Download citation
Download citation
link to html
The title salts, 4-chloro­anilinium hydrogen phthalate (PCAHP), C6H7ClN+·C8H5O4-, 2-hydroxy­anilinium hydrogen phthal­ate (2HAHP), C6H8NO+·C8H5O4-, and 3-hydroxy­anilinium hy­dro­gen phthalate (3HAHP), C6H8NO+·C8H5O4-, all crystallize in the space group P21/c. The asymmetric unit of 2HAHP contains two independent ion pairs. The hydrogen phthalate ions of 2HAHP and 3HAHP show a short intra­molecular O-H...O hydrogen bond, with O...O distances ranging from 2.3832 (15) to 2.3860 (14) Å. N-H...O and O-H...O hydrogen bonds, together with short C-H...O contacts in PCAHP and 3HAHP, generate extended hydrogen-bond networks. PCAHP forms a two-dimensional supra­molecular sheet extending in the (100) plane, whereas 2HAHP has a supra­molecular chain running parallel to the [100] direction and 3HAHP has a two-dimensional network extending parallel to the (001) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109025724/sk3331sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025724/sk3331Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025724/sk3331IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025724/sk3331IIIsup4.hkl
Contains datablock III

CCDC references: 746092; 746093; 746094

Comment top

Phthalic acid forms hydrogen phthalate salts with various organic and other compounds. Reported hydrogen phthalates include calcium phthalate monohydrate (Schuckmann et al., 1978), lithium hydrogen phthalate monohydrate (Küppers et al., 1985), tetramethyl ammonium hydrogen phthalate (Jessen, 1990), 2,4,6-triamino-1,3,5-triazinium hydrogen phthalate (Janczak & Perpétuo, 2001) and N,N'–diphenyl gunadinium dihydrogen phthalate (Pereira Silva et al., 2006). Analysis of the structures archived in the Cambridge Structural Database (Allen, 2002) shows that hydrogen phthalate ions of phthalate salts occur in two different forms: (i) nonplanar, where both the carboxyl (COOH) and the carboxylate (COO-) groups are twisted out of the plane of the benzene ring (Jessen, 1990; Janczak & Perpétuo, 2001; Jin et al., 2003), and (ii) planar, in which both the COOH and the COO- groups are coplanar with the benzene plane (Küppers, 1978). The planarity is achieved through an extraordinarily short intramolecular hydrogen bond linking the carboxyl and carboxylate groups (O···O 2.4 Å; Küppers et al., 1985; Steiner & Saenger, 1994). This intramolecular hydrogen bond with an S(7) graph set motif is a common occurrence in 1,2-substituted dicarboxylic acids (Leiserowitz, 1976). Hydrogen phthalates also form supramolecular assemblies, such as extended chains, ribbons and three-dimensional networks (Dale et al., 2004; Ballabh et al., 2005). In order to understand the nature of the intramolecular hydrogen bond and the N—H···O and O—H···O hydrogen-bond-assisted supramolecular motifs and networks, the crystal structures of three hydrogen phthalate salts were determined (Scheme 1).

The asymmetric unit of PCAHP (Fig. 1) contains a 4-chloroanilinium cation and a hydrogen phthalate anion. The hydrogen phthalate anion is almost planar except for the two carboxyl groups. The plane defined by the atoms of the COO- group with respect to the least-squares plane of the benzene ring is almost perpendicular, with an angle of 76.7 (1)°, while the plane defined by the COOH group is inclined at an angle of 16.8 (2)°. Similar out-of-plane and near-in-plane twisting is also found in the structures of ammonium hydrogen phthalate (Smith, 1975) and tetramethylammonium hydrogen phthalate (Jessen, 1990). Within the benzene ring the endocyclic angles at C1 and C2 are significantly smaller than 120° [119.0 (2) and 118.7 (2)°, respectively], compensating for the substitutional effects of the COO- and COOH groups. The C—C bond length joining the COO- group [C1—C7 = 1.508 (3) Å] is slightly longer than that of the COOH group [C2—C8 = 1.488 (3) Å] as a result of the dissociation of the H atom from the carboxyl group substituted at C1 to the neighboring 4-chloroaniline, making an acid–base salt (Janczak & Perpétuo, 2001). The 4-chloroanilinium cation shows characteristic values of bond lengths and angles, which are consistent with those of other reported structures (Glidewell et al., 2005). The C—N distance of the 4-chloroanilinium cation [C9—N1= 1.457 (3) Å] is longer than the C—N distance (C—N = 1.386 Å) of neutral p–chloroaniline. This lengthening is observed when the amine N atom of the p–chloroaniline accepts an H atom from the carboxyl group of phthalic acid (Markworth et al., 1987; Glidewell et al., 2005).

Both 2HAHP and 3HAHP crystallize in P21/c (Figs. 2 and 3). The asymmetric unit of 2HAHP comprises of two sets of hydrogen phthalate anions and 2-hydroxyanilinium cations, whereas 3HAHP contains only one hydrogen phthalate anion and one 3-hydroxyanilinium cation. The hydrogen phthalate anions of 2HAHP and 3HAHP are almost planar with distinctly asymmetric intramolecular hydrogen bonds (Jin et al., 2000). The non-centered H atoms H2AA, H2BA and H2A are found at distances of 1.05 (2), 1.11 (2) and 1.10 (2) Å from O2A, O2B and O2, and 1.34 (3), 1.28 (2) and 1.29 (2) Å from O3A, O3B and O3 of 2HAHP and 3HAHP in the short intramolecular hydrogen bonds O2A—H2AA···O3A, O2B—H2BA···O3B and O2—H2A···O3, respectively (Tables 2 and 3), with similar values as reported in related structures (Jessen & Küppers, 1991; Barrett et al., 1995). Formation of this intramolecular hydrogen bond is responsible for the lengthening of the C1—C2 bond [C1A—C2A = 1.412 (2) Å and C1B—C2B = 1.411 (2) Å for 2HAHP, and C1—C2 = 1.412 (2) Å for 3HAHP], where both the carboxy groups are substituted (Langkilde et al., 2004). The considerable strain produced by the presence of the intramolecular hydrogen bond within the molecule causes some displacement of the inner O atoms O2A, O3A, O2B and O3B (2HAHP) and O2 and O3 (3HAHP) (Adiwidjaja & Küppers, 1978). The dihedral angles between the least-squares plane of the benzene ring and the carboxyl–carboxylate groups are 3.2 (2)° (O1A/C7A/O2A), 2.0 (1)° (O3A/C8A/O4A), 11.8 (1)° (O1B/C7B/O2B), 13.5 (1)° (O3B/C8B/O4B) and 14.3 (1)° (O1/C7/O2), 5.5 (1)° (O3/C8/O4), respectively, for 2HAHP and 3HAHP. The cations of both the phthalate salts show normal aromatic C—C bond length value except for the bond distances C10—C11 [1.388 (2) Å] and C11—C12 [1.389 (2) Å] of the 3-hydroxyanilinium cation, which is slightly greater than the other C—C bond distances. This lengthening is due to the OH group substituted at C11, which is involved in a strong intermolecular interaction with the nearby cations and anions. The C—N bond lengths [C9A—N1A = 1.455 (2) Å and C9B—N1B = 1.452 (2) Å] of the 2-hydroxyanilinium cation and [C9—N1 = 1.468 (2) Å] and of the 3-hydroxyanilinium cation are longer than the C—N bond distance of neutral 2-hydroxyaniline and 3-hydroxyaniline (Allen et al., 1997) as a result of the proton transfer from the acid to the amine group of the base.

The hydrogen-bonded supramolecular motifs and network of PCAHP, 2HAHP and 3HAHP are determined primarily by the combination of N—H···O and O—H···O hydrogen bonds. In PCAHP, the hydrogen phthalate anions alone form chains through O3—H3A···O1iii [symmetry code: (iii) -x + 1, y + 1/2, -z + 1/2] hydrogen bonds running parallel to the [010] direction, forming a C(7) motif (Bernstein et al., 1995) generated by a 21 screw axis along (1/2, y, 1/2). In addition, along with the C(7) chain, N1—H1C···O1ii [symmetry code: (ii) -x + 1, y - 1/2, -z + 1/2] and N1—H1A···O2 hydrogen bonds form an infinite chain of edge fused R33 (13) rings parallel to the [010] {same direction as above?} direction. The third hydrogen bond, N1—H1B···O2i [symmety code: (i) -x + 1, -y, -z + 1] links these parallel chains with a hydrogen-bond motif of R24(8), which leads to a two-dimensional supramolecular sheet spreading infinitely in the (100) plane, as shown in Fig. 4. These supramolecular sheets are further strengthened by C13—H13···O1iii and C14—H14···O3 interactions. Overall, the N—H···O and O—H···O hydrogen bonds along with the C—H···O interactions link adjacent anions and cations to one another to form a network measuring one-unit-cell thickness and extending parallel to the [001] and [010] directions, with the sheets arranged in the form of a sandwich. The adjacent layers of the molecular network are linked through Cl···Cl interactions.

In 2HAHP, the A and B hydrogen phthalate anions are coplanar, facing opposite to each other, while their corresponding 2-hydroxyanilinium cations are linked to the anions through N1A—H1AB···O1Ai, N1A—H1AC···O3Bii, N1B—H1BA···O1B and N1B—H1BC···O3Av [symmetry codes: (i) x, -y + 1/2, z - 1/2; (ii) -x + 1, y + 1/2, -z + 1/2; (v) -x + 1, -y, -z + 1] hydrogen bonds with the phenyl planes of the A and B cations lying almost perpendicular to the planar A and B hydrogen phthalate ions. These N—H···O bonds result in a supramolecular R44(16) motif, which forms the asymmetric unit of A and B anion–cation pairs. Such units are joined together through two O—H···O hydrogen bonds, O5A—H5AA···O4Aiii and O5B—H5BA···O4Bvi [symmetry codes: (iii) x + 1, -y + 1/2, z - 1/2; (vi) x + 1, y, z], to generate a supramolecular R44(18) motif, which creates a chain of alternately fused R44(16) and R44(18) motifs extending parallel to the [100] direction, as shown in Fig. 5. The inversion-related antiparallel supramolecular chains are interlinked by N1A—H1AA···O1Bi and N1B—HIBB···O5Biv [symmetry code: (iv) -x + 2, -y, -z + 1] hydrogen bonds forming an infinite supramolecular chain extending along the [100] direction, illustrated in Fig. 6. In this supramolecular network the inversion-related B cations are connected to each other through N1B—H1BB···O5Biv hydrogen bonds to form an R22(10) dimer lying on the inversion center of the P21/c space group symmetry. The infinitely extending networks parallel to the [100] direction formed through all possible N—H···O and O—H···O hydrogen bonds along with C—H···O interactions are interconnected through C14A—H14A···O1B and C13A—H13A···O5A interactions. The centroid–centroid separation distance between the A and B 2-hydroxyanilinium cations is approximately 3.67 Å.

The hydrogen phthalate anions and 3-hydroxyanilinium cations of 3HAHP are linked through N1—H1A···O4viii [symmetry code: (viii) -x+3, -y+2, -z+1] and N1—H1B···O3 hydrogen bonds to form a supramolecular motif of type R44(12) (Fig. 7). An O5—H5A···O1x [symmetry code: (x) -x+1, -y+1, -z+1] hydrogen bond links these ionic pairs, resulting in an extended infinite supramolecular chain. All molecules link into a two-dimensional network parallel with the (001) plane. Apart from these N—H···O and O—H···O hydrogen bonds, two C—H···O hydrogen bonds, viz. C12—H12···O1x and C10—H10···O2 further strengthen the chain. The C10—H10···O2 and O5—H5A···O1x hydrogen bonds form a supramolecular R44(16) motif in addition to other supramolecular R12(6) and R22(8) motifs through N1—H1A···O4i and C12—H12···O1iii, and C10—H10···O2 and N1—H1B···O3 hydrogen bonds, respectively. The formation of R44(12), R44(16), R12(6) and R22(8) motifs constituting the supramolecular chain is shown in Fig. 7. Parallel arrays of these chains are linked through N1—H1C···O5ix hydrogen bonding [symmetry code: (ix) x+1, y, z], thus building up an extended two-dimensional network parallel to the (001) plane.

Related literature top

For related literature, see: Adiwidjaja & Küppers (1978); Allen (2002); Allen et al. (1997); Ballabh et al. (2005); Barrett et al. (1995); Bernstein et al. (1995); Dale et al. (2004); Glidewell et al. (2005); Janczak & Perpétuo (2001); Jessen (1990); Jessen & Küppers (1991); Jin et al. (2000, 2003); Küppers (1978); Küppers et al. (1985); Langkilde et al. (2004); Leiserowitz (1976); Markworth et al. (1987); Schuckmann et al. (1978); Pereira Silva et al. (2006); Smith (1975); Steiner & Saenger (1994).

Experimental top

All three salts were prepared by taking equimolar (1:1) amounts of phtahalic acid with 4-chloroaniline, 2-hydroxyaniline and 3-hydroxyaniline separately in methanol as solvent. The solution was stirred well before being left to stand for crystallization. Good diffraction quality crystals were obtained after a few days of slow evaporation.

Refinement top

For all the three structures, H atoms bound to O and N atoms were located from difference electron density maps. While the H atoms associated with O and N in 2HAHP and 3HAHP were refined freely, those for the N atom of PCAHP were constrained to ride on their parent atoms with N—H distances of 0.89 Å and Uiso(H) = 1.5Ueq(N). H atoms bound to C atoms of all the compounds were constrained as riding [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The positions of three H atoms on N1 were identified from a difference electron-density peak and were fixed geometrically during refinement.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: XPREP in SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent components in PCAHP showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The independent components in 2HAHP showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bond.
[Figure 3] Fig. 3. The independent components in 3HAHP showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. Dashed line indicates the intramolecular hydrogen bond.
[Figure 4] Fig. 4. The two-dimensional sheet of anions and cations in PCAHP interlinked through N—H···O and O—H···O hydrogen bonds, extending parallel to the (100) crystallographic plane.
[Figure 5] Fig. 5. Part of the crystal structure of 2HAHP, showing the formation of a supramolecular chain of alternately fused hydrogen-bonded R44(16) and R44(18) motifs extending parallel to the [100] direction.
[Figure 6] Fig. 6. The extended supramolecular hydrogen-bonded network along the [100] direction in 2HAHP, showing the R22(10) dimer.
[Figure 7] Fig. 7. The hydrogen-bonded supramolecular chain in 3HAHP, showing the formation of R44(12) and R44(16) motifs.
(I) 4-chloroanilinium hydrogen phthalate top
Crystal data top
C6H7ClN+·C8H5O4F(000) = 608
Mr = 293.70Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 4716 reflections
a = 14.3610 (16) Åθ = 3.1–24.9°
b = 8.0094 (7) ŵ = 0.28 mm1
c = 13.0715 (14) ÅT = 292 K
β = 111.301 (2)°Prism, colourless
V = 1400.8 (2) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2471 independent reflections
Radiation source: sealed tube1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1717
Tmin = 0.831, Tmax = 0.959k = 98
12823 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ^2^(Fo^2^) + (0.0698P)^2^ + 0.4349P]
where P = (Fo^2^ + 2Fc^2^)/3
2471 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H7ClN+·C8H5O4V = 1400.8 (2) Å3
Mr = 293.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3610 (16) ŵ = 0.28 mm1
b = 8.0094 (7) ÅT = 292 K
c = 13.0715 (14) Å0.30 × 0.25 × 0.15 mm
β = 111.301 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1959 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.959Rint = 0.032
12823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.20 e Å3
2471 reflectionsΔρmin = 0.33 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94211 (6)0.31525 (10)0.45813 (8)0.0852 (3)
N10.59536 (13)0.0980 (2)0.44284 (13)0.0351 (4)
H1A0.53930.04590.40240.053*
H1B0.59490.11610.50980.053*
H1C0.59940.19510.41160.053*
O10.37216 (11)0.12687 (18)0.17662 (11)0.0365 (4)
O20.42223 (11)0.09190 (19)0.35724 (11)0.0385 (4)
O30.47159 (12)0.44588 (19)0.30486 (12)0.0389 (4)
O40.43521 (15)0.6495 (2)0.39916 (17)0.0688 (6)
C10.29034 (15)0.2796 (3)0.27624 (16)0.0332 (5)
C20.31224 (16)0.4419 (3)0.31761 (17)0.0380 (5)
C30.2356 (2)0.5387 (3)0.3282 (2)0.0542 (7)
H30.24940.64670.35560.065*
C40.1404 (2)0.4776 (4)0.2990 (2)0.0662 (8)
H40.09050.54320.30810.079*
C50.11859 (19)0.3197 (4)0.2564 (2)0.0611 (7)
H50.05370.27870.23510.073*
C60.19335 (18)0.2221 (3)0.2452 (2)0.0481 (6)
H60.17810.11520.21620.058*
C70.36889 (15)0.1596 (2)0.26955 (16)0.0303 (5)
C80.41198 (17)0.5221 (3)0.34632 (18)0.0390 (5)
C90.68109 (15)0.0053 (3)0.45044 (16)0.0332 (5)
C100.77439 (17)0.0634 (3)0.4863 (2)0.0464 (6)
H100.78330.17470.50780.056*
C110.85540 (19)0.0323 (3)0.4905 (2)0.0554 (7)
H110.91930.01340.51540.067*
C120.84049 (18)0.1956 (3)0.4576 (2)0.0497 (6)
C130.74749 (18)0.2663 (3)0.4222 (2)0.0501 (6)
H130.73870.37750.40030.060*
C140.66681 (17)0.1699 (3)0.41951 (19)0.0427 (6)
H140.60320.21630.39680.051*
H3A0.532 (2)0.506 (3)0.320 (2)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0536 (5)0.0687 (5)0.1326 (8)0.0168 (4)0.0331 (5)0.0115 (5)
N10.0409 (10)0.0376 (10)0.0288 (9)0.0005 (8)0.0153 (8)0.0008 (7)
O10.0450 (9)0.0383 (8)0.0296 (8)0.0030 (6)0.0174 (7)0.0008 (6)
O20.0428 (9)0.0453 (9)0.0288 (8)0.0059 (7)0.0148 (7)0.0066 (7)
O30.0432 (9)0.0365 (8)0.0420 (9)0.0069 (7)0.0215 (7)0.0062 (7)
O40.0750 (14)0.0550 (12)0.0873 (14)0.0179 (10)0.0425 (11)0.0378 (11)
C10.0360 (11)0.0401 (12)0.0261 (11)0.0013 (9)0.0143 (9)0.0030 (9)
C20.0431 (13)0.0424 (13)0.0316 (12)0.0030 (10)0.0172 (10)0.0016 (9)
C30.0586 (16)0.0528 (15)0.0579 (16)0.0106 (12)0.0291 (13)0.0079 (12)
C40.0504 (17)0.079 (2)0.078 (2)0.0203 (15)0.0344 (15)0.0038 (16)
C50.0364 (14)0.080 (2)0.0689 (19)0.0008 (13)0.0222 (13)0.0004 (15)
C60.0421 (13)0.0551 (15)0.0505 (14)0.0046 (11)0.0211 (11)0.0041 (11)
C70.0341 (11)0.0289 (10)0.0299 (11)0.0060 (8)0.0141 (9)0.0014 (8)
C80.0490 (13)0.0360 (12)0.0353 (12)0.0002 (10)0.0190 (10)0.0042 (10)
C90.0370 (12)0.0383 (12)0.0261 (11)0.0019 (9)0.0137 (9)0.0034 (9)
C100.0450 (14)0.0412 (13)0.0524 (15)0.0067 (11)0.0169 (11)0.0085 (11)
C110.0379 (13)0.0545 (16)0.0718 (18)0.0046 (11)0.0174 (12)0.0097 (13)
C120.0439 (14)0.0476 (14)0.0576 (16)0.0049 (11)0.0182 (12)0.0003 (11)
C130.0523 (15)0.0358 (12)0.0611 (16)0.0016 (11)0.0193 (12)0.0037 (11)
C140.0408 (13)0.0376 (12)0.0478 (14)0.0036 (10)0.0137 (11)0.0014 (10)
Geometric parameters (Å, º) top
Cl1—C121.744 (3)C3—H30.9300
N1—C91.457 (3)C4—C51.371 (4)
N1—H1A0.8900C4—H40.9300
N1—H1B0.8900C5—C61.378 (3)
N1—H1C0.8900C5—H50.9300
O1—C71.260 (2)C6—H60.9300
O2—C71.248 (2)C9—C101.364 (3)
O3—C81.318 (2)C9—C141.372 (3)
O3—H3A0.94 (3)C10—C111.377 (3)
O4—C81.209 (3)C10—H100.9300
C1—C61.381 (3)C11—C121.369 (4)
C1—C21.399 (3)C11—H110.9300
C1—C71.508 (3)C12—C131.367 (3)
C2—C31.393 (3)C13—C141.382 (3)
C2—C81.488 (3)C13—H130.9300
C3—C41.370 (4)C14—H140.9300
C9—N1—H1A109.5O2—C7—O1124.73 (19)
C9—N1—H1B109.5O2—C7—C1116.50 (17)
H1A—N1—H1B109.5O1—C7—C1118.62 (18)
C9—N1—H1C109.5O4—C8—O3122.7 (2)
H1A—N1—H1C109.5O4—C8—C2123.3 (2)
H1B—N1—H1C109.5O3—C8—C2113.93 (18)
C8—O3—H3A111.2 (15)C10—C9—C14120.8 (2)
C6—C1—C2119.0 (2)C10—C9—N1119.65 (19)
C6—C1—C7117.82 (19)C14—C9—N1119.58 (19)
C2—C1—C7123.13 (18)C9—C10—C11120.0 (2)
C3—C2—C1118.7 (2)C9—C10—H10120.0
C3—C2—C8117.2 (2)C11—C10—H10120.0
C1—C2—C8124.00 (18)C12—C11—C10119.0 (2)
C4—C3—C2121.2 (3)C12—C11—H11120.5
C4—C3—H3119.4C10—C11—H11120.5
C2—C3—H3119.4C13—C12—C11121.6 (2)
C3—C4—C5120.0 (2)C13—C12—Cl1119.1 (2)
C3—C4—H4120.0C11—C12—Cl1119.25 (19)
C5—C4—H4120.0C12—C13—C14118.9 (2)
C4—C5—C6119.6 (2)C12—C13—H13120.5
C4—C5—H5120.2C14—C13—H13120.5
C6—C5—H5120.2C9—C14—C13119.7 (2)
C5—C6—C1121.5 (2)C9—C14—H14120.2
C5—C6—H6119.3C13—C14—H14120.2
C1—C6—H6119.3
C6—C1—C2—C31.3 (3)C3—C2—C8—O416.4 (3)
C7—C1—C2—C3175.1 (2)C1—C2—C8—O4166.7 (2)
C6—C1—C2—C8175.5 (2)C3—C2—C8—O3160.8 (2)
C7—C1—C2—C88.0 (3)C1—C2—C8—O316.1 (3)
C1—C2—C3—C40.0 (4)C14—C9—C10—C110.7 (4)
C8—C2—C3—C4177.1 (2)N1—C9—C10—C11178.0 (2)
C2—C3—C4—C51.3 (4)C9—C10—C11—C120.5 (4)
C3—C4—C5—C61.3 (4)C10—C11—C12—C130.9 (4)
C4—C5—C6—C10.1 (4)C10—C11—C12—Cl1177.7 (2)
C2—C1—C6—C51.4 (3)C11—C12—C13—C140.2 (4)
C7—C1—C6—C5175.2 (2)Cl1—C12—C13—C14178.51 (19)
C6—C1—C7—O299.7 (2)C10—C9—C14—C131.5 (3)
C2—C1—C7—O276.8 (2)N1—C9—C14—C13177.2 (2)
C6—C1—C7—O175.9 (2)C12—C13—C14—C91.1 (4)
C2—C1—C7—O1107.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.852.716 (2)163
N1—H1C···O1ii0.891.972.836 (2)165
O3—H3A···O1iii0.94 (3)1.68 (3)2.608 (2)169 (2)
N1—H1A···O20.891.922.779 (2)163
C13—H13···O1iii0.932.523.369 (3)151
C14—H14···O30.932.603.455 (3)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
(II) 2-hydroxyanilinium hydrogen phthalate top
Crystal data top
C6H8NO+·C8H5O4F(000) = 1152
Mr = 275.25Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 7544 reflections
a = 12.7082 (4) Åθ = 4.0–24.9°
b = 14.4422 (5) ŵ = 0.11 mm1
c = 14.3394 (4) ÅT = 292 K
β = 105.287 (2)°Block, colourless
V = 2538.65 (14) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
6404 independent reflections
Radiation source: fine-focus sealed tube4195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1717
Tmin = 0.879, Tmax = 0.973k = 1919
30515 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ^2^(Fo^2^) + (0.0667P)^2^ + 0.2899P]
where P = (Fo^2^ + 2Fc^2^)/3
6404 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H8NO+·C8H5O4V = 2538.65 (14) Å3
Mr = 275.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.7082 (4) ŵ = 0.11 mm1
b = 14.4422 (5) ÅT = 292 K
c = 14.3394 (4) Å0.30 × 0.25 × 0.25 mm
β = 105.287 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
6404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4195 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.973Rint = 0.036
30515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
6404 reflectionsΔρmin = 0.17 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.71412 (11)0.30844 (10)0.13039 (11)0.0425 (3)
O1A0.55986 (10)0.31783 (10)0.64676 (12)0.0746 (4)
O2A0.46812 (10)0.19073 (9)0.63892 (11)0.0652 (4)
O3A0.28360 (11)0.14254 (9)0.61577 (11)0.0658 (4)
O4A0.12097 (10)0.19884 (10)0.59366 (11)0.0727 (4)
O5A0.91612 (10)0.33025 (10)0.10254 (8)0.0560 (3)
C1A0.37223 (12)0.33777 (11)0.63096 (10)0.0397 (3)
C2A0.26316 (12)0.30849 (11)0.61719 (10)0.0381 (3)
C3A0.18379 (14)0.37663 (13)0.61011 (12)0.0511 (4)
H3A0.11150.35840.60020.061*
C4A0.20772 (17)0.46917 (14)0.61711 (14)0.0633 (5)
H4A0.15260.51260.61270.076*
C5A0.31324 (18)0.49697 (13)0.63060 (16)0.0671 (5)
H5A0.33060.55970.63530.080*
C6A0.39387 (15)0.43192 (12)0.63718 (14)0.0558 (4)
H6A0.46540.45180.64610.067*
C7A0.47241 (12)0.27882 (12)0.63955 (12)0.0457 (4)
C8A0.21900 (13)0.21069 (12)0.60859 (11)0.0441 (4)
C9A0.81067 (12)0.30418 (10)0.21176 (11)0.0386 (3)
C10A0.91212 (12)0.31728 (11)0.19535 (11)0.0420 (3)
C11A1.00313 (14)0.31545 (13)0.27322 (13)0.0567 (4)
H11A1.07190.32520.26370.068*
C12A0.99275 (17)0.29937 (14)0.36448 (14)0.0631 (5)
H12A1.05450.29890.41660.076*
C13A0.89161 (18)0.28387 (13)0.37997 (13)0.0604 (5)
H13A0.88530.27180.44200.073*
C14A0.79992 (15)0.28640 (11)0.30285 (12)0.0500 (4)
H14A0.73130.27610.31250.060*
N1B0.82035 (11)0.02643 (11)0.41204 (10)0.0408 (3)
O1B0.66308 (8)0.15536 (8)0.42566 (8)0.0474 (3)
O2B0.56510 (9)0.03143 (8)0.37839 (10)0.0557 (3)
O3B0.38605 (9)0.02036 (8)0.37490 (9)0.0561 (3)
O4B0.23223 (9)0.03118 (9)0.39299 (11)0.0635 (4)
O5B1.02897 (10)0.05037 (10)0.40323 (9)0.0564 (3)
C1B0.47180 (12)0.17544 (10)0.39279 (10)0.0378 (3)
C2B0.36441 (11)0.14499 (10)0.38553 (10)0.0370 (3)
C3B0.28395 (13)0.21218 (12)0.37897 (12)0.0478 (4)
H3B0.21300.19320.37490.057*
C4B0.30548 (15)0.30488 (13)0.37829 (14)0.0569 (5)
H4B0.24970.34770.37340.068*
C5B0.40938 (16)0.33436 (13)0.38478 (15)0.0616 (5)
H5B0.42470.39730.38390.074*
C6B0.49096 (14)0.26988 (12)0.39261 (13)0.0513 (4)
H6B0.56170.29050.39800.062*
C7B0.57286 (12)0.11722 (11)0.40038 (10)0.0397 (3)
C8B0.32420 (12)0.04654 (11)0.38484 (11)0.0431 (4)
C9B0.84427 (11)0.04049 (10)0.31948 (11)0.0363 (3)
C10B0.95152 (12)0.05126 (10)0.31733 (11)0.0416 (3)
C11B0.97452 (15)0.06378 (13)0.22965 (13)0.0572 (5)
H11B1.04630.07130.22700.069*
C12B0.89127 (17)0.06512 (14)0.14593 (14)0.0624 (5)
H12B0.90740.07270.08680.075*
C13B0.78464 (16)0.05540 (13)0.14863 (13)0.0580 (5)
H13B0.72870.05720.09180.070*
C14B0.76114 (13)0.04302 (12)0.23608 (12)0.0484 (4)
H14B0.68920.03640.23870.058*
H1AA0.7323 (16)0.3047 (13)0.0751 (14)0.060 (6)*
H1AB0.6598 (19)0.2595 (16)0.1355 (15)0.084 (7)*
H1AC0.6809 (16)0.3701 (14)0.1305 (13)0.063 (5)*
H5AA0.9838 (19)0.3238 (15)0.1024 (14)0.074 (6)*
H2AA0.389 (2)0.1650 (15)0.6273 (15)0.088 (7)*
H1BA0.7726 (16)0.0730 (13)0.4219 (13)0.061 (5)*
H1BB0.8858 (19)0.0274 (15)0.4618 (17)0.084 (7)*
H1BC0.7880 (16)0.0312 (14)0.4130 (13)0.063 (6)*
H5BA1.0948 (19)0.0501 (16)0.3942 (15)0.081 (7)*
H2BA0.4807 (19)0.0068 (15)0.3704 (15)0.088 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0282 (7)0.0445 (8)0.0557 (9)0.0045 (6)0.0127 (6)0.0047 (6)
O1A0.0298 (6)0.0642 (9)0.1291 (12)0.0070 (6)0.0198 (7)0.0203 (8)
O2A0.0358 (7)0.0487 (8)0.1130 (11)0.0043 (6)0.0230 (7)0.0006 (7)
O3A0.0470 (7)0.0440 (7)0.1110 (11)0.0060 (6)0.0290 (7)0.0002 (7)
O4A0.0343 (7)0.0832 (10)0.1029 (11)0.0146 (7)0.0218 (7)0.0111 (8)
O5A0.0286 (6)0.0867 (10)0.0537 (7)0.0065 (6)0.0126 (5)0.0035 (6)
C1A0.0322 (8)0.0469 (9)0.0406 (8)0.0007 (6)0.0111 (6)0.0029 (6)
C2A0.0309 (7)0.0501 (9)0.0353 (7)0.0011 (6)0.0121 (6)0.0038 (6)
C3A0.0377 (9)0.0625 (11)0.0548 (10)0.0101 (8)0.0151 (7)0.0042 (8)
C4A0.0599 (12)0.0568 (12)0.0772 (13)0.0210 (10)0.0250 (10)0.0015 (9)
C5A0.0725 (14)0.0440 (10)0.0902 (15)0.0036 (9)0.0311 (11)0.0005 (9)
C6A0.0472 (10)0.0493 (10)0.0740 (12)0.0060 (8)0.0216 (9)0.0052 (8)
C7A0.0284 (8)0.0506 (10)0.0575 (10)0.0017 (7)0.0099 (7)0.0072 (7)
C8A0.0350 (8)0.0565 (10)0.0436 (8)0.0060 (7)0.0155 (7)0.0052 (7)
C9A0.0329 (8)0.0333 (7)0.0493 (9)0.0062 (6)0.0103 (6)0.0011 (6)
C10A0.0322 (8)0.0442 (9)0.0483 (9)0.0047 (6)0.0083 (6)0.0005 (6)
C11A0.0370 (9)0.0666 (12)0.0603 (11)0.0047 (8)0.0021 (8)0.0035 (8)
C12A0.0611 (13)0.0629 (12)0.0534 (11)0.0123 (10)0.0058 (9)0.0044 (9)
C13A0.0822 (15)0.0525 (11)0.0451 (10)0.0120 (10)0.0140 (9)0.0054 (8)
C14A0.0560 (11)0.0392 (9)0.0594 (11)0.0048 (7)0.0232 (8)0.0045 (7)
N1B0.0256 (7)0.0450 (8)0.0532 (8)0.0014 (6)0.0130 (6)0.0007 (6)
O1B0.0257 (5)0.0567 (7)0.0605 (7)0.0041 (5)0.0125 (5)0.0029 (5)
O2B0.0304 (6)0.0478 (7)0.0917 (9)0.0004 (5)0.0209 (6)0.0095 (6)
O3B0.0358 (6)0.0443 (7)0.0923 (9)0.0039 (5)0.0241 (6)0.0060 (6)
O4B0.0293 (6)0.0638 (8)0.1008 (10)0.0053 (5)0.0235 (6)0.0028 (7)
O5B0.0260 (6)0.0848 (9)0.0584 (7)0.0014 (6)0.0112 (5)0.0127 (6)
C1B0.0305 (7)0.0457 (9)0.0385 (8)0.0008 (6)0.0117 (6)0.0029 (6)
C2B0.0272 (7)0.0464 (9)0.0375 (8)0.0020 (6)0.0087 (6)0.0012 (6)
C3B0.0298 (8)0.0548 (10)0.0591 (10)0.0059 (7)0.0126 (7)0.0028 (8)
C4B0.0437 (10)0.0536 (11)0.0728 (12)0.0151 (8)0.0142 (8)0.0057 (8)
C5B0.0558 (12)0.0431 (10)0.0866 (14)0.0029 (8)0.0200 (10)0.0094 (9)
C6B0.0366 (9)0.0478 (10)0.0715 (11)0.0027 (7)0.0176 (8)0.0060 (8)
C7B0.0280 (8)0.0491 (9)0.0439 (8)0.0008 (7)0.0131 (6)0.0032 (6)
C8B0.0262 (7)0.0524 (10)0.0503 (9)0.0015 (7)0.0096 (6)0.0012 (7)
C9B0.0298 (7)0.0317 (7)0.0486 (8)0.0012 (6)0.0128 (6)0.0012 (6)
C10B0.0311 (8)0.0411 (8)0.0537 (9)0.0008 (6)0.0132 (7)0.0029 (7)
C11B0.0439 (10)0.0698 (12)0.0636 (12)0.0011 (8)0.0244 (9)0.0062 (9)
C12B0.0702 (13)0.0697 (13)0.0525 (11)0.0029 (10)0.0253 (10)0.0024 (8)
C13B0.0535 (11)0.0638 (12)0.0500 (10)0.0020 (9)0.0021 (8)0.0017 (8)
C14B0.0337 (8)0.0514 (10)0.0581 (10)0.0023 (7)0.0086 (7)0.0034 (7)
Geometric parameters (Å, º) top
N1A—C9A1.455 (2)N1B—C9B1.4519 (19)
N1A—H1AA0.88 (2)N1B—H1BA0.94 (2)
N1A—H1AB1.00 (2)N1B—H1BB0.94 (2)
N1A—H1AC0.99 (2)N1B—H1BC0.93 (2)
O1A—C7A1.2259 (19)O1B—C7B1.2370 (17)
O2A—C7A1.273 (2)O2B—C7B1.276 (2)
O2A—H2AA1.05 (2)O2B—H2BA1.11 (2)
O3A—C8A1.268 (2)O3B—C8B1.2770 (19)
O3A—H2AA1.34 (3)O3B—H2BA1.28 (2)
O4A—C8A1.2193 (19)O4B—C8B1.2250 (18)
O5A—C10A1.3582 (19)O5B—C10B1.3591 (19)
O5A—H5AA0.87 (2)O5B—H5BA0.88 (2)
C1A—C6A1.385 (2)C1B—C6B1.386 (2)
C1A—C2A1.412 (2)C1B—C2B1.411 (2)
C1A—C7A1.509 (2)C1B—C7B1.515 (2)
C2A—C3A1.394 (2)C2B—C3B1.395 (2)
C2A—C8A1.513 (2)C2B—C8B1.510 (2)
C3A—C4A1.368 (3)C3B—C4B1.367 (2)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.364 (3)C4B—C5B1.367 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.375 (3)C5B—C6B1.376 (2)
C5A—H5A0.9300C5B—H5B0.9300
C6A—H6A0.9300C6B—H6B0.9300
C9A—C14A1.373 (2)C9B—C14B1.372 (2)
C9A—C10A1.383 (2)C9B—C10B1.380 (2)
C10A—C11A1.380 (2)C10B—C11B1.376 (2)
C11A—C12A1.369 (3)C11B—C12B1.375 (3)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.379 (3)C12B—C13B1.373 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.379 (3)C13B—C14B1.375 (2)
C13A—H13A0.9300C13B—H13B0.9300
C14A—H14A0.9300C14B—H14B0.9300
C9A—N1A—H1AA110.6 (13)C9B—N1B—H1BA109.6 (11)
C9A—N1A—H1AB111.2 (12)C9B—N1B—H1BB109.5 (13)
H1AA—N1A—H1AB111.7 (17)H1BA—N1B—H1BB110.5 (17)
C9A—N1A—H1AC108.0 (11)C9B—N1B—H1BC109.8 (11)
H1AA—N1A—H1AC105.6 (16)H1BA—N1B—H1BC109.4 (16)
H1AB—N1A—H1AC109.4 (16)H1BB—N1B—H1BC107.9 (17)
C7A—O2A—H2AA113.2 (12)C7B—O2B—H2BA110.3 (11)
C8A—O3A—H2AA115.1 (10)C8B—O3B—H2BA112.8 (10)
C10A—O5A—H5AA106.3 (13)C10B—O5B—H5BA110.9 (14)
C6A—C1A—C2A118.27 (15)C6B—C1B—C2B118.27 (14)
C6A—C1A—C7A113.55 (14)C6B—C1B—C7B113.60 (13)
C2A—C1A—C7A128.18 (14)C2B—C1B—C7B128.13 (14)
C3A—C2A—C1A117.62 (15)C3B—C2B—C1B117.75 (14)
C3A—C2A—C8A114.05 (14)C3B—C2B—C8B114.45 (13)
C1A—C2A—C8A128.33 (14)C1B—C2B—C8B127.80 (13)
C4A—C3A—C2A122.80 (17)C4B—C3B—C2B122.50 (16)
C4A—C3A—H3A118.6C4B—C3B—H3B118.7
C2A—C3A—H3A118.6C2B—C3B—H3B118.7
C5A—C4A—C3A119.28 (17)C5B—C4B—C3B119.73 (16)
C5A—C4A—H4A120.4C5B—C4B—H4B120.1
C3A—C4A—H4A120.4C3B—C4B—H4B120.1
C4A—C5A—C6A119.71 (18)C4B—C5B—C6B119.23 (17)
C4A—C5A—H5A120.1C4B—C5B—H5B120.4
C6A—C5A—H5A120.1C6B—C5B—H5B120.4
C5A—C6A—C1A122.31 (17)C5B—C6B—C1B122.50 (16)
C5A—C6A—H6A118.8C5B—C6B—H6B118.8
C1A—C6A—H6A118.8C1B—C6B—H6B118.8
O1A—C7A—O2A119.74 (15)O1B—C7B—O2B120.68 (14)
O1A—C7A—C1A118.29 (15)O1B—C7B—C1B118.46 (14)
O2A—C7A—C1A121.97 (14)O2B—C7B—C1B120.82 (13)
O4A—C8A—O3A120.98 (16)O4B—C8B—O3B120.30 (15)
O4A—C8A—C2A119.03 (15)O4B—C8B—C2B119.97 (14)
O3A—C8A—C2A119.98 (14)O3B—C8B—C2B119.74 (13)
C14A—C9A—C10A121.22 (15)C14B—C9B—C10B121.04 (14)
C14A—C9A—N1A119.78 (14)C14B—C9B—N1B120.13 (13)
C10A—C9A—N1A118.99 (13)C10B—C9B—N1B118.83 (13)
O5A—C10A—C11A123.76 (15)O5B—C10B—C11B123.51 (14)
O5A—C10A—C9A117.57 (13)O5B—C10B—C9B117.52 (14)
C11A—C10A—C9A118.66 (15)C11B—C10B—C9B118.96 (15)
C12A—C11A—C10A120.35 (17)C12B—C11B—C10B119.99 (16)
C12A—C11A—H11A119.8C12B—C11B—H11B120.0
C10A—C11A—H11A119.8C10B—C11B—H11B120.0
C11A—C12A—C13A120.68 (17)C13B—C12B—C11B120.78 (17)
C11A—C12A—H12A119.7C13B—C12B—H12B119.6
C13A—C12A—H12A119.7C11B—C12B—H12B119.6
C12A—C13A—C14A119.52 (17)C12B—C13B—C14B119.49 (16)
C12A—C13A—H13A120.2C12B—C13B—H13B120.3
C14A—C13A—H13A120.2C14B—C13B—H13B120.3
C9A—C14A—C13A119.53 (17)C9B—C14B—C13B119.74 (15)
C9A—C14A—H14A120.2C9B—C14B—H14B120.1
C13A—C14A—H14A120.2C13B—C14B—H14B120.1
C6A—C1A—C2A—C3A0.4 (2)C6B—C1B—C2B—C3B0.3 (2)
C7A—C1A—C2A—C3A179.15 (14)C7B—C1B—C2B—C3B179.79 (14)
C6A—C1A—C2A—C8A179.74 (15)C6B—C1B—C2B—C8B179.61 (15)
C7A—C1A—C2A—C8A0.7 (2)C7B—C1B—C2B—C8B0.9 (2)
C1A—C2A—C3A—C4A0.8 (2)C1B—C2B—C3B—C4B0.7 (2)
C8A—C2A—C3A—C4A179.30 (15)C8B—C2B—C3B—C4B179.81 (15)
C2A—C3A—C4A—C5A0.7 (3)C2B—C3B—C4B—C5B0.4 (3)
C3A—C4A—C5A—C6A0.2 (3)C3B—C4B—C5B—C6B0.5 (3)
C4A—C5A—C6A—C1A0.3 (3)C4B—C5B—C6B—C1B1.0 (3)
C2A—C1A—C6A—C5A0.1 (3)C2B—C1B—C6B—C5B0.6 (3)
C7A—C1A—C6A—C5A179.73 (17)C7B—C1B—C6B—C5B179.01 (16)
C6A—C1A—C7A—O1A3.0 (2)C6B—C1B—C7B—O1B14.9 (2)
C2A—C1A—C7A—O1A176.56 (16)C2B—C1B—C7B—O1B165.54 (14)
C6A—C1A—C7A—O2A177.41 (16)C6B—C1B—C7B—O2B162.98 (15)
C2A—C1A—C7A—O2A3.0 (3)C2B—C1B—C7B—O2B16.6 (2)
C3A—C2A—C8A—O4A2.2 (2)C3B—C2B—C8B—O4B10.6 (2)
C1A—C2A—C8A—O4A177.66 (15)C1B—C2B—C8B—O4B168.81 (15)
C3A—C2A—C8A—O3A178.63 (14)C3B—C2B—C8B—O3B168.83 (14)
C1A—C2A—C8A—O3A1.5 (2)C1B—C2B—C8B—O3B11.8 (2)
C14A—C9A—C10A—O5A177.00 (14)C14B—C9B—C10B—O5B178.30 (14)
N1A—C9A—C10A—O5A2.3 (2)N1B—C9B—C10B—O5B1.6 (2)
C14A—C9A—C10A—C11A2.3 (2)C14B—C9B—C10B—C11B0.6 (2)
N1A—C9A—C10A—C11A178.40 (15)N1B—C9B—C10B—C11B179.44 (15)
O5A—C10A—C11A—C12A178.12 (16)O5B—C10B—C11B—C12B179.07 (16)
C9A—C10A—C11A—C12A1.1 (3)C9B—C10B—C11B—C12B0.2 (3)
C10A—C11A—C12A—C13A0.6 (3)C10B—C11B—C12B—C13B1.0 (3)
C11A—C12A—C13A—C14A1.3 (3)C11B—C12B—C13B—C14B0.8 (3)
C10A—C9A—C14A—C13A1.7 (2)C10B—C9B—C14B—C13B0.7 (2)
N1A—C9A—C14A—C13A178.99 (15)N1B—C9B—C14B—C13B179.32 (15)
C12A—C13A—C14A—C9A0.1 (3)C12B—C13B—C14B—C9B0.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Bi0.88 (2)2.169 (19)2.8824 (19)137.4 (17)
N1A—H1AB···O1Ai1.00 (2)1.73 (2)2.7326 (19)175 (2)
N1A—H1AC···O3Bii0.99 (2)1.79 (2)2.7727 (18)176.6 (17)
O5A—H5AA···O4Aiii0.87 (2)1.81 (2)2.6728 (17)174 (2)
N1B—H1BB···O5Biv0.94 (2)2.25 (2)3.0395 (19)140.5 (18)
N1B—H1BC···O3Av0.93 (2)1.84 (2)2.7534 (19)166.7 (17)
O5B—H5BA···O4Bvi0.88 (2)1.77 (2)2.6402 (16)169 (2)
N1B—H1BA···O1B0.94 (2)1.84 (2)2.7760 (17)170.9 (17)
O2A—H2AA···O3A1.05 (2)1.34 (3)2.3838 (17)173 (2)
O2B—H2BA···O3B1.11 (2)1.28 (2)2.3832 (15)171 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y, z.
(III) 3-hydroxyanilinium hydrogen phthalate top
Crystal data top
C6H8NO+·C8H5O4F(000) = 576
Mr = 275.25Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5610 reflections
a = 5.8924 (3) Åθ = 2.6–30.6°
b = 8.1467 (4) ŵ = 0.12 mm1
c = 25.6509 (15) ÅT = 292 K
β = 95.984 (2)°Block, colourless
V = 1224.63 (11) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3812 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scanθmax = 30.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.890, Tmax = 0.977k = 1111
16385 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ^2^(Fo^2^) + (0.0545P)^2^ + 0.2907P]
where P = (Fo^2^ + 2Fc^2^)/3
3812 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C6H8NO+·C8H5O4V = 1224.63 (11) Å3
Mr = 275.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8924 (3) ŵ = 0.12 mm1
b = 8.1467 (4) ÅT = 292 K
c = 25.6509 (15) Å0.25 × 0.20 × 0.20 mm
β = 95.984 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3009 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.977Rint = 0.029
16385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
3812 reflectionsΔρmin = 0.19 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.38047 (18)0.78081 (13)0.53029 (4)0.0290 (2)
O10.47417 (16)0.69570 (12)0.37286 (4)0.0417 (2)
O20.70580 (17)0.79180 (14)0.43792 (4)0.0436 (3)
O31.07524 (17)0.91467 (14)0.44915 (4)0.0431 (2)
O41.31217 (16)1.04838 (12)0.40439 (4)0.0388 (2)
O50.69212 (14)0.49173 (11)0.55470 (4)0.0325 (2)
C10.75819 (19)0.87817 (14)0.34914 (4)0.0266 (2)
C20.96985 (19)0.96069 (13)0.35657 (4)0.0253 (2)
C31.0443 (2)1.04456 (16)0.31415 (5)0.0328 (3)
H31.18561.09650.31850.039*
C40.9169 (3)1.05345 (19)0.26614 (5)0.0415 (3)
H40.97021.11250.23890.050*
C50.7103 (3)0.9742 (2)0.25890 (5)0.0459 (3)
H50.62230.97950.22670.055*
C60.6341 (2)0.88675 (18)0.29970 (5)0.0375 (3)
H60.49550.83160.29410.045*
C70.6382 (2)0.78111 (15)0.38858 (5)0.0313 (2)
C81.13118 (19)0.97532 (14)0.40644 (5)0.0274 (2)
C91.23460 (18)0.70102 (13)0.56582 (4)0.0246 (2)
C101.02698 (18)0.64022 (13)0.54460 (4)0.0253 (2)
H100.97720.65650.50940.030*
C110.89364 (18)0.55432 (13)0.57681 (4)0.0250 (2)
C120.9680 (2)0.53422 (15)0.62960 (5)0.0303 (2)
H120.87920.47650.65130.036*
C131.1742 (2)0.60029 (17)0.64966 (5)0.0337 (3)
H131.22190.58830.68520.040*
C141.3118 (2)0.68395 (15)0.61811 (5)0.0306 (2)
H141.45160.72720.63170.037*
H1A1.486 (3)0.850 (2)0.5491 (7)0.047 (5)*
H1B1.292 (3)0.836 (2)0.5049 (7)0.048 (5)*
H1C1.468 (3)0.700 (2)0.5148 (7)0.048 (5)*
H2A0.872 (4)0.854 (3)0.4422 (9)0.083 (7)*
H5A0.628 (3)0.430 (2)0.5797 (8)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0252 (5)0.0347 (5)0.0269 (5)0.0087 (4)0.0021 (4)0.0014 (4)
O10.0355 (5)0.0412 (5)0.0487 (6)0.0146 (4)0.0060 (4)0.0033 (4)
O20.0316 (5)0.0654 (7)0.0336 (5)0.0098 (4)0.0024 (4)0.0166 (4)
O30.0355 (5)0.0640 (6)0.0280 (5)0.0121 (4)0.0049 (4)0.0111 (4)
O40.0303 (5)0.0467 (5)0.0379 (5)0.0133 (4)0.0034 (4)0.0029 (4)
O50.0250 (4)0.0428 (5)0.0295 (4)0.0112 (3)0.0012 (3)0.0027 (4)
C10.0232 (5)0.0298 (5)0.0269 (5)0.0019 (4)0.0032 (4)0.0005 (4)
C20.0224 (5)0.0282 (5)0.0250 (5)0.0007 (4)0.0018 (4)0.0013 (4)
C30.0295 (6)0.0402 (6)0.0293 (6)0.0087 (5)0.0063 (5)0.0008 (5)
C40.0447 (8)0.0557 (8)0.0248 (6)0.0099 (6)0.0070 (5)0.0045 (5)
C50.0420 (8)0.0688 (10)0.0252 (6)0.0091 (7)0.0039 (5)0.0037 (6)
C60.0284 (6)0.0515 (8)0.0316 (6)0.0097 (5)0.0023 (5)0.0001 (5)
C70.0248 (5)0.0323 (6)0.0372 (6)0.0013 (4)0.0052 (4)0.0062 (5)
C80.0246 (5)0.0293 (5)0.0276 (5)0.0015 (4)0.0004 (4)0.0020 (4)
C90.0229 (5)0.0257 (5)0.0254 (5)0.0027 (4)0.0038 (4)0.0009 (4)
C100.0245 (5)0.0280 (5)0.0231 (5)0.0033 (4)0.0008 (4)0.0014 (4)
C110.0215 (5)0.0274 (5)0.0260 (5)0.0022 (4)0.0021 (4)0.0006 (4)
C120.0288 (6)0.0377 (6)0.0250 (5)0.0040 (5)0.0051 (4)0.0038 (4)
C130.0321 (6)0.0459 (7)0.0225 (5)0.0043 (5)0.0005 (4)0.0028 (5)
C140.0257 (5)0.0375 (6)0.0276 (6)0.0060 (4)0.0018 (4)0.0004 (4)
Geometric parameters (Å, º) top
N1—C91.4681 (14)C3—C41.3757 (19)
N1—H1A0.937 (19)C3—H30.9300
N1—H1B0.910 (19)C4—C51.373 (2)
N1—H1C0.947 (18)C4—H40.9300
O1—C71.2248 (15)C5—C61.3794 (19)
O2—C71.2895 (16)C5—H50.9300
O2—H2A1.10 (2)C6—H60.9300
O3—C81.2759 (14)C9—C141.3775 (16)
O3—H2A1.29 (2)C9—C101.3782 (15)
O4—C81.2272 (14)C10—C111.3875 (15)
O5—C111.3606 (14)C10—H100.9300
O5—H5A0.93 (2)C11—C121.3889 (16)
C1—C61.3980 (17)C12—C131.3787 (17)
C1—C21.4121 (15)C12—H120.9300
C1—C71.5158 (16)C13—C141.3831 (17)
C2—C31.3940 (16)C13—H130.9300
C2—C81.5169 (16)C14—H140.9300
C9—N1—H1A110.3 (10)C1—C6—H6118.9
C9—N1—H1B109.4 (11)O1—C7—O2120.93 (11)
H1A—N1—H1B111.8 (15)O1—C7—C1118.92 (12)
C9—N1—H1C109.4 (10)O2—C7—C1120.14 (11)
H1A—N1—H1C106.0 (14)O4—C8—O3121.87 (11)
H1B—N1—H1C109.8 (14)O4—C8—C2118.22 (10)
C7—O2—H2A108.1 (11)O3—C8—C2119.89 (10)
C8—O3—H2A110.4 (10)C14—C9—C10122.52 (10)
C11—O5—H5A108.5 (12)C14—C9—N1119.60 (10)
C6—C1—C2118.00 (10)C10—C9—N1117.83 (10)
C6—C1—C7113.29 (10)C9—C10—C11118.72 (10)
C2—C1—C7128.69 (10)C9—C10—H10120.6
C3—C2—C1118.27 (10)C11—C10—H10120.6
C3—C2—C8113.53 (10)O5—C11—C10117.68 (10)
C1—C2—C8128.18 (10)O5—C11—C12122.35 (10)
C4—C3—C2122.53 (11)C10—C11—C12119.96 (10)
C4—C3—H3118.7C13—C12—C11119.60 (10)
C2—C3—H3118.7C13—C12—H12120.2
C5—C4—C3119.31 (12)C11—C12—H12120.2
C5—C4—H4120.3C12—C13—C14121.42 (11)
C3—C4—H4120.3C12—C13—H13119.3
C4—C5—C6119.63 (13)C14—C13—H13119.3
C4—C5—H5120.2C9—C14—C13117.74 (11)
C6—C5—H5120.2C9—C14—H14121.1
C5—C6—C1122.23 (12)C13—C14—H14121.1
C5—C6—H6118.9
C6—C1—C2—C30.64 (17)C3—C2—C8—O44.14 (16)
C7—C1—C2—C3179.07 (11)C1—C2—C8—O4177.59 (11)
C6—C1—C2—C8177.55 (11)C3—C2—C8—O3174.77 (11)
C7—C1—C2—C80.88 (19)C1—C2—C8—O33.50 (18)
C1—C2—C3—C41.85 (19)C14—C9—C10—C111.96 (17)
C8—C2—C3—C4176.61 (12)N1—C9—C10—C11175.55 (10)
C2—C3—C4—C51.4 (2)C9—C10—C11—O5178.31 (10)
C3—C4—C5—C60.2 (2)C9—C10—C11—C121.43 (16)
C4—C5—C6—C11.4 (2)O5—C11—C12—C13179.84 (11)
C2—C1—C6—C50.9 (2)C10—C11—C12—C130.12 (18)
C7—C1—C6—C5177.74 (13)C11—C12—C13—C141.2 (2)
C6—C1—C7—O113.52 (17)C10—C9—C14—C130.87 (18)
C2—C1—C7—O1167.99 (12)N1—C9—C14—C13176.60 (11)
C6—C1—C7—O2164.98 (12)C12—C13—C14—C90.76 (19)
C2—C1—C7—O213.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.937 (19)1.795 (19)2.7187 (13)168.1 (16)
N1—H1C···O5ii0.947 (18)2.323 (17)3.0118 (15)129.2 (13)
O5—H5A···O1iii0.93 (2)1.74 (2)2.6691 (13)175.7 (18)
N1—H1B···O30.910 (19)1.924 (19)2.8241 (15)169.5 (16)
O2—H2A···O31.10 (2)1.29 (2)2.3860 (14)174 (2)
C12—H12···O1iii0.932.533.2041 (15)129
C10—H10···O20.932.553.3932 (15)150
Symmetry codes: (i) x+3, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H7ClN+·C8H5O4C6H8NO+·C8H5O4C6H8NO+·C8H5O4
Mr293.70275.25275.25
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)292292292
a, b, c (Å)14.3610 (16), 8.0094 (7), 13.0715 (14)12.7082 (4), 14.4422 (5), 14.3394 (4)5.8924 (3), 8.1467 (4), 25.6509 (15)
β (°) 111.301 (2) 105.287 (2) 95.984 (2)
V3)1400.8 (2)2538.65 (14)1224.63 (11)
Z484
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.280.110.12
Crystal size (mm)0.30 × 0.25 × 0.150.30 × 0.25 × 0.250.25 × 0.20 × 0.20
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Bruker KAPPA APEXII CCD
diffractometer
Bruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.831, 0.9590.879, 0.9730.890, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12823, 2471, 1959 30515, 6404, 4195 16385, 3812, 3009
Rint0.0320.0360.029
(sin θ/λ)max1)0.5960.6720.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.133, 1.10 0.045, 0.132, 1.01 0.043, 0.117, 1.05
No. of reflections247164043812
No. of parameters185401201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.330.23, 0.170.34, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), XPREP in SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.852.716 (2)163
N1—H1C···O1ii0.891.972.836 (2)165
O3—H3A···O1iii0.94 (3)1.68 (3)2.608 (2)169 (2)
N1—H1A···O20.891.922.779 (2)163
C13—H13···O1iii0.932.523.369 (3)151
C14—H14···O30.932.603.455 (3)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Bi0.88 (2)2.169 (19)2.8824 (19)137.4 (17)
N1A—H1AB···O1Ai1.00 (2)1.73 (2)2.7326 (19)175 (2)
N1A—H1AC···O3Bii0.99 (2)1.79 (2)2.7727 (18)176.6 (17)
O5A—H5AA···O4Aiii0.87 (2)1.81 (2)2.6728 (17)174 (2)
N1B—H1BB···O5Biv0.94 (2)2.25 (2)3.0395 (19)140.5 (18)
N1B—H1BC···O3Av0.93 (2)1.84 (2)2.7534 (19)166.7 (17)
O5B—H5BA···O4Bvi0.88 (2)1.77 (2)2.6402 (16)169 (2)
N1B—H1BA···O1B0.94 (2)1.84 (2)2.7760 (17)170.9 (17)
O2A—H2AA···O3A1.05 (2)1.34 (3)2.3838 (17)173 (2)
O2B—H2BA···O3B1.11 (2)1.28 (2)2.3832 (15)171 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.937 (19)1.795 (19)2.7187 (13)168.1 (16)
N1—H1C···O5ii0.947 (18)2.323 (17)3.0118 (15)129.2 (13)
O5—H5A···O1iii0.93 (2)1.74 (2)2.6691 (13)175.7 (18)
N1—H1B···O30.910 (19)1.924 (19)2.8241 (15)169.5 (16)
O2—H2A···O31.10 (2)1.29 (2)2.3860 (14)174 (2)
C12—H12···O1iii0.932.533.2041 (15)129
C10—H10···O20.932.553.3932 (15)150
Symmetry codes: (i) x+3, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds