11)0.0011 (11)0.0047 (11)
C20.0183 (13)0.0234 (16)0.0146 (13)0.0016 (12)0.0013 (10)0.0011 (11)
C30.0192 (13)0.0176 (15)0.0167 (13)0.0003 (12)0.0015 (10)0.0040 (11)
C40.0215 (14)0.0234 (15)0.0152 (13)0.0018 (12)0.0005 (11)0.0007 (11)
C50.0307 (16)0.0237 (18)0.0271 (16)0.0032 (14)0.0025 (13)0.0013 (13)
C60.0144 (14)0.0319 (18)0.0324 (17)0.0012 (13)0.0021 (12)0.0042 (14)
C70.0178 (14)0.0336 (19)0.0336 (17)0.0007 (14)0.0008 (12)0.0044 (14)
C80.0230 (13)0.0212 (15)0.0222 (14)0.0009 (13)0.0003 (11)0.0008 (13)
C90.0210 (14)0.0151 (14)0.0234 (15)0.0001 (11)0.0025 (11)0.0003 (11)
C100.0173 (13)0.0238 (18)0.0327 (16)0.0020 (12)0.0021 (11)0.0083 (13)
C110.0183 (13)0.0240 (15)0.0279 (16)0.0042 (12)0.0041 (11)0.0037 (13)
C120.0246 (14)0.0132 (14)0.0258 (15)0.0043 (11)0.0043 (12)0.0003 (11)
C130.0172 (13)0.0315 (18)0.0335 (17)0.0030 (13)0.0042 (12)0.0076 (14)
C140.0177 (14)0.0282 (17)0.0323 (17)0.0073 (13)0.0067 (12)0.0043 (13)
C150.0300 (15)0.0181 (15)0.0238 (15)0.0031 (14)0.0032 (11)0.0031 (13)
C160.0215 (14)0.0183 (15)0.0166 (14)0.0006 (12)0.0021 (11)0.0000 (11)
C170.0240 (14)0.0173 (15)0.0179 (14)0.0023 (12)0.0011 (11)0.0012 (11)
C180.0199 (13)0.0178 (14)0.0163 (13)0.0036 (12)0.0020 (10)0.0007 (11)
C190.0198 (13)0.0171 (15)0.0175 (14)0.0030 (11)0.0002 (10)0.0041 (11)
C200.0173 (14)0.0330 (18)0.0326 (17)0.0031 (14)0.0047 (12)0.0015 (14)
C210.0176 (14)0.0311 (18)0.0336 (17)0.0002 (14)0.0042 (12)0.0023 (14)
C220.0260 (15)0.0264 (17)0.0282 (16)0.0003 (13)0.0087 (13)0.0018 (13)
Geometric parameters (Å, º) top
Cl1—C51.788 (3)C7—H7C0.980
Cl2—C221.788 (3)C8—H8A0.990
O1—C11.226 (4)C8—H8B0.990
O2—C31.228 (3)C8—C91.500 (4)
O3—C191.227 (4)C9—C101.396 (4)
O4—C171.219 (4)C9—C141.390 (4)
N1—C11.328 (4)C10—H100.950
N1—C21.460 (4)C10—C111.383 (4)
N1—C61.465 (4)C11—H110.950
N2—C31.339 (4)C11—C121.388 (4)
N2—C41.450 (4)C12—C131.383 (4)
N2—C71.461 (4)C12—C151.507 (4)
N3—C161.454 (4)C13—H130.950
N3—C191.332 (4)C13—C141.378 (4)
N3—C201.472 (4)C14—H140.950
N4—C171.331 (4)C15—H15A0.990
N4—C181.456 (4)C15—H15B0.990
N4—C211.455 (4)C15—C161.554 (4)
C1—C41.523 (4)C16—H161.000
C2—H21.000C16—C171.525 (4)
C2—C31.518 (4)C18—H181.000
C2—C81.548 (5)C18—C191.525 (4)
C4—H41.000C18—C221.525 (5)
C4—C51.514 (5)C20—H20A0.980
C5—H5A0.990C20—H20B0.980
C5—H5B0.990C20—H20C0.980
C6—H6A0.980C21—H21A0.980
C6—H6B0.980C21—H21B0.980
C6—H6C0.980C21—H21C0.980
C7—H7A0.980C22—H22A0.990
C7—H7B0.980C22—H22B0.990
C1—N1—C2125.6 (2)C9—C10—H10119.5
C1—N1—C6117.2 (3)C9—C10—C11121.1 (3)
C2—N1—C6117.2 (3)H10—C10—C11119.5
C3—N2—C4124.3 (2)C10—C11—H11119.3
C3—N2—C7117.9 (3)C10—C11—C12121.5 (3)
C4—N2—C7116.8 (3)H11—C11—C12119.3
C16—N3—C19125.0 (2)C11—C12—C13117.4 (3)
C16—N3—C20117.7 (2)C11—C12—C15121.6 (3)
C19—N3—C20117.1 (3)C13—C12—C15121.0 (3)
C17—N4—C18124.9 (2)C12—C13—H13119.3
C17—N4—C21117.9 (3)C12—C13—C14121.4 (3)
C18—N4—C21116.9 (2)H13—C13—C14119.3
O1—C1—N1123.2 (3)C9—C14—C13121.6 (3)
O1—C1—C4117.5 (3)C9—C14—H14119.2
N1—C1—C4119.3 (3)C13—C14—H14119.2
N1—C2—H2107.1C12—C15—H15A109.0
N1—C2—C3114.5 (3)C12—C15—H15B109.0
N1—C2—C8112.1 (2)C12—C15—C16112.8 (2)
H2—C2—C3107.1H15A—C15—H15B107.8
H2—C2—C8107.1H15A—C15—C16109.0
C3—C2—C8108.7 (2)H15B—C15—C16109.0
O2—C3—N2121.9 (3)N3—C16—C15111.4 (2)
O2—C3—C2118.4 (3)N3—C16—H16107.4
N2—C3—C2119.5 (3)N3—C16—C17115.1 (2)
N2—C4—C1115.3 (2)C15—C16—H16107.4
N2—C4—H4107.1C15—C16—C17107.9 (3)
N2—C4—C5111.3 (2)H16—C16—C17107.4
C1—C4—H4107.2O4—C17—N4123.0 (3)
C1—C4—C5108.4 (3)O4—C17—C16118.1 (3)
H4—C4—C5107.1N4—C17—C16118.8 (3)
Cl1—C5—C4109.8 (2)N4—C18—H18107.4
Cl1—C5—H5A109.7N4—C18—C19115.6 (2)
Cl1—C5—H5B109.7N4—C18—C22111.4 (2)
C4—C5—H5A109.7H18—C18—C19107.4
C4—C5—H5B109.7H18—C18—C22107.4
H5A—C5—H5B108.2C19—C18—C22107.3 (3)
N1—C6—H6A109.5O3—C19—N3123.3 (3)
N1—C6—H6B109.5O3—C19—C18117.8 (3)
N1—C6—H6C109.5N3—C19—C18118.8 (3)
H6A—C6—H6B109.5N3—C20—H20A109.5
H6A—C6—H6C109.5N3—C20—H20B109.5
H6B—C6—H6C109.5N3—C20—H20C109.5
N2—C7—H7A109.5H20A—C20—H20B109.5
N2—C7—H7B109.5H20A—C20—H20C109.5
N2—C7—H7C109.5H20B—C20—H20C109.5
H7A—C7—H7B109.5N4—C21—H21A109.5
H7A—C7—H7C109.5N4—C21—H21B109.5
H7B—C7—H7C109.5N4—C21—H21C109.5
C2—C8—H8A109.0H21A—C21—H21B109.5
C2—C8—H8B109.0H21A—C21—H21C109.5
C2—C8—C9113.1 (3)H21B—C21—H21C109.5
H8A—C8—H8B107.8Cl2—C22—C18109.5 (2)
H8A—C8—C9109.0Cl2—C22—H22A109.8
H8B—C8—C9109.0Cl2—C22—H22B109.8
C8—C9—C10123.2 (3)C18—C22—H22A109.8
C8—C9—C14119.8 (3)C18—C22—H22B109.8
C10—C9—C14117.0 (3)H22A—C22—H22B108.2
C2—N1—C1—O1179.5 (3)C11—C12—C13—C142.7 (5)
C2—N1—C1—C42.6 (4)C15—C12—C13—C14179.5 (3)
C6—N1—C1—O10.5 (4)C12—C13—C14—C91.0 (6)
C6—N1—C1—C4177.4 (3)C8—C9—C14—C13178.2 (3)
C1—N1—C2—C35.3 (4)C10—C9—C14—C131.1 (5)
C1—N1—C2—C8119.1 (3)C11—C12—C15—C1683.5 (4)
C6—N1—C2—C3174.8 (3)C13—C12—C15—C1694.1 (4)
C6—N1—C2—C860.8 (3)C19—N3—C16—C15109.9 (3)
C4—N2—C3—O2168.8 (3)C19—N3—C16—C1713.4 (4)
C4—N2—C3—C215.1 (4)C20—N3—C16—C1565.8 (3)
C7—N2—C3—O20.3 (4)C20—N3—C16—C17171.0 (3)
C7—N2—C3—C2176.4 (3)C12—C15—C16—N355.9 (4)
N1—C2—C3—O2172.6 (3)C12—C15—C16—C1771.4 (3)
N1—C2—C3—N211.1 (4)C18—N4—C17—O4172.5 (3)
C8—C2—C3—O261.2 (3)C18—N4—C17—C1610.7 (4)
C8—C2—C3—N2115.1 (3)C21—N4—C17—O40.5 (5)
C3—N2—C4—C111.7 (4)C21—N4—C17—C16176.3 (3)
C3—N2—C4—C5112.3 (3)N3—C16—C17—O4169.7 (3)
C7—N2—C4—C1179.7 (3)N3—C16—C17—N413.4 (4)
C7—N2—C4—C556.3 (3)C15—C16—C17—O465.2 (3)
O1—C1—C4—N2177.0 (3)C15—C16—C17—N4111.7 (3)
O1—C1—C4—C557.4 (3)C17—N4—C18—C196.2 (4)
N1—C1—C4—N24.9 (4)C17—N4—C18—C22116.6 (3)
N1—C1—C4—C5120.6 (3)C21—N4—C18—C19179.3 (3)
N2—C4—C5—Cl156.2 (3)C21—N4—C18—C2256.4 (3)
C1—C4—C5—Cl171.7 (3)C16—N3—C19—O3174.1 (3)
N1—C2—C8—C944.8 (3)C16—N3—C19—C189.5 (4)
C3—C2—C8—C982.8 (3)C20—N3—C19—O31.6 (4)
C2—C8—C9—C1069.5 (4)C20—N3—C19—C18174.8 (3)
C2—C8—C9—C14109.9 (3)N4—C18—C19—O3178.5 (3)
C8—C9—C10—C11177.8 (3)N4—C18—C19—N34.9 (4)
C14—C9—C10—C111.6 (5)C22—C18—C19—O356.5 (3)
C9—C10—C11—C120.2 (5)C22—C18—C19—N3120.1 (3)
C10—C11—C12—C132.3 (5)N4—C18—C22—Cl258.7 (3)
C10—C11—C12—C15180.0 (3)C19—C18—C22—Cl268.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.563.362 (4)137
C4—H4···O4ii1.002.563.296 (4)130
C5—H5A···O2iii0.992.523.167 (4)123
C6—H6B···O3i0.982.303.215 (4)154
C7—H7B···O4ii0.982.433.361 (4)159
C8—H8A···O1iv0.992.683.539 (4)145
C15—H15A···O3v0.992.603.307 (4)129
C20—H20B···O1vi0.982.333.246 (4)154
C21—H21B···O2vii0.982.403.353 (4)165
C22—H22A···O2vii0.992.633.302 (4)125
C22—H22A···O4viii0.992.703.371 (4)125
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z+1; (v) x, y+1/2, z+2; (vi) x, y1/2, z+2; (vii) x+1, y1/2, z+1; (viii) x+1, y1/2, z+2.

Experimental details

(1)(2rt)(2lt)
Crystal data
Chemical formulaC22H28Cl2N4O4C22H28Cl2N4O4C22H28Cl2N4O4
Mr483.38483.38483.38
Crystal system, space groupMonoclinic, P21Orthorhombic, P21212Monoclinic, P21
Temperature (K)150296100
a, b, c (Å)8.4158 (17), 14.779 (3), 10.438 (2)9.7566 (5), 12.7626 (6), 9.3138 (4)9.2208 (13), 12.6517 (19), 9.6894 (15)
α, β, γ (°)90, 110.58 (3), 9090, 90, 9090, 92.123 (2), 90
V3)1215.3 (4)1159.75 (9)1129.6 (3)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.300.320.33
Crystal size (mm)0.32 × 0.13 × 0.070.20 × 0.15 × 0.090.19 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Bruker Kappa APEXII DUO CCD
diffractometer
Bruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS 2008/1; Sheldrick, 1996)
Numerical
(SADABS 2008/1; Sheldrick, 1996)
Multi-scan
(TWINABS 2008/2; Sheldrick, 1996)
Tmin, Tmax0.664, 0.9170.641, 0.7450.632, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8536, 1649, 1123 15349, 2288, 1847 2919, 2919, 2603
Rint0.1280.0250.034
θmax (°)22.526.028.3
(sin θ/λ)max1)0.5380.6180.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.134, 1.18 0.037, 0.102, 1.03 0.035, 0.085, 1.02
No. of reflections164922882919
No. of parameters293148294
No. of restraints101
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.290.22, 0.180.32, 0.23
Absolute structure?Flack (1983)Flack (1983)
Absolute structure parameter?0.03 (8)0.07 (7)

Computer programs: COLLECT (Nonius, 1998), APEX2 (Bruker, 2007), EVALCCD (Duisenberg et al., 2003), CELL_NOW (Sheldrick, 2004) and SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009) and local programs.

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.493.487 (14)173
C4—H4···O41.002.643.379 (13)131
C18—H18···O11.002.393.372 (14)167
Symmetry code: (i) x1, y, z1.
Hydrogen-bond geometry (Å, º) for (2rt) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···O1i0.962.423.255 (4)145
C8—H8B···O1ii0.972.683.463 (3)138
C5—H5B···O2iii0.972.673.323 (3)125
C7—H7C···O2iv0.962.503.415 (4)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z+1; (iii) x+3/2, y+1/2, z; (iv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (2lt) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.563.362 (4)137
C4—H4···O4ii1.002.563.296 (4)130
C5—H5A···O2iii0.992.523.167 (4)123
C6—H6B···O3i0.982.303.215 (4)154
C7—H7B···O4ii0.982.433.361 (4)159
C8—H8A···O1iv0.992.683.539 (4)145
C15—H15A···O3v0.992.603.307 (4)129
C20—H20B···O1vi0.982.333.246 (4)154
C21—H21B···O2vii0.982.403.353 (4)165
C22—H22A···O2vii0.992.633.302 (4)125
C22—H22A···O4viii0.992.703.371 (4)125
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z+1; (v) x, y+1/2, z+2; (vi) x, y1/2, z+2; (vii) x+1, y1/2, z+1; (viii) x+1, y1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds