Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 6-(3,4,5-trimethoxy­phen­yl)-6,7-dihydro-5H-1,3-dioxolo[4,5-g]quinolin-8(5H)-one, C19H19NO6, (I), the six-membered heterocyclic ring adopts a conformation inter­mediate between envelope and half-chair forms; it is disordered over two enantiomeric configurations, with occupancies of 0.879 (3) and 0.121 (3), leading to positional disorder of the 3,4,5-trimethoxy­phenyl unit. In 6-(1,3-benzodioxol-5-yl)-6,7-di­hydro-5H-1,3-dioxolo[4,5-g]quinolin-8-one, C17H13NO5, (II), the mol­ecules are similarly disordered, with occupancies of 0.866 (4) and 0.134 (4). The mol­ecules in (I) are linked by one three-centre N-H...(O)2 hydrogen bond and one two-centre C-H...O hydrogen bond to form a complex chain of rings whose formation is reinforced by two independent aromatic [pi]-[pi] stacking inter­actions. In (II), a single N-H...O hydrogen bond links the mol­ecules into a simple chain, and pairs of chains are linked by a single aromatic [pi]-[pi] stacking inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109019556/sk3325sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109019556/sk3325Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109019556/sk3325IIsup3.hkl
Contains datablock II

CCDC references: 742244; 742245

Comment top

We report here the structure of the title compounds, (I) and (II) (Figs. 1 and 2), which we compare with that of the 6-(4-bromophenyl) analogue (III) (see scheme), whose structure was reported several years ago (Low, Cobo, Cuervo et al., 2004). These structures are of interest because compounds containing the dioxolotetrahydroquinolin-8-one unit have found application as antimitotic and antitumor agents (Prager & Thredgold, 1968; Donnelly & Farrell, 1990; Kurasawa et al., 2000; Zhang et al., 2000). Compounds (I) and (II) have been prepared here by 6-endo intramolecular cyclization (Low, Cobo, Cuervo et al., 2004; Abonía et al., 2008) from the corresponding 2-aminochalcones (Low et al., 2002).

The six-membered heterocyclic ring in (I) is nonplanar and it is, in fact, disordered over two possible conformations, whose refined occupancies are 0.879 (3) and 0.121 (3). For the major occupancy conformation, the ring-puckering angles (Cremer & Pople, 1975) are, for the atom sequence N15—C4A—-C8A—C18—C17—-C16, θ = 49.2 (3)° and ϕ = 285.1 (4)°, indicating a conformation intermediate between the envelope form, for which the idealized puckering angles are θ = 54.7° and ϕ = (60k)°, where k represents an integer, and the half-chair form, where the corresponding values are 50.8° and (60k + 30)°. However, for the minor occupancy component, the puckering angles for the atom sequence N25—C4A—C8A—C18—C27—C26 are θ = 126.5 (8)° and ϕ = 97.2 (7)°, indicating a similar conformation to the major form but with the opposite absolute configuration. Consistent with this, the configurations at the stereogenic C atoms C16 and C26 in the major and minor components are (S) and (R), respectively, in the selected asymmetric unit. Accordingly the molecules are all chiral, but although the centrosymmetric space group readily accommodates equal number of the two enantiomers, it appears that each molecular site can, in principle, be occupied by either form, leading to the observed configurational and conformational disorder.

Closely associated with the ring disorder in (I) is the positional disorder of the entire 6-(3,4,5-trimethoxyphenyl) unit, where the two components occupy similar regions of space (Fig. 1). For example, the dihedral angle between the planes of the two rings C111–C116 and C211–C216 is only 3.6 (9)°, and while the C16···C26 distance is 0.855 (9) Å, the O144···O214 distance, at the far end of this substituent, is only 0.17 (3) Å. For each conformation of the nitrogen-containing ring, the 3,4,5-trimethoxyphenyl substituent occupies an equatorial site, and it seems probable therefore that the conformational disorder of the nitrogen-containing ring is a direct consequence of the statistical occurrence of two enantiomeric forms at each molecular site in an orientation dominated by the bulk of the 3,4,5-trimethoxyphenyl substituent.

Rather similar disorder was found in (II), but it was found necessary to treat the entire molecule as disordered over two sets of sites, again with the major and minor components having different configurations, S at C16 in the major component and R at C26 in the minor component. The enantiomeric nature of the two components is further illustrated by the ring puckering angles for the same atom sequences as in (I) [θ = 54.8 (5)° and ϕ = 298.5 (6)° for the major form and θ = 126 (4)° and ϕ = 114 (4)° for the minor form], indicating an almost perfect half-chair form in both components of (II).

The observed disorder in (I) and (II) has prompted us to re-examine compound (III) using the original diffraction data, and this has confirmed that, as originally reported (Low, Cobo, Cuervo et al., 2004), the molecules in (III) are fully ordered, with only a single enantiomer occupying each molecular site in the space group P21/c. The ring-puckering angles in (III) correspond almost exactly to an envelope conformation for the nitrogen-containing ring, so that the six-membered ring conformations in (I)–(III) are all slightly different.

The crystallization of (I)–(III) as racemates is wholly to be expected, as their syntheses utilized no reagents capable of imparting enantiomeric bias. What is unexpected, however, is the site occupancy in (I) and (II) by a mixture of enantiomeric forms. Possibly, the larger the steric bulk of the peripheral substituents, the more likely the observation of such behaviour becomes.

Within the fused tricyclic component of (I) there are some unusual bond distances (Table 1) which provide evidence for polarization of the electronic structure. In the central carbocyclic ring of this unit, the distances C3A—C4 and C9—C9A are both significantly shorter than the remaining C—C distances. In addition, the exocyclic bonds C4A—N15 and C18—C8A are both short for their types [mean values (Allen et al., 1987) 1.419 and 1.485 Å, respectively; lower-quartile values 1.412 and 1.478 Å], while the ketonic bond C18—O8 is long for its type (mean value 1.230 Å; upper-quartile value 1.215 Å). These observations indicate that the polarized form (Ia) (see scheme) is a significant contributor to the overall electronic structure, so that hydrogen bonds (see below and Table 2) involving either N15 as donor or O18 as acceptor can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994). Entirely similar patterns of distances are found both in (II) (Table 3) and in (III) (Low, Cobo, Cuervo et al., 2004), and it is possible that such polarization is typical of compounds containing this quinolinone ring system. For example, a comparable pattern is evident in the N-acetyl derivative (IV) (Low, Cobo, Ortíz et al., 2004).

The methyl C atoms in two of the three methoxy groups in (I) lie very close to the plane of the adjacent ring, as indicated by the relevant torsion angles (Table 1), while the plane of the central methoxy C—O—C fragment containing C118 is almost orthogonal to the ring plane. The displacements of atoms C117, C118 and C119 from the mean plane of the adjacent ring are 0.147 (3), 1.249 (6) and -0.047 (3) Å, respectively. Associated with these substituent conformations, the two exocyclic C—C—O angles at C114 are almost identical, while the pairs of angles at C113 and C115 differ, as usual, by ca 10° (Table 1). The C—O—C angles at O113 and O115 are both significantly larger than the ideal tetrahedral value.

One consequence of the very similar location for the 3,4,5-trimethoxyphenyl substituents in the two disorder components in (I) and for the 6-benzo[1,3]dioxol-5-yl substituents in (II) is that, for each compound, the pattern of the intermolecular hydrogen bonds is the same for both components (Tables 2 and 4) and it is therefore sufficient to discuss only the supramolecular aggregation exhibited by the major components. In (I), a three-centre N—H···(O)2 hydrogen bond, involving the O atoms in two of the three methoxy groups as the acceptors, links pairs of molecules into a cyclic centrosymmetric dimer (Fig. 3) containing rings of R21(5), R22(14) and R22(16) types (Bernstein et al., 1995). This dimeric unit is reinforced by an aromatic ππ stacking interaction. The tri-substituted rings in the two molecules are related by inversion and hence they are strictly parallel, with an interplanar spacing of 3.587 (2) Å. The ring-centroid separation is 3.749 (2) Å, corresponding to a ring-centroid offset of 1.090 (2) Å.

A single C—H···O hydrogen bond utilizing the ketonic O atom as the acceptor links these cyclic dimers into a chain of rings. Atoms C112 in the molecules at (x, y, z) and (-x + 3/2, -y + 3/2, -z + 1) are both constituents of the cyclic dimer centred at (3/4, 3/4, 1/2). These two atoms act as hydrogen-bond donors to atoms O18 in the molecules at (-x + 1, y, -z + 1/2) and (x + 1/2, -y + 3/2, z + 1/2), respectively, which are themselves components of the cyclic dimers centred at (1/4, 3/4, 0) and (5/4, 3/4, 1), respectively. Hence, centrosymmetric dimers which are related by rotation about twofold axes are linked by paired C—H···O hydrogen bonds, forming a second type of R22(14) ring, and this ring is also reinforced by an aromatic ππ stacking interaction, this time involving pairs of fused carbocyclic rings. The carbocyclic rings in the molecules at (x, y, z) and (-x + 1, y, -z + 1/2) have an interplanar spacing of 3.431 (2) Å and a ring-centroid separation of 3.4412 (11) Å. Propagation of the hydrogen bonds and ππ stacking interactions by inversion and rotation generates a complex chain of rings running parallel to the [101] direction (Fig. 4).

The supramolecular aggregation in (II) is much simpler that that in (I). A single charge-assisted N—H···O hydrogen bond involving the two charge-enhanced atoms N15 and O18, links molecules related by translation into a C(6) chain running parallel to the [010] direction. Pairs of antiparallel chains, related to one another by inversion, are linked by a single aromatic ππ stacking interaction. The carbocyclic rings of the fused tricyclic units in the molecules at (x, y, z) and (-x + 2, -y + 1, -z + 1) are parallel with an interplanar spacing of 3.341 (5) Å; the ring-centroid separation is 3.619 (5) Å, corresponding to a ring-centroid offset of 1.391 (5) Å (Fig. 5).

The modes of aggregation apparent for (I) and (II) are different from each other and from that observed in the 4-bromophenyl analogue (III), where N—H···O and C—H···O hydrogen bonds individually form C(6) and C(7) chains, and in combination form sheets of R34(20) rings, while pairs of these sheets are linked by a C—H···π(arene) hydrogen bond to form bilayers (Low, Cobo, Cuervo et al., 2004). There are no aromatic ππ stacking interactions in the crystal structure of (III), just as there are no significant C—H···π(arene) hydrogen bonds in the structures of (I) and (II).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Gilli et al. (1994); Low et al. (2002); Low, Cobo, Cuervo, Abonía & Glidewell (2004); Low, Cobo, Ortíz, Cuervo, Abonía & Glidewell (2004).

Experimental top

For the synthesis of (I), a mixture of 1-(6-amino-1,3-benzodioxo-5-yl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Low et al., 2002) (0.2 g, 0.56 mmol), 2-propanol (6 ml) and 4-toluenesulfonic acid (50 mg) was heated under reflux for 1.8 h. The mixture was cooled to ambient temperature and the resulting solid product was collected by filtration and washed with 2-propanol (yellow luminescent solid, yield 74%, m.p. 471 K). MS m/e (%) 357 (42, [M+]), 190 (100, [M—C9H11O3]), 163 (81, [M—CH2CHC9H11O3]). For the synthesis of (II), a mixture of 1-(6-amino-1,3-benzodioxol-5-yl)-3-(1,3-benzodioxol-5-yl)prop-2-en-1-one (0.1 g, 0.32 mmol), 2-propanol (8 ml) and 4-toluenesulfonic acid (25 mg) was heated under reflux for 5 h. The mixture was cooled to ambient temperature and the resulting precipitate was collected by filtration and washed with 2-propanol (yellow [colourless in CIF] luminescent solid, yield 98%, m.p. 470 K). MS (70 eV) m/e (%) 311 (100, [M+]), 190 [M—C7H5O2]. Crystals of both compounds suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in 2-propanol.

Refinement top

It was apparent at an early stage in the refinements that the rings containing the N atoms exhibited conformational disorder in each compound, with consequent positional disorder of the substituent at position 6. This disorder was modelled for (I) using two sets of atomic sites for atoms Nx5, Cx6, Cx7, Cx8 and Ox8 of the fused ring system (where x = 1 for the major component and x = 2 for the minor component) and for the entire trimethoxyphenyl substituent, with the bonded distances and the 1,3 non-bonded distances in the minor-occupancy component constrained to be the same as the corresponding distances in the major-occupancy component, in each case subject to an s.u. of 0.005 Å. In addition, the anisotropic displacement components for corresponding partial-occupancy atoms occupying essentially the same regions of space were set to be equal. Subject to these conditions the refined occupancies for the two components were 0.879 (3) and 0.121 (3), respectively. Adoption of a similar disorder model for (II) led to some unacceptably short intermolecular H···H contacts, and so an alternative model, involving disorder of the entire molecule, was utilized, subject to the same restraints as employed for (I), leading to refined occupancy factors of 0.866 (4) and 0.134 (4), respectively. All H atoms were located in difference maps, apart from those in the minor occupancy fragments; these were included in calculated positions. All H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic CH), and Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 otherwise. The H atom bonded to N in (I) was initially treated as a riding atom with Uiso(H) = 1.2Ueq(N), but in the final cycles of refinement the coordinates of this atom were freely refined, giving an N—H distance of 0.90 (2) Å, with a sum of angles at the N atom of ca 351.7°. Free refinement of the minor component of this atom (II) was not satisfactory and so a distance restraint of 0.90 (2) Å was applied to the N—H bonds in both components of (II).

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the two disorder components and the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered atom sites O18 and O28 are almost coincident, so that it is not possible to distinguish them in this Figure.
[Figure 2] Fig. 2. The molecular structure of compound (II) showing the two disorder components and the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atom numbers in the major component all begin with 1, those in the minor component all begin with 2.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I) showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the minor disorder component, the H atoms bonded to C atoms, and the unit-cell outline have all been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1.5 - x. 1.5 - y. 1 - z).
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen bonded chain of rings running parallel to the [101] direction. For the sake of clarity, the minor disorder component and the H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (I) showing the formation of a π-stacked pair of anti-parallel hydrogen-bonded chains running parallel to the [010] direction. For the sake of clarity, the minor disorder component and the H atoms bonded to C atoms have been omitted.
(I) 6-(3,4,5-trimethoxyphenyl)-6,7-dihydro- 5H-1,3-dioxolo[4,5-g]quinolin-8(5H)-one top
Crystal data top
C19H19NO6F(000) = 1504
Mr = 357.35Dx = 1.419 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3842 reflections
a = 27.0927 (8) Åθ = 3.0–27.5°
b = 9.6631 (4) ŵ = 0.11 mm1
c = 14.4579 (6) ÅT = 120 K
β = 117.925 (2)°Plate, yellow
V = 3344.3 (2) Å30.22 × 0.18 × 0.08 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3842 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 3435
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.960, Tmax = 0.992l = 1818
22407 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0533P)2 + 2.907P]
where P = (Fo2 + 2Fc2)/3
3842 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.25 e Å3
39 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H19NO6V = 3344.3 (2) Å3
Mr = 357.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.0927 (8) ŵ = 0.11 mm1
b = 9.6631 (4) ÅT = 120 K
c = 14.4579 (6) Å0.22 × 0.18 × 0.08 mm
β = 117.925 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3842 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2951 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.046
22407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04839 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3842 reflectionsΔρmin = 0.24 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.44325 (5)0.26774 (13)0.03990 (10)0.0354 (3)
C20.46887 (8)0.1395 (2)0.08658 (16)0.0380 (5)
H2A0.47160.07910.03380.046*
H2B0.44630.09140.11420.046*
O30.52397 (5)0.16883 (13)0.17058 (10)0.0378 (3)
C3A0.52975 (7)0.30934 (18)0.17320 (14)0.0284 (4)
C40.57434 (7)0.38416 (18)0.24268 (14)0.0297 (4)
H40.60650.34040.29600.036*
C4A0.57081 (7)0.52941 (17)0.23205 (12)0.0249 (4)
C8A0.52309 (6)0.59123 (17)0.15015 (12)0.0228 (3)
C90.47742 (6)0.50836 (18)0.08034 (13)0.0249 (4)
H90.44500.54900.02560.030*
C9A0.48174 (7)0.36971 (18)0.09451 (13)0.0267 (4)
N150.61327 (6)0.60907 (15)0.30506 (12)0.0308 (4)0.879 (3)
H150.6444 (9)0.562 (2)0.3478 (16)0.037*
C160.62077 (8)0.7493 (2)0.28040 (14)0.0267 (5)0.879 (3)
H160.63600.74610.22940.032*0.879 (3)
C170.56467 (8)0.82241 (19)0.22808 (16)0.0284 (6)0.879 (3)
H17A0.55240.84160.28140.034*0.879 (3)
H17B0.56930.91240.20040.034*0.879 (3)
C180.51956 (7)0.74060 (18)0.13960 (13)0.0252 (4)0.879 (3)
O180.4798 (8)0.8005 (7)0.068 (2)0.0326 (12)0.879 (3)
C1110.66257 (8)0.82564 (19)0.37745 (14)0.0242 (5)0.879 (3)
C1120.65168 (8)0.8387 (2)0.46265 (16)0.0242 (4)0.879 (3)
H1120.61900.79900.46010.029*0.879 (3)
C1130.68911 (9)0.9102 (3)0.55066 (17)0.0237 (4)0.879 (3)
C1140.73660 (15)0.9698 (6)0.5534 (2)0.0243 (4)0.879 (3)
C1150.74708 (12)0.9572 (4)0.46835 (18)0.0248 (4)0.879 (3)
C1160.70996 (9)0.8838 (2)0.38010 (15)0.0256 (4)0.879 (3)
H1160.71710.87370.32210.031*0.879 (3)
O1130.68395 (7)0.9274 (2)0.64002 (14)0.0279 (4)0.879 (3)
C1170.63245 (8)0.8856 (3)0.63642 (18)0.0286 (5)0.879 (3)
H11A0.60160.93730.58130.043*0.879 (3)
H11B0.63370.90460.70410.043*0.879 (3)
H11C0.62680.78630.62140.043*0.879 (3)
O1140.77484 (12)1.0369 (4)0.6433 (2)0.0279 (5)0.879 (3)
C1180.76076 (19)1.1801 (5)0.6443 (6)0.0375 (10)0.879 (3)
H11D0.76731.23110.59250.056*0.879 (3)
H11E0.78411.21890.71400.056*0.879 (3)
H11F0.72131.18770.62700.056*0.879 (3)
O1150.79500 (9)1.0206 (3)0.48040 (17)0.0292 (4)0.879 (3)
C1190.80931 (10)1.0054 (3)0.39727 (18)0.0326 (5)0.879 (3)
H11G0.81540.90730.38870.049*0.879 (3)
H11H0.84351.05760.41420.049*0.879 (3)
H11I0.77881.04080.33200.049*0.879 (3)
N250.61327 (6)0.60907 (15)0.30506 (12)0.0308 (4)0.121 (3)
C260.6025 (3)0.7482 (5)0.3152 (5)0.0267 (5)0.121 (3)
H260.57350.74360.33950.032*0.121 (3)
C270.5726 (4)0.8203 (7)0.2108 (8)0.0284 (6)0.121 (3)
H27A0.59750.82550.17790.034*0.121 (3)
H27B0.56290.91590.22090.034*0.121 (3)
C280.51956 (7)0.74060 (18)0.13960 (13)0.0252 (4)0.121 (3)
O280.480 (6)0.803 (5)0.071 (18)0.0326 (12)0.121 (3)
C2110.6488 (3)0.8278 (8)0.4000 (6)0.0242 (5)0.121 (3)
C2120.6441 (4)0.8559 (17)0.4911 (7)0.0242 (4)0.121 (3)
H2120.61120.83090.49500.029*0.121 (3)
C2130.6876 (6)0.920 (3)0.5747 (10)0.0237 (4)0.121 (3)
C2140.7333 (11)0.969 (5)0.5650 (17)0.0243 (4)0.121 (3)
C2150.7380 (8)0.942 (3)0.4749 (13)0.0248 (4)0.121 (3)
C2160.6949 (5)0.873 (2)0.3913 (8)0.0256 (4)0.121 (3)
H2160.69720.85700.32860.031*0.121 (3)
O2130.6869 (5)0.9531 (19)0.6665 (8)0.0279 (4)0.121 (3)
C2170.6384 (6)0.911 (2)0.6751 (12)0.0286 (5)0.121 (3)
H21A0.60550.96030.62330.043*0.121 (3)
H21B0.64380.93160.74560.043*0.121 (3)
H21C0.63280.81080.66240.043*0.121 (3)
O2140.7724 (9)1.053 (3)0.6425 (15)0.0279 (5)0.121 (3)
C2180.7504 (19)1.187 (4)0.644 (5)0.0375 (10)0.121 (3)
H21D0.73281.22670.57370.056*0.121 (3)
H21E0.78081.24810.69160.056*0.121 (3)
H21F0.72251.17930.66930.056*0.121 (3)
O2150.7843 (7)0.998 (3)0.4740 (13)0.0292 (4)0.121 (3)
C2190.7930 (7)0.968 (2)0.3857 (13)0.0326 (5)0.121 (3)
H21G0.79090.86810.37370.049*0.121 (3)
H21H0.82991.00190.39940.049*0.121 (3)
H21I0.76421.01460.32360.049*0.121 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (6)0.0281 (7)0.0396 (7)0.0062 (5)0.0087 (6)0.0053 (6)
C20.0373 (10)0.0298 (10)0.0394 (11)0.0078 (8)0.0116 (9)0.0016 (8)
O30.0368 (7)0.0231 (7)0.0431 (8)0.0050 (5)0.0100 (6)0.0003 (6)
C3A0.0302 (9)0.0223 (9)0.0322 (9)0.0008 (7)0.0144 (8)0.0003 (7)
C40.0265 (9)0.0269 (9)0.0283 (9)0.0012 (7)0.0067 (7)0.0002 (7)
C4A0.0226 (8)0.0270 (9)0.0225 (8)0.0004 (7)0.0083 (7)0.0025 (7)
C8A0.0222 (8)0.0254 (9)0.0209 (8)0.0001 (6)0.0101 (6)0.0025 (6)
C90.0211 (8)0.0295 (9)0.0215 (8)0.0003 (7)0.0078 (6)0.0033 (7)
C9A0.0243 (8)0.0293 (9)0.0256 (8)0.0071 (7)0.0108 (7)0.0067 (7)
N150.0240 (7)0.0244 (8)0.0293 (8)0.0010 (6)0.0002 (6)0.0017 (6)
C160.0251 (10)0.0273 (10)0.0238 (10)0.0002 (8)0.0080 (8)0.0037 (8)
C170.0259 (9)0.0233 (9)0.0287 (10)0.0003 (7)0.0066 (8)0.0013 (7)
C180.0224 (8)0.0277 (9)0.0228 (8)0.0027 (7)0.0084 (7)0.0009 (7)
O180.0271 (6)0.0293 (8)0.0288 (19)0.0049 (7)0.0025 (8)0.0003 (11)
C1110.0232 (10)0.0216 (9)0.0218 (9)0.0035 (8)0.0055 (7)0.0023 (7)
C1120.0222 (9)0.0233 (10)0.0211 (11)0.0006 (8)0.0051 (7)0.0008 (8)
C1130.0244 (8)0.0246 (10)0.0172 (11)0.0028 (7)0.0055 (8)0.0003 (9)
C1140.0221 (9)0.0234 (9)0.0186 (11)0.0011 (8)0.0021 (7)0.0014 (10)
C1150.0214 (12)0.0243 (14)0.0242 (9)0.0021 (9)0.0068 (7)0.0028 (8)
C1160.0267 (11)0.0263 (10)0.0208 (9)0.0046 (9)0.0086 (8)0.0004 (7)
O1130.0242 (6)0.0369 (11)0.0176 (9)0.0061 (6)0.0055 (7)0.0051 (7)
C1170.0217 (9)0.0358 (12)0.0249 (12)0.0005 (8)0.0080 (10)0.0022 (10)
O1140.0252 (7)0.0284 (13)0.0216 (6)0.0028 (8)0.0038 (5)0.0035 (6)
C1180.043 (3)0.0297 (13)0.0311 (10)0.0046 (14)0.0097 (16)0.0069 (9)
O1150.0242 (11)0.0357 (14)0.0253 (7)0.0035 (7)0.0094 (8)0.0018 (6)
C1190.0287 (13)0.0390 (16)0.0307 (11)0.0023 (10)0.0142 (10)0.0022 (9)
N250.0240 (7)0.0244 (8)0.0293 (8)0.0010 (6)0.0002 (6)0.0017 (6)
C260.0251 (10)0.0273 (10)0.0238 (10)0.0002 (8)0.0080 (8)0.0037 (8)
C270.0259 (9)0.0233 (9)0.0287 (10)0.0003 (7)0.0066 (8)0.0013 (7)
C280.0224 (8)0.0277 (9)0.0228 (8)0.0027 (7)0.0084 (7)0.0009 (7)
O280.0271 (6)0.0293 (8)0.0288 (19)0.0049 (7)0.0025 (8)0.0003 (11)
C2110.0232 (10)0.0216 (9)0.0218 (9)0.0035 (8)0.0055 (7)0.0023 (7)
C2120.0222 (9)0.0233 (10)0.0211 (11)0.0006 (8)0.0051 (7)0.0008 (8)
C2130.0244 (8)0.0246 (10)0.0172 (11)0.0028 (7)0.0055 (8)0.0003 (9)
C2140.0221 (9)0.0234 (9)0.0186 (11)0.0011 (8)0.0021 (7)0.0014 (10)
C2150.0214 (12)0.0243 (14)0.0242 (9)0.0021 (9)0.0068 (7)0.0028 (8)
C2160.0267 (11)0.0263 (10)0.0208 (9)0.0046 (9)0.0086 (8)0.0004 (7)
O2130.0242 (6)0.0369 (11)0.0176 (9)0.0061 (6)0.0055 (7)0.0051 (7)
C2170.0217 (9)0.0358 (12)0.0249 (12)0.0005 (8)0.0080 (10)0.0022 (10)
O2140.0252 (7)0.0284 (13)0.0216 (6)0.0028 (8)0.0038 (5)0.0035 (6)
C2180.043 (3)0.0297 (13)0.0311 (10)0.0046 (14)0.0097 (16)0.0069 (9)
O2150.0242 (11)0.0357 (14)0.0253 (7)0.0035 (7)0.0094 (8)0.0018 (6)
C2190.0287 (13)0.0390 (16)0.0307 (11)0.0023 (10)0.0142 (10)0.0022 (9)
Geometric parameters (Å, º) top
O1—C9A1.382 (2)C117—H11B0.9800
O1—C21.426 (2)C117—H11C0.9800
C2—O31.444 (2)O114—C1181.437 (3)
C2—H2A0.9900C118—H11D0.9800
C2—H2B0.9900C118—H11E0.9800
O3—C3A1.365 (2)C118—H11F0.9800
C3A—C41.362 (2)O115—C1191.433 (2)
C4—C4A1.410 (2)C119—H11G0.9800
C4A—C8A1.413 (2)C119—H11H0.9800
C8A—C91.422 (2)C119—H11I0.9800
C9—C9A1.352 (2)C26—C2111.493 (4)
C9A—C3A1.393 (2)C26—C271.508 (5)
C4A—N151.376 (2)C26—H261.0000
C8A—C181.450 (2)C27—H27A0.9900
C18—O181.230 (3)C27—H27B0.9900
C4—H40.9500C211—C2161.384 (5)
C9—H90.9500C211—C2121.407 (5)
N15—C161.439 (2)C212—C2131.378 (5)
N15—H150.90 (2)C212—H2120.9500
C16—C171.518 (3)C213—O2131.375 (5)
C16—C1111.519 (2)C213—C2141.392 (4)
C16—H161.0000C214—O2141.385 (5)
C17—C181.514 (2)C214—C2151.393 (4)
C17—H17A0.9900C215—O2151.370 (5)
C17—H17B0.9900C215—C2161.395 (5)
C111—C1161.386 (3)C216—H2160.9500
C111—C1121.400 (3)O213—C2171.437 (5)
C112—C1131.384 (2)C217—H21A0.9800
C112—H1120.9500C217—H21B0.9800
C113—O1131.373 (2)C217—H21C0.9800
C113—C1141.393 (3)O214—C2181.437 (6)
C114—O1141.386 (2)C218—H21D0.9800
C114—C1151.390 (3)C218—H21E0.9800
C115—O1151.371 (2)C218—H21F0.9800
C115—C1161.393 (2)O215—C2191.432 (5)
C116—H1160.9500C219—H21G0.9800
O113—C1171.430 (2)C219—H21H0.9800
C117—H11A0.9800C219—H21I0.9800
C9A—O1—C2106.21 (13)O114—C114—C115119.83 (16)
O1—C2—O3108.06 (14)C114—O114—C118111.99 (17)
O1—C2—H2A110.1C115—C114—C113120.47 (16)
O3—C2—H2A110.1O115—C115—C114114.96 (15)
O1—C2—H2B110.1O115—C115—C116125.34 (17)
O3—C2—H2B110.1C115—O115—C119117.35 (15)
H2A—C2—H2B108.4C114—C115—C116119.70 (17)
C3A—O3—C2106.16 (14)C111—C116—C115119.61 (17)
C4—C3A—O3126.81 (16)C111—C116—H116120.2
C4—C3A—C9A123.13 (16)C115—C116—H116120.2
O3—C3A—C9A110.04 (15)C211—C26—C27115.8 (4)
C3A—C4—C4A117.17 (16)C211—C26—H26103.4
C3A—C4—H4121.4C27—C26—H26103.4
C4A—C4—H4121.4C26—C27—H27A109.8
N15—C4A—C4118.92 (15)C26—C27—H27B109.8
N15—C4A—C8A120.97 (15)H27A—C27—H27B108.2
C4—C4A—C8A120.05 (15)C216—C211—C212120.4 (3)
C4A—C8A—C9120.49 (15)C216—C211—C26122.3 (4)
C4A—C8A—C18119.90 (14)C212—C211—C26117.3 (4)
C9—C8A—C18119.56 (14)C213—C212—C211119.5 (4)
C9A—C9—C8A117.76 (15)C213—C212—H212120.3
C9A—C9—H9121.1C211—C212—H212120.3
C8A—C9—H9121.1O213—C213—C212123.9 (5)
C9—C9A—O1129.14 (16)O213—C213—C214115.7 (4)
C9—C9A—C3A121.35 (15)C212—C213—C214120.1 (4)
O1—C9A—C3A109.52 (15)O214—C214—C213119.9 (5)
C4A—N15—C16120.06 (15)O214—C214—C215119.8 (5)
C4A—N15—H15114.9 (13)C213—C214—C215120.3 (3)
C16—N15—H15116.7 (13)O215—C215—C214114.8 (4)
N15—C16—C17109.70 (16)O215—C215—C216125.2 (5)
N15—C16—C111111.05 (15)C214—C215—C216119.7 (4)
C17—C16—C111111.92 (15)C211—C216—C215119.7 (4)
N15—C16—H16108.0C211—C216—H216120.2
C17—C16—H16108.0C215—C216—H216120.2
C111—C16—H16108.0C213—O213—C217116.4 (5)
C18—C17—C16113.69 (16)O213—C217—H21A109.5
C18—C17—H17A108.8O213—C217—H21B109.5
C16—C17—H17A108.8H21A—C217—H21B109.5
C18—C17—H17B108.8O213—C217—H21C109.5
C16—C17—H17B108.8H21A—C217—H21C109.5
H17A—C17—H17B107.7H21B—C217—H21C109.5
O18—C18—C8A123.0 (3)C214—O214—C218112.1 (5)
O18—C18—C17120.3 (6)O214—C218—H21D109.5
C8A—C18—C17116.34 (14)O214—C218—H21E109.5
C116—C111—C112120.88 (16)H21D—C218—H21E109.5
C116—C111—C16120.20 (17)O214—C218—H21F109.5
C112—C111—C16118.90 (18)H21D—C218—H21F109.5
C113—C112—C111119.22 (17)H21E—C218—H21F109.5
C113—C112—H112120.4C215—O215—C219117.7 (6)
C111—C112—H112120.4O215—C219—H21G109.5
O113—C113—C112124.86 (17)O215—C219—H21H109.5
O113—C113—C114115.02 (15)H21G—C219—H21H109.5
C113—O113—C117117.34 (15)O215—C219—H21I109.5
C112—C113—C114120.11 (17)H21G—C219—H21I109.5
O114—C114—C113119.63 (16)H21H—C219—H21I109.5
C9A—O1—C2—O30.16 (19)O113—C113—C114—O1141.6 (6)
O1—C2—O3—C3A0.7 (2)C112—C113—C114—O114177.7 (3)
C2—O3—C3A—C4177.33 (18)O113—C113—C114—C115178.8 (4)
C2—O3—C3A—C9A1.0 (2)C112—C113—C114—C1150.5 (7)
O3—C3A—C4—C4A178.66 (17)O114—C114—C115—O1153.0 (6)
C9A—C3A—C4—C4A0.6 (3)C113—C114—C115—O115179.8 (5)
C3A—C4—C4A—N15175.52 (15)O114—C114—C115—C116176.8 (4)
C3A—C4—C4A—C8A1.7 (2)C113—C114—C115—C1160.4 (7)
N15—C4A—C8A—C9174.73 (15)C112—C111—C116—C1150.5 (4)
C4—C4A—C8A—C92.4 (2)C16—C111—C116—C115178.0 (3)
N15—C4A—C8A—C182.7 (2)O115—C115—C116—C111179.4 (3)
C4—C4A—C8A—C18179.86 (15)C114—C115—C116—C1110.9 (6)
C4A—C8A—C9—C9A0.8 (2)C112—C113—O113—C1179.3 (4)
C18—C8A—C9—C9A178.26 (15)C114—C113—O113—C117171.4 (3)
C8A—C9—C9A—O1178.19 (15)C115—C114—O114—C11895.1 (5)
C8A—C9—C9A—C3A1.4 (2)C113—C114—O114—C11887.7 (5)
C2—O1—C9A—C9179.90 (18)C114—C115—O115—C119177.1 (4)
C2—O1—C9A—C3A0.42 (19)C116—C115—O115—C1192.7 (6)
C4—C3A—C9A—C92.2 (3)C27—C26—C211—C21659.6 (15)
O3—C3A—C9A—C9179.40 (15)C27—C26—C211—C212120.6 (13)
C4—C3A—C9A—O1177.47 (16)C216—C211—C212—C2135 (3)
O3—C3A—C9A—O10.9 (2)C26—C211—C212—C213175.2 (17)
C4—C4A—N15—C16159.86 (16)C211—C212—C213—O213179 (2)
C8A—C4A—N15—C1623.0 (2)C211—C212—C213—C2147 (4)
C4A—N15—C16—C1745.3 (2)O213—C213—C214—O2144 (5)
C4A—N15—C16—C111169.57 (15)C212—C213—C214—O214170 (3)
N15—C16—C17—C1848.7 (2)O213—C213—C214—C215180 (4)
C111—C16—C17—C18172.39 (17)C212—C213—C214—C2157 (6)
C4A—C8A—C18—O18178 (3)O214—C214—C215—O2153 (5)
C9—C8A—C18—O184 (3)C213—C214—C215—O215179 (4)
C4A—C8A—C18—C178.5 (2)O214—C214—C215—C216172 (3)
C9—C8A—C18—C17168.99 (15)C213—C214—C215—C2164 (6)
C16—C17—C18—O18154 (3)C212—C211—C216—C2153 (3)
C16—C17—C18—C8A32.1 (2)C26—C211—C216—C215177 (2)
N15—C16—C111—C116122.3 (2)O215—C215—C216—C211176 (3)
C17—C16—C111—C116114.7 (2)C214—C215—C216—C2112 (5)
N15—C16—C111—C11259.1 (2)C212—C213—O213—C2173 (4)
C17—C16—C111—C11263.8 (2)C214—C213—O213—C217176 (3)
C116—C111—C112—C1130.4 (3)C213—C214—O214—C21870 (4)
C16—C111—C112—C113178.9 (2)C215—C214—O214—C218106 (5)
C111—C112—C113—O113178.4 (3)C214—C215—O215—C219177 (3)
C111—C112—C113—C1140.9 (5)C216—C215—O215—C2198 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O114i0.90 (2)2.34 (3)3.101 (4)142.8 (19)
N15—H15···O115i0.90 (2)2.38 (2)3.186 (3)148 (2)
N15—H15···O214i0.90 (2)2.46 (4)3.23 (3)143.7 (19)
N15—H15···O215i0.90 (2)2.46 (3)3.267 (19)150 (2)
C112—H112···O18ii0.952.513.40 (3)155
C212—H212···O28ii0.952.213.1 (2)154
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
(II) 6-(1,3-benzodioxol-5-yl)-6,7-dihydro-5H-1,3- dioxolo[4,5-g]quinolin-8-one top
Crystal data top
C17H13NO5F(000) = 648
Mr = 311.28Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3079 reflections
a = 12.9403 (4) Åθ = 3.2–27.9°
b = 7.1310 (2) ŵ = 0.12 mm1
c = 14.7736 (7) ÅT = 120 K
β = 103.7580 (13)°Block, yellow
V = 1324.15 (8) Å30.17 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3079 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 9.091 pixels mm-1θmax = 27.9°, θmin = 3.2°
ϕ & ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.971, Tmax = 0.988l = 1919
22707 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.6647P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.26 e Å3
83 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H13NO5V = 1324.15 (8) Å3
Mr = 311.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9403 (4) ŵ = 0.12 mm1
b = 7.1310 (2) ÅT = 120 K
c = 14.7736 (7) Å0.17 × 0.12 × 0.10 mm
β = 103.7580 (13)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3079 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2143 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.988Rint = 0.090
22707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05183 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3079 reflectionsΔρmin = 0.25 e Å3
284 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O111.1524 (5)0.6736 (7)0.7198 (10)0.0317 (5)0.866 (4)
C121.2027 (4)0.4975 (7)0.7424 (7)0.0340 (8)0.866 (4)
H12A1.21290.47190.80980.041*0.866 (4)
H12B1.27320.49730.72730.041*0.866 (4)
O131.1351 (3)0.3559 (6)0.6885 (4)0.0288 (8)0.866 (4)
C13A1.0435 (4)0.4458 (5)0.6445 (6)0.0242 (5)0.866 (4)
C140.9548 (3)0.3681 (4)0.5892 (6)0.0240 (6)0.866 (4)
H140.94970.23720.57730.029*0.866 (4)
C14A0.8705 (3)0.4916 (4)0.5504 (5)0.0234 (5)0.866 (4)
N150.77953 (19)0.4190 (3)0.4918 (2)0.0245 (7)0.866 (4)
H150.773 (3)0.292 (2)0.4968 (18)0.029*0.866 (4)
C160.68046 (17)0.5229 (3)0.48602 (16)0.0240 (6)0.866 (4)
H160.66590.52230.54950.029*0.866 (4)
C170.69810 (19)0.7256 (3)0.46146 (18)0.0274 (7)0.866 (4)
H710.70550.73120.39640.033*0.866 (4)
H720.63480.80040.46520.033*0.866 (4)
C180.7948 (3)0.8112 (3)0.5244 (3)0.0253 (6)0.866 (4)
C18A0.8804 (3)0.6858 (4)0.5680 (6)0.0228 (5)0.866 (4)
C190.9758 (4)0.7598 (5)0.6247 (9)0.0247 (8)0.866 (4)
H190.98450.89080.63580.030*0.866 (4)
C19A1.0538 (4)0.6377 (5)0.6623 (7)0.0242 (7)0.866 (4)
O180.8002 (2)0.9837 (3)0.5382 (3)0.0323 (9)0.866 (4)
O1110.3264 (3)0.1434 (4)0.2696 (4)0.0337 (7)0.866 (4)
C1120.3549 (3)0.0418 (4)0.3049 (2)0.0278 (8)0.866 (4)
H12C0.29590.09840.32760.033*0.866 (4)
H12D0.36990.12280.25510.033*0.866 (4)
O1130.4478 (4)0.0252 (5)0.3798 (6)0.0428 (6)0.866 (4)
C13B0.4827 (3)0.1563 (5)0.3770 (4)0.0284 (5)0.866 (4)
C1140.5700 (2)0.2372 (4)0.4340 (2)0.0290 (9)0.866 (4)
H1140.61680.16680.48110.035*0.866 (4)
C1150.58789 (18)0.4274 (3)0.42058 (17)0.0245 (7)0.866 (4)
C1160.5176 (3)0.5251 (4)0.3508 (2)0.0290 (10)0.866 (4)
H1160.53100.65370.34140.035*0.866 (4)
C1170.4276 (5)0.4399 (6)0.2939 (7)0.0298 (5)0.866 (4)
H1170.38000.50760.24620.036*0.866 (4)
C17A0.4118 (4)0.2556 (5)0.3103 (5)0.0251 (5)0.866 (4)
O211.157 (4)0.654 (5)0.720 (6)0.0317 (5)0.134 (4)
C221.208 (3)0.478 (5)0.739 (5)0.0340 (8)0.134 (4)
H22A1.23410.46070.80710.041*0.134 (4)
H22B1.26990.47180.71030.041*0.134 (4)
O231.1315 (18)0.335 (4)0.700 (3)0.0288 (8)0.134 (4)
C23A1.046 (2)0.427 (3)0.645 (4)0.0242 (5)0.134 (4)
C240.955 (2)0.349 (3)0.594 (4)0.0240 (6)0.134 (4)
H240.94830.21760.58510.029*0.134 (4)
C24A0.8718 (17)0.474 (2)0.555 (3)0.0234 (5)0.134 (4)
N250.7741 (12)0.3988 (16)0.5099 (16)0.0245 (7)0.134 (4)
H250.781 (17)0.304 (16)0.471 (10)0.029*0.134 (4)
C260.7032 (9)0.5193 (15)0.4426 (8)0.0240 (6)0.134 (4)
H260.73960.54750.39160.029*0.134 (4)
C270.6901 (11)0.7041 (18)0.4903 (12)0.0274 (7)0.134 (4)
H730.64800.79150.44380.033*0.134 (4)
H740.65010.68150.53860.033*0.134 (4)
C280.7951 (14)0.7937 (17)0.5348 (19)0.0253 (6)0.134 (4)
C28A0.8846 (19)0.669 (2)0.568 (4)0.0228 (5)0.134 (4)
C290.982 (3)0.743 (3)0.622 (6)0.0247 (8)0.134 (4)
H290.99190.87370.63130.030*0.134 (4)
C29A1.059 (2)0.620 (3)0.660 (5)0.0242 (7)0.134 (4)
O280.8081 (17)0.9656 (19)0.526 (3)0.0323 (9)0.134 (4)
O2110.337 (2)0.112 (3)0.273 (3)0.0337 (7)0.134 (4)
C2120.360 (2)0.056 (3)0.328 (2)0.0278 (8)0.134 (4)
H22C0.30630.07600.36470.033*0.134 (4)
H22D0.35950.16560.28680.033*0.134 (4)
O2130.464 (3)0.033 (3)0.389 (4)0.0428 (6)0.134 (4)
C23B0.4920 (18)0.150 (3)0.380 (2)0.0284 (5)0.134 (4)
C2140.5860 (15)0.235 (2)0.4216 (19)0.0290 (9)0.134 (4)
H2140.64020.16910.46450.035*0.134 (4)
C2150.5997 (11)0.4219 (17)0.3988 (12)0.0245 (7)0.134 (4)
C2160.5201 (16)0.511 (2)0.333 (2)0.0290 (10)0.134 (4)
H2160.53160.63570.31500.035*0.134 (4)
C2170.424 (3)0.422 (4)0.292 (4)0.0298 (5)0.134 (4)
H2170.36760.48690.25060.036*0.134 (4)
C27A0.414 (2)0.240 (3)0.315 (3)0.0251 (5)0.134 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0250 (10)0.0238 (13)0.0390 (8)0.0025 (10)0.0072 (9)0.0053 (18)
C120.0305 (13)0.0225 (16)0.0410 (15)0.0033 (10)0.0070 (12)0.0067 (15)
O130.0238 (8)0.0214 (13)0.036 (2)0.0014 (7)0.0041 (9)0.0010 (10)
C13A0.0247 (10)0.0223 (12)0.0246 (10)0.0041 (9)0.0043 (8)0.0013 (13)
C140.0253 (10)0.0186 (11)0.0267 (15)0.0003 (9)0.0036 (8)0.0004 (13)
C14A0.0241 (10)0.0233 (11)0.0223 (12)0.0002 (8)0.0047 (8)0.0006 (11)
N150.0225 (9)0.0187 (9)0.0294 (16)0.0019 (7)0.0003 (9)0.0014 (8)
C160.0246 (12)0.0221 (11)0.0240 (14)0.0022 (9)0.0030 (10)0.0024 (9)
C170.0259 (12)0.0267 (12)0.0273 (16)0.0031 (9)0.0017 (11)0.0013 (10)
C180.0297 (11)0.0214 (11)0.0240 (14)0.0010 (9)0.0046 (9)0.0015 (9)
C18A0.0246 (10)0.0207 (10)0.0221 (10)0.0004 (9)0.0034 (9)0.0007 (12)
C190.0251 (12)0.0203 (11)0.0271 (14)0.0010 (9)0.0026 (13)0.0020 (15)
C19A0.0208 (11)0.0251 (12)0.0248 (12)0.0010 (9)0.0016 (11)0.0036 (13)
O180.0298 (9)0.0201 (8)0.0417 (19)0.0028 (7)0.0021 (10)0.0042 (9)
O1110.0250 (12)0.0237 (14)0.0449 (11)0.0016 (11)0.0066 (8)0.0041 (12)
C1120.0260 (11)0.0260 (12)0.027 (2)0.0005 (10)0.0033 (13)0.0012 (12)
O1130.029 (2)0.0265 (9)0.058 (2)0.0053 (10)0.0194 (12)0.0080 (8)
C13B0.0267 (12)0.0216 (10)0.0339 (12)0.0001 (9)0.0014 (10)0.0016 (8)
C1140.0245 (13)0.0276 (11)0.0312 (16)0.0010 (9)0.0010 (12)0.0035 (9)
C1150.0237 (11)0.0256 (10)0.0229 (14)0.0002 (8)0.0028 (10)0.0008 (9)
C1160.0277 (11)0.0249 (11)0.032 (2)0.0006 (9)0.0026 (12)0.0012 (11)
C1170.0230 (11)0.0309 (14)0.0310 (12)0.0011 (10)0.0022 (9)0.0059 (14)
C17A0.0201 (10)0.0274 (12)0.0258 (14)0.0016 (9)0.0016 (8)0.0021 (10)
O210.0250 (10)0.0238 (13)0.0390 (8)0.0025 (10)0.0072 (9)0.0053 (18)
C220.0305 (13)0.0225 (16)0.0410 (15)0.0033 (10)0.0070 (12)0.0067 (15)
O230.0238 (8)0.0214 (13)0.036 (2)0.0014 (7)0.0041 (9)0.0010 (10)
C23A0.0247 (10)0.0223 (12)0.0246 (10)0.0041 (9)0.0043 (8)0.0013 (13)
C240.0253 (10)0.0186 (11)0.0267 (15)0.0003 (9)0.0036 (8)0.0004 (13)
C24A0.0241 (10)0.0233 (11)0.0223 (12)0.0002 (8)0.0047 (8)0.0006 (11)
N250.0225 (9)0.0187 (9)0.0294 (16)0.0019 (7)0.0003 (9)0.0014 (8)
C260.0246 (12)0.0221 (11)0.0240 (14)0.0022 (9)0.0030 (10)0.0024 (9)
C270.0259 (12)0.0267 (12)0.0273 (16)0.0031 (9)0.0017 (11)0.0013 (10)
C280.0297 (11)0.0214 (11)0.0240 (14)0.0010 (9)0.0046 (9)0.0015 (9)
C28A0.0246 (10)0.0207 (10)0.0221 (10)0.0004 (9)0.0034 (9)0.0007 (12)
C290.0251 (12)0.0203 (11)0.0271 (14)0.0010 (9)0.0026 (13)0.0020 (15)
C29A0.0208 (11)0.0251 (12)0.0248 (12)0.0010 (9)0.0016 (11)0.0036 (13)
O280.0298 (9)0.0201 (8)0.0417 (19)0.0028 (7)0.0021 (10)0.0042 (9)
O2110.0250 (12)0.0237 (14)0.0449 (11)0.0016 (11)0.0066 (8)0.0041 (12)
C2120.0260 (11)0.0260 (12)0.027 (2)0.0005 (10)0.0033 (13)0.0012 (12)
O2130.029 (2)0.0265 (9)0.058 (2)0.0053 (10)0.0194 (12)0.0080 (8)
C23B0.0267 (12)0.0216 (10)0.0339 (12)0.0001 (9)0.0014 (10)0.0016 (8)
C2140.0245 (13)0.0276 (11)0.0312 (16)0.0010 (9)0.0010 (12)0.0035 (9)
C2150.0237 (11)0.0256 (10)0.0229 (14)0.0002 (8)0.0028 (10)0.0008 (9)
C2160.0277 (11)0.0249 (11)0.032 (2)0.0006 (9)0.0026 (12)0.0012 (11)
C2170.0230 (11)0.0309 (14)0.0310 (12)0.0011 (10)0.0022 (9)0.0059 (14)
C27A0.0201 (10)0.0274 (12)0.0258 (14)0.0016 (9)0.0016 (8)0.0021 (10)
Geometric parameters (Å, º) top
O11—C19A1.379 (2)O21—C29A1.379 (4)
O11—C121.417 (2)O21—C221.418 (5)
C12—O131.444 (3)C22—O231.446 (6)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
O13—C13A1.369 (3)O23—C23A1.371 (5)
C13A—C141.358 (3)C23A—C241.358 (4)
C14—C14A1.413 (3)C23A—C29A1.394 (4)
C14A—C18A1.409 (3)C24—C24A1.415 (4)
C18A—C191.419 (3)C24—H240.9500
C19—C19A1.349 (3)C24A—N251.387 (5)
C19A—C13A1.394 (3)C24A—C28A1.408 (4)
C14A—N151.385 (3)N25—C261.461 (6)
C18—C18A1.450 (3)N25—H250.90 (2)
C18—O181.246 (3)C26—C2151.510 (5)
C14—H140.9500C26—C271.523 (5)
N15—C161.466 (3)C26—H261.0000
N15—H150.911 (17)C27—C281.503 (5)
C16—C1151.511 (3)C27—H730.9900
C16—C171.520 (3)C27—H740.9900
C16—H161.0000C28—O281.249 (6)
C17—C181.500 (3)C28—C28A1.452 (5)
C17—H710.9900C28A—C291.420 (4)
C17—H720.9900C29—C29A1.348 (4)
C19—H190.9500C29—H290.9500
O111—C17A1.381 (2)O211—C27A1.382 (5)
O111—C1121.436 (3)O211—C2121.435 (5)
C112—O1131.432 (3)C212—O2131.432 (5)
C112—H12C0.9900C212—H22C0.9900
C112—H12D0.9900C212—H22D0.9900
O113—C13B1.375 (2)O213—C23B1.375 (4)
C13B—C1141.366 (3)C23B—C2141.367 (4)
C13B—C17A1.373 (3)C23B—C27A1.374 (4)
C114—C1151.398 (3)C214—C2151.396 (5)
C114—H1140.9500C214—H2140.9500
C115—C1161.389 (3)C215—C2161.391 (5)
C116—C1171.403 (3)C216—C2171.402 (5)
C116—H1160.9500C216—H2160.9500
C117—C17A1.360 (3)C217—C27A1.361 (4)
C117—H1170.9500C217—H2170.9500
C19A—O11—C12106.63 (15)C29A—O21—C22106.5 (4)
O11—C12—O13107.82 (19)O21—C22—O23107.6 (6)
O11—C12—H12A110.1O21—C22—H22A110.2
O13—C12—H12A110.1O23—C22—H22A110.2
O11—C12—H12B110.1O21—C22—H22B110.2
O13—C12—H12B110.1O23—C22—H22B110.2
H12A—C12—H12B108.5H22A—C22—H22B108.5
C13A—O13—C12106.07 (19)C23A—O23—C22105.8 (5)
C14—C13A—O13127.38 (19)C24—C23A—O23127.1 (6)
C14—C13A—C19A122.90 (18)C24—C23A—C29A122.9 (3)
O13—C13A—C19A109.70 (17)O23—C23A—C29A109.5 (4)
C13A—C14—C14A116.77 (18)C23A—C24—C24A116.8 (4)
C13A—C14—H14121.6C23A—C24—H24121.6
C14A—C14—H14121.6C24A—C24—H24121.6
N15—C14A—C18A120.65 (18)N25—C24A—C28A120.8 (4)
N15—C14A—C14118.70 (18)N25—C24A—C24118.3 (4)
C18A—C14A—C14120.61 (18)C28A—C24A—C24120.5 (3)
C14A—N15—C16116.7 (2)C24A—N25—C26116.8 (7)
C14A—N15—H15114 (2)C24A—N25—H25112 (10)
C16—N15—H15114 (2)C26—N25—H2599 (10)
N15—C16—C115111.02 (18)N25—C26—C215111.8 (5)
N15—C16—C17108.4 (2)N25—C26—C27108.4 (5)
C115—C16—C17114.65 (18)C215—C26—C27114.3 (5)
N15—C16—H16107.5N25—C26—H26107.3
C115—C16—H16107.5C215—C26—H26107.3
C17—C16—H16107.5C27—C26—H26107.3
C18—C17—C16112.94 (19)C28—C27—C26112.5 (5)
C18—C17—H71109.0C28—C27—H73109.1
C16—C17—H71109.0C26—C27—H73109.1
C18—C17—H72109.0C28—C27—H74109.1
C16—C17—H72109.0C26—C27—H74109.1
H71—C17—H72107.8H73—C27—H74107.8
O18—C18—C18A121.9 (2)O28—C28—C28A121.5 (7)
O18—C18—C17120.62 (19)O28—C28—C27120.0 (5)
C18A—C18—C17117.44 (17)C28A—C28—C27116.9 (4)
C14A—C18A—C19120.22 (18)C24A—C28A—C29120.3 (3)
C14A—C18A—C18119.83 (19)C24A—C28A—C28120.0 (3)
C19—C18A—C18119.88 (18)C29—C28A—C28119.5 (5)
C19A—C19—C18A117.62 (18)C29A—C29—C28A117.6 (4)
C19A—C19—H19121.2C29A—C29—H29121.2
C18A—C19—H19121.2C28A—C29—H29121.2
C19—C19A—O11128.77 (18)C29—C29A—O21128.6 (5)
C19—C19A—C13A121.85 (18)C29—C29A—C23A121.8 (3)
O11—C19A—C13A109.37 (17)O21—C29A—C23A109.4 (3)
C17A—O111—C112105.37 (16)C27A—O211—C212105.3 (5)
O113—C112—O111107.49 (18)O213—C212—O211107.5 (5)
O113—C112—H12C110.2O213—C212—H22C110.2
O111—C112—H12C110.2O211—C212—H22C110.2
O113—C112—H12D110.2O213—C212—H22D110.2
O111—C112—H12D110.2O211—C212—H22D110.2
H12C—C112—H12D108.5H22C—C212—H22D108.5
C13B—O113—C112106.03 (18)C23B—O213—C212106.2 (4)
C114—C13B—C17A122.61 (19)C214—C23B—C27A122.6 (4)
C114—C13B—O113127.5 (2)C214—C23B—O213127.5 (5)
C17A—C13B—O113109.79 (18)C27A—C23B—O213109.8 (3)
C13B—C114—C115117.53 (19)C23B—C214—C215117.6 (4)
C13B—C114—H114121.2C23B—C214—H214121.2
C115—C114—H114121.2C215—C214—H214121.2
C116—C115—C114119.40 (19)C216—C215—C214119.3 (3)
C116—C115—C16121.89 (18)C216—C215—C26121.6 (4)
C114—C115—C16118.63 (19)C214—C215—C26119.1 (4)
C115—C116—C117122.11 (19)C215—C216—C217122.1 (4)
C115—C116—H116118.9C215—C216—H216119.0
C117—C116—H116118.9C217—C216—H216119.0
C17A—C117—C116116.8 (2)C27A—C217—C216116.8 (4)
C17A—C117—H117121.6C27A—C217—H217121.6
C116—C117—H117121.6C216—C217—H217121.6
C117—C17A—C13B121.49 (19)C217—C27A—C23B121.4 (3)
C117—C17A—O111128.41 (18)C217—C27A—O211128.2 (6)
C13B—C17A—O111110.05 (17)C23B—C27A—O211109.9 (4)
C19A—O11—C12—O135.9 (10)C29A—O21—C22—O239 (7)
O11—C12—O13—C13A6.5 (8)O21—C22—O23—C23A11 (5)
C12—O13—C13A—C14177.0 (7)C22—O23—C23A—C24179 (5)
C12—O13—C13A—C19A4.6 (8)C22—O23—C23A—C29A9 (5)
O13—C13A—C14—C14A179.1 (9)O23—C23A—C24—C24A170 (6)
C19A—C13A—C14—C14A0.9 (5)C29A—C23A—C24—C24A0 (3)
C13A—C14—C14A—N15178.5 (6)C23A—C24—C24A—N25173 (4)
C13A—C14—C14A—C18A0.9 (5)C23A—C24—C24A—C28A0 (2)
C18A—C14A—N15—C1628.7 (7)C28A—C24A—N25—C2628 (4)
C14—C14A—N15—C16153.8 (5)C24—C24A—N25—C26159 (3)
C14A—N15—C16—C115179.5 (3)C24A—N25—C26—C215180.0 (18)
C14A—N15—C16—C1753.8 (4)C24A—N25—C26—C2753.1 (18)
N15—C16—C17—C1851.6 (4)N25—C26—C27—C2853.3 (12)
C115—C16—C17—C18176.3 (3)C215—C26—C27—C28178.7 (10)
C16—C17—C18—O18153.0 (4)C26—C27—C28—O28136 (3)
C16—C17—C18—C18A26.7 (5)C26—C27—C28—C28A30 (3)
N15—C14A—C18A—C19177.1 (7)N25—C24A—C28A—C29174 (5)
C14—C14A—C18A—C190.4 (8)C24—C24A—C28A—C290 (5)
N15—C14A—C18A—C180.2 (10)N25—C24A—C28A—C281 (6)
C14—C14A—C18A—C18177.3 (7)C24—C24A—C28A—C28174 (5)
O18—C18—C18A—C14A179.8 (6)O28—C28—C28A—C24A163 (5)
C17—C18—C18A—C14A0.1 (8)C27—C28—C28A—C24A3 (5)
O18—C18—C18A—C193.2 (8)O28—C28—C28A—C2923 (5)
C17—C18—C18A—C19177.1 (6)C27—C28—C28A—C29171 (4)
C14A—C18A—C19—C19A1.8 (10)C24A—C28A—C29—C29A1 (6)
C18—C18A—C19—C19A178.7 (9)C28—C28A—C29—C29A174 (6)
C18A—C19—C19A—O11179.3 (11)C28A—C29—C29A—O21174 (7)
C18A—C19—C19A—C13A1.9 (10)C28A—C29—C29A—C23A1 (7)
C12—O11—C19A—C19178.0 (10)C22—O21—C29A—C29179 (7)
C12—O11—C19A—C13A3.1 (11)C22—O21—C29A—C23A4 (7)
C14—C13A—C19A—C190.5 (9)C24—C23A—C29A—C291 (6)
O13—C13A—C19A—C19178.0 (9)O23—C23A—C29A—C29173 (6)
C14—C13A—C19A—O11179.5 (9)C24—C23A—C29A—O21176 (6)
O13—C13A—C19A—O111.0 (10)O23—C23A—C29A—O214 (7)
C17A—O111—C112—O11311.3 (7)C27A—O211—C212—O21312 (5)
O111—C112—O113—C13B10.2 (8)O211—C212—O213—C23B8 (5)
C112—O113—C13B—C114178.9 (5)C212—O213—C23B—C214177 (3)
C112—O113—C13B—C17A5.2 (8)C212—O213—C23B—C27A2 (6)
C17A—C13B—C114—C1152.1 (5)C27A—C23B—C214—C2152 (2)
O113—C13B—C114—C115177.5 (7)O213—C23B—C214—C215177 (5)
C13B—C114—C115—C1160.1 (4)C23B—C214—C215—C2162 (3)
C13B—C114—C115—C16176.8 (3)C23B—C214—C215—C26179.3 (12)
N15—C16—C115—C116130.7 (3)N25—C26—C215—C216180 (2)
C17—C16—C115—C1167.4 (4)C27—C26—C215—C21656 (2)
N15—C16—C115—C11452.5 (3)N25—C26—C215—C2143 (2)
C17—C16—C115—C114175.8 (3)C27—C26—C215—C214127 (2)
C114—C115—C116—C1171.1 (7)C214—C215—C216—C2174 (5)
C16—C115—C116—C117175.7 (6)C26—C215—C216—C217180 (4)
C115—C116—C117—C17A0.1 (9)C215—C216—C217—C27A4 (6)
C116—C117—C17A—C13B2.4 (9)C216—C217—C27A—C23B4 (6)
C116—C117—C17A—O111174.7 (9)C216—C217—C27A—O211167 (6)
C114—C13B—C17A—C1173.5 (8)C214—C23B—C27A—C2173 (5)
O113—C13B—C17A—C117179.6 (7)O213—C23B—C27A—C217179 (5)
C114—C13B—C17A—O111174.1 (6)C214—C23B—C27A—O211169 (4)
O113—C13B—C17A—O1112.0 (8)O213—C23B—C27A—O2116 (5)
C112—O111—C17A—C117174.4 (7)C212—O211—C27A—C217177 (4)
C112—O111—C17A—C13B8.3 (7)C212—O211—C27A—C23B11 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O18i0.91 (2)2.29 (2)3.176 (3)164 (3)
N25—H25···O28i0.91 (2)2.54 (12)3.12 (2)122 (12)
Symmetry code: (i) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H19NO6C17H13NO5
Mr357.35311.28
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)27.0927 (8), 9.6631 (4), 14.4579 (6)12.9403 (4), 7.1310 (2), 14.7736 (7)
β (°) 117.925 (2) 103.7580 (13)
V3)3344.3 (2)1324.15 (8)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.110.12
Crystal size (mm)0.22 × 0.18 × 0.080.17 × 0.12 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.960, 0.9920.971, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22407, 3842, 2951 22707, 3079, 2143
Rint0.0460.090
(sin θ/λ)max1)0.6500.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.04 0.051, 0.128, 1.04
No. of reflections38423079
No. of parameters290284
No. of restraints3983
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.240.26, 0.25

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C3A—C41.362 (2)C9A—C3A1.393 (2)
C4—C4A1.410 (2)C4A—N151.376 (2)
C4A—C8A1.413 (2)C8A—C181.450 (2)
C8A—C91.422 (2)C18—O181.230 (3)
C9—C9A1.352 (2)
O113—C113—C112124.86 (17)C114—O114—C118111.99 (17)
O113—C113—C114115.02 (15)O115—C115—C114114.96 (15)
C113—O113—C117117.34 (15)O115—C115—C116125.34 (17)
O114—C114—C113119.63 (16)C115—O115—C119117.35 (15)
O114—C114—C115119.83 (16)
C112—C113—O113—C1179.3 (4)C116—C115—O115—C1192.7 (6)
C115—C114—O114—C11895.1 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O114i0.90 (2)2.34 (3)3.101 (4)142.8 (19)
N15—H15···O115i0.90 (2)2.38 (2)3.186 (3)148 (2)
N15—H15···O214i0.90 (2)2.46 (4)3.23 (3)143.7 (19)
N15—H15···O215i0.90 (2)2.46 (3)3.267 (19)150 (2)
C112—H112···O18ii0.952.513.40 (3)155
C212—H212···O28ii0.952.213.1 (2)154
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Selected bond lengths (Å) for (II) top
C13A—C141.358 (3)C19A—C13A1.394 (3)
C14—C14A1.413 (3)C14A—N151.385 (3)
C14A—C18A1.409 (3)C18—C18A1.450 (3)
C18A—C191.419 (3)C18—O181.246 (3)
C19—C19A1.349 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O18i0.91 (2)2.29 (2)3.176 (3)164 (3)
N25—H25···O28i0.91 (2)2.54 (12)3.12 (2)122 (12)
Symmetry code: (i) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds