Download citation
Download citation
link to html
The title compound, poly[bis­[diaqua­lanthanum(III)]-tris­([mu]-1-benzofuran-2,3-dicarboxyl­ato)], [La2(C10H4O5)3(H2O)4]n, was obtained under solvothermal conditions by reacting lan­thanum trinitrate hexa­hydrate with 1-benzofuran-2,3-dicarboxylic acid in a strongly basic environment. It forms an extended two-dimensional coordination network, wherein every lanthanum ion links to four deprotonated diacid ligands, while two of the latter bridge between adjacent metal cations. The component species are additionally linked to one another by hydrogen bonds. The polymeric arrays are tightly stacked one on top of the other, without incorporating any solvent in the inter­face zones between them, which are lined with the lipophilic benzofuran residues. This study provides the first example of coordination networking with the aid of the 1-benzofuran-2,3-dicarboxyl­ate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109007161/sk3297sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109007161/sk3297Isup2.hkl
Contains datablock I

CCDC reference: 730078

Comment top

This report is part of our recent effort to evaluate the supramolecular reactivity of the 1-benzofuran-2,3-dicarboxylic acid (BFDC), a previously unexplored ligand that can readily coordinate to various metal ions (Koner & Goldberg, 2009a,b). We have characterized the molecular structure of this species and revealed that in mild conditions it tends to react with various cations as a monoanion, while maintaining an intramolecular hydrogen bond between the two carboxylic acid substituents (Koner & Goldberg, 2009a,b). As a result, in neutral or weak basic environments the coordination potential of this bis-bidentate ligand (with four carboxylate O sites) to metal ions could not fully materialize, in contrast with earlier observations with related bifunctional anions, such as benzene-1,4-dicarboxylate (e.g. Guilera & Steed, 1999; Reineke et al., 2000; Chen et al., 2006; Hu et al., 2007; Pham et al., 2008). We anticipated that possible application of the BFDC unit, as a bidentate or polydentate bridging ligand, in the synthesis of extended coordination networks might require more extreme experimental conditions. Correspondingly, in order to extend the supramolecular functional reactivity of BFDC we changed the synthetic approach in the following ways. First, we applied stronger basic conditions by introducing sodium hydroxide into the reaction mixture to assure complete deprotonation of BFDC. Then, the latter was reacted preferably with lanthanide ions, as these provide a very attractive interface to promote the formation of coordination networks owing to their large size, the spatial divergence of the valent orbitals, their high coordination numbers and their high affinity for oxo ligands due to their `hard' nature (Lipstman et al., 2007; Muniappan et al., 2007). Finally, the reaction was carried out in solvothermal conditions, which were found to promote the formulation of high-nuclearity coordination products (Low et al., 2003; Eddaoudi et al., 2002).

In this study, we report the first coordination network constructed from doubly deprotonated BFDC (BFDC2-) and diaqualanthanum(III) with a 3:2 ratio to account for charge balance. The molecular structure of the title compound, (I), is depicted in Fig. 1. The basic stuctural unit involves the binuclear [La2(COO)6] motif as frequently found in coordination frameworks of lanthanide ions and dicarboxylate bridging ligands (Reineke et al., 2000; Chen et al., 2006; Hu et al., 2007; Pham et al., 2008). The asymmetric unit contains two LaIII ions, three BFDC2- ligands and four molecules of water (Fig. 1). Every metal cation is coordinated by two water molecules and seven O atoms from four BFDC2- moieties. The La—O coordination bonds are in the range 2.430 (3)–2.677 (3) Å (Table 1), in agreement with earlier observations (Muniappan et al., 2007). Compound (I) exhibits two-dimensional coordination networks (Fig. 2). The three crystallographically independent BFDC2- units bridge between adjacent lanthanide ions in different coordination geometries (none of the carboxylate groups exhibits solely a µ2-chelating binding to a single metal ion). Atom La1 coordinates to the three ligands of the asymmetric unit (Fig. 1), as well as to atom O36 at (-x, -y + 1, -z). Atom La2 links to two ligands of the asymmetric unit (O7 through O21, and O38 through O51), as well as to atoms O51 at (-x, -y, -z) and O20 at (-z + 1, -y, -z). Of the 12 carboxylate O atoms, only atom O23 is not coordinated to any metal. The distances between adjacent La ions within the network are asa follows: La1···La2 = 4.332 (1) Å, La1···La1(-x, -y + 1, -z) = 4.432 (1) Å and La2···La2(-x + 1, -y, -z) = 4.340 (1) Å (Fig. 2a). Additional hydrogen bonds involving the aqua ligands as H-atom donors and the carboxylate groups, furan O atoms and water molecules of the same network as H-atom acceptors provide further links between the constituent components.

The coordination networks are aligned parallel to the ab plane of the crystal and are centered at z = 0. The metal ions, aqua ligands and carboxylate binding sites are located in the interior of the polymeric array, while the lipophilic benzofuran residues are oriented outward, lining the upper and lower surface of the coordination network. In the crystal structure, the networks are tightly stacked one on top of the other along the c axis. The concave surface areas of one layer fit into the convex surface areas of adjacent layers from above and below without leaving any voids in between (Fig. 3). Typical parallel and T-type orientations between the benzene rings of adjacent networks characterize the intermolecular organization in the interface zone.

In summary, this study reports a unigue two-dimensional coordination polymer of lanthanum ions with BFDC2- bridging ligands. It demonstrates for the first time the utility of the BFDC dicarboxylic acid in the formation of extended coordination networks. In BFDC, the ortho-substituted carboxylic acid functions are positioned on one end of the organic ligand, while the other end consists of the aromatic benzene ring. This appears to limit the coordination functionality of this molecule to one or two dimensions (Koner & Goldberg, 2009a,b), as opposed to the three-dimensional coordination frameworks that could be obtained with other ligands, such as 1,4-benzenedicarboxylate, that bear trans-related coordinating functions (Reineke et al., 2000; Chen et al., 2006; Hu et al., 2007; Pham et al., 2008). Within a wider context of our crystal engineering program to design functional metal–organic frameworks, further studies are underway to construct extended coordination polymers with BFDC and related dicarboxylic acid ligands, and various lanthanide ions.

Related literature top

For related literature, see: Chen et al. (2006); Eddaoudi et al. (2002); Guilera & Steed (1999); Hu et al. (2007); Koner & Goldberg (2009a, 2009b); Lipstman et al. (2007); Low et al. (2003); Muniappan et al. (2007); Pham et al. (2008); Reineke et al. (2000).

Experimental top

All the reactants and solvents (see below) were obtained commercially. A mixture of La(NO3)3.6H2O (0.13 g, 0.3 mmol), 1-benzofuran-2,3-dicarboxylic acid (0.124 g, 0.6 mmol) and NaOH (0.05 g, 1.2 mmol) was sealed in a stainless steal reactor, heated at 433 K for 3 d and then cooled slowly to room temperature. Colorless crystals of (I) were recovered from the reactor, washed with distilled water and dried in air. IR (KBr, cm-1): 3440 (br, water stretching), 1718 (ν of COOH), 1602 and 1559 (νas of OCO-), 1417 and 1362 (νs of OCO-).

Refinement top

H atoms bound to C atoms were located in calculated positions and were constrained to ride on their parent atoms with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms bound to O atoms in (II) were either located in difference Fourier maps or positioned to optimize intermolecular hydrogen bonding. All the O—H bond lengths were first restrained to 0.90 (2) Å, but then kept fixed in the final least-squares cycles with Uiso(H) = 1.2 Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme of the asymmetric unit. The atom ellipsoids represent displacement parameters at the 50% probability level at ca 110 K. H atoms have been omitted.
[Figure 2] Fig. 2. The coordination pattern in (I). Lanthanum ions and water O atoms are depicted by small spheres. (a) Fragment of the coordination network around the marked inversion center at (0, 0, 0). The asterisked O atoms belong to neighboring dicarboxylate entitites. [Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y, -z; (iii) -x + 1, -y, -z.] (b) An extended face-on view of the coordination network, aligned parallel to the ab plane and centered at z = 0. H atoms have been omitted.
[Figure 3] Fig. 3. The crystal packing of (I) projected down the a axis. Two coordination networks at z = 0.0 and z = 1.0 are shown edge-on. Note the tight fit between the networks and between the outward-oriented lipophilic benzofuran residues of adjacent layers in the interface zone centered at z = 1/2. Lanthanum ions and water O atoms are depicted by small spheres. H atoms have been omitted.
poly[bis[diaqualanthanum(III)]tris(µ-1-benzofuran-2,3-dicarboxylato)] top
Crystal data top
[La2(C10H4O5)3(H2O)4]Z = 2
Mr = 962.28F(000) = 932
Triclinic, P1Dx = 2.131 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1011 (2) ÅCell parameters from 5262 reflections
b = 13.1771 (2) Åθ = 1.4–28.2°
c = 13.7172 (3) ŵ = 2.90 mm1
α = 67.3835 (9)°T = 110 K
β = 81.1791 (9)°Prism, colorless
γ = 84.8788 (10)°0.35 × 0.20 × 0.10 mm
V = 1499.76 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
7169 independent reflections
Radiation source: fine-focus sealed tube5523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 12.8 pixels mm-1θmax = 28.2°, θmin = 2.7°
ϕ and ω scansh = 012
Absorption correction: multi-scan
(Blessing, 1995)
k = 1717
Tmin = 0.430, Tmax = 0.760l = 1718
16461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.051P)2 + 2.8316P]
where P = (Fo2 + 2Fc2)/3
7169 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 2.68 e Å3
0 restraintsΔρmin = 1.67 e Å3
Crystal data top
[La2(C10H4O5)3(H2O)4]γ = 84.8788 (10)°
Mr = 962.28V = 1499.76 (5) Å3
Triclinic, P1Z = 2
a = 9.1011 (2) ÅMo Kα radiation
b = 13.1771 (2) ŵ = 2.90 mm1
c = 13.7172 (3) ÅT = 110 K
α = 67.3835 (9)°0.35 × 0.20 × 0.10 mm
β = 81.1791 (9)°
Data collection top
Nonius KappaCCD
diffractometer
7169 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5523 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.760Rint = 0.038
16461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 2.68 e Å3
7169 reflectionsΔρmin = 1.67 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.06077 (3)0.321951 (19)0.05849 (2)0.01504 (8)
La20.26622 (3)0.04442 (2)0.01223 (2)0.01827 (9)
O30.1532 (4)0.3784 (3)0.1782 (3)0.0253 (8)
H3A0.16790.44410.18440.030*
H3B0.24970.36070.19410.030*
O40.1171 (4)0.1625 (3)0.1647 (3)0.0247 (8)
H4A0.10790.09780.15620.030*
H4B0.21130.18100.15080.030*
O50.3074 (4)0.1471 (3)0.0142 (3)0.0250 (8)
H5A0.25300.20770.01880.030*
H5B0.38720.17520.04380.030*
O60.4147 (4)0.2191 (3)0.0809 (3)0.0263 (8)
H6A0.48610.24370.13570.032*
H6B0.40820.26710.04960.032*
O70.2093 (4)0.1335 (2)0.1227 (2)0.0178 (7)
O80.1638 (4)0.2158 (2)0.2368 (3)0.0193 (7)
C90.2192 (5)0.1366 (4)0.2134 (4)0.0177 (9)
C100.2958 (5)0.0450 (4)0.2933 (4)0.0177 (9)
O110.2447 (4)0.0358 (3)0.3961 (3)0.0217 (7)
C120.3327 (6)0.0467 (4)0.4596 (4)0.0207 (10)
C130.3190 (6)0.0814 (4)0.5699 (4)0.0255 (11)
H130.24530.05150.60930.031*
C140.4212 (6)0.1628 (4)0.6178 (4)0.0249 (11)
H140.41680.19070.69310.030*
C150.5304 (6)0.2055 (4)0.5594 (4)0.0246 (11)
H150.59920.26050.59570.030*
C160.5405 (6)0.1689 (4)0.4490 (4)0.0232 (11)
H160.61490.19820.40940.028*
C170.4379 (6)0.0880 (4)0.3985 (4)0.0199 (10)
C180.4115 (5)0.0281 (4)0.2890 (4)0.0193 (10)
C190.5067 (6)0.0417 (4)0.1970 (4)0.0214 (10)
O200.6313 (5)0.0865 (4)0.2116 (3)0.0423 (12)
O210.4645 (4)0.0066 (3)0.1042 (2)0.0201 (7)
O220.3369 (4)0.3562 (3)0.0274 (3)0.0191 (7)
O230.5356 (4)0.2778 (3)0.1121 (3)0.0248 (8)
C240.4298 (5)0.3472 (4)0.0910 (4)0.0195 (10)
C250.4102 (5)0.4274 (4)0.1455 (3)0.0161 (9)
O260.5151 (4)0.4155 (3)0.2130 (3)0.0202 (7)
C270.4823 (5)0.4947 (4)0.2556 (4)0.0180 (9)
C280.5562 (6)0.5084 (4)0.3302 (4)0.0252 (11)
H280.63940.46280.35680.030*
C290.5020 (6)0.5930 (4)0.3642 (4)0.0251 (11)
H290.54970.60630.41490.030*
C300.3772 (6)0.6594 (4)0.3248 (4)0.0254 (11)
H300.34240.71630.34990.031*
C310.3044 (5)0.6436 (4)0.2503 (4)0.0194 (10)
H310.22030.68840.22420.023*
C320.3591 (5)0.5591 (4)0.2147 (4)0.0165 (9)
C330.3141 (5)0.5142 (4)0.1428 (4)0.0191 (10)
C340.1897 (5)0.5609 (4)0.0805 (4)0.0169 (9)
O350.1026 (4)0.4983 (2)0.0658 (3)0.0193 (7)
O360.1640 (4)0.6629 (3)0.0458 (3)0.0199 (7)
O370.1042 (4)0.2168 (2)0.0676 (3)0.0199 (7)
O380.1452 (3)0.3949 (2)0.1493 (3)0.0156 (6)
C390.1216 (5)0.3037 (4)0.1542 (4)0.0189 (10)
C400.1070 (5)0.2876 (4)0.2517 (4)0.0173 (9)
O410.1398 (4)0.3738 (3)0.3479 (3)0.0206 (7)
C420.1011 (6)0.3386 (4)0.4222 (4)0.0230 (10)
C430.1165 (6)0.3988 (5)0.5324 (4)0.0319 (12)
H430.15790.46960.56340.038*
C440.0685 (7)0.3492 (5)0.5925 (5)0.0385 (14)
H440.07690.38670.66760.046*
C450.0066 (7)0.2439 (5)0.5461 (4)0.0369 (14)
H450.02560.21220.59050.044*
C460.0076 (6)0.1863 (4)0.4373 (4)0.0299 (12)
H460.04980.11570.40640.036*
C470.0416 (6)0.2342 (4)0.3739 (4)0.0224 (10)
C480.0477 (5)0.2017 (4)0.2612 (4)0.0191 (10)
C490.0203 (6)0.1032 (4)0.1738 (4)0.0222 (10)
O500.0587 (5)0.0263 (3)0.1143 (3)0.0307 (9)
O510.1586 (4)0.1005 (3)0.1629 (3)0.0322 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01812 (14)0.01060 (13)0.01831 (15)0.00212 (10)0.00517 (10)0.00706 (10)
La20.02901 (17)0.01110 (13)0.01748 (15)0.00381 (11)0.00860 (11)0.00731 (11)
O30.0237 (18)0.0168 (16)0.033 (2)0.0016 (14)0.0051 (15)0.0107 (15)
O40.032 (2)0.0159 (16)0.0281 (19)0.0011 (15)0.0107 (15)0.0078 (14)
O50.0278 (19)0.0144 (15)0.036 (2)0.0019 (14)0.0036 (16)0.0151 (15)
O60.034 (2)0.0172 (16)0.0256 (19)0.0006 (15)0.0051 (15)0.0094 (14)
O70.0274 (18)0.0160 (15)0.0117 (16)0.0044 (14)0.0051 (13)0.0071 (12)
O80.0253 (18)0.0150 (15)0.0200 (17)0.0048 (14)0.0062 (14)0.0091 (13)
C90.018 (2)0.015 (2)0.019 (2)0.0006 (18)0.0040 (18)0.0054 (18)
C100.025 (2)0.015 (2)0.014 (2)0.0003 (19)0.0044 (18)0.0063 (18)
O110.0272 (18)0.0219 (17)0.0167 (17)0.0022 (15)0.0045 (14)0.0080 (14)
C120.028 (3)0.017 (2)0.019 (2)0.003 (2)0.006 (2)0.0075 (19)
C130.028 (3)0.025 (2)0.026 (3)0.002 (2)0.004 (2)0.012 (2)
C140.033 (3)0.022 (2)0.019 (3)0.000 (2)0.008 (2)0.006 (2)
C150.032 (3)0.017 (2)0.023 (3)0.001 (2)0.009 (2)0.0041 (19)
C160.034 (3)0.018 (2)0.019 (2)0.005 (2)0.005 (2)0.0089 (19)
C170.027 (3)0.014 (2)0.019 (2)0.0024 (19)0.009 (2)0.0047 (18)
C180.028 (3)0.012 (2)0.018 (2)0.0000 (19)0.010 (2)0.0045 (18)
C190.038 (3)0.014 (2)0.015 (2)0.007 (2)0.007 (2)0.0087 (18)
O200.048 (3)0.054 (3)0.025 (2)0.037 (2)0.0127 (18)0.0197 (19)
O210.0293 (19)0.0173 (15)0.0148 (16)0.0012 (14)0.0069 (14)0.0062 (13)
O220.0190 (17)0.0207 (16)0.0206 (17)0.0011 (14)0.0030 (13)0.0112 (14)
O230.0191 (17)0.0292 (19)0.0258 (19)0.0124 (15)0.0058 (14)0.0117 (15)
C240.022 (2)0.018 (2)0.017 (2)0.0007 (19)0.0026 (19)0.0044 (18)
C250.019 (2)0.016 (2)0.012 (2)0.0009 (18)0.0046 (17)0.0026 (17)
O260.0238 (18)0.0201 (16)0.0195 (17)0.0028 (14)0.0073 (14)0.0097 (14)
C270.021 (2)0.019 (2)0.016 (2)0.0014 (19)0.0026 (18)0.0081 (18)
C280.026 (3)0.027 (3)0.027 (3)0.004 (2)0.011 (2)0.013 (2)
C290.028 (3)0.029 (3)0.024 (3)0.006 (2)0.008 (2)0.013 (2)
C300.030 (3)0.021 (2)0.030 (3)0.000 (2)0.005 (2)0.014 (2)
C310.018 (2)0.020 (2)0.022 (2)0.0019 (19)0.0035 (19)0.0087 (19)
C320.014 (2)0.016 (2)0.016 (2)0.0022 (18)0.0013 (17)0.0028 (17)
C330.014 (2)0.020 (2)0.023 (3)0.0035 (19)0.0035 (18)0.0067 (19)
C340.020 (2)0.020 (2)0.016 (2)0.0006 (19)0.0028 (18)0.0124 (18)
O350.0197 (17)0.0143 (15)0.0277 (19)0.0027 (13)0.0078 (14)0.0109 (14)
O360.0220 (17)0.0150 (15)0.0244 (18)0.0039 (14)0.0104 (14)0.0075 (13)
O370.0267 (18)0.0134 (15)0.0204 (17)0.0030 (14)0.0093 (14)0.0056 (13)
O380.0097 (14)0.0086 (13)0.0257 (17)0.0007 (12)0.0024 (12)0.0037 (12)
C390.016 (2)0.018 (2)0.024 (3)0.0051 (19)0.0075 (19)0.0080 (19)
C400.020 (2)0.015 (2)0.015 (2)0.0040 (18)0.0055 (18)0.0030 (18)
O410.0225 (17)0.0195 (16)0.0185 (17)0.0038 (14)0.0015 (13)0.0055 (13)
C420.025 (3)0.022 (2)0.025 (3)0.002 (2)0.007 (2)0.010 (2)
C430.032 (3)0.034 (3)0.028 (3)0.007 (2)0.002 (2)0.009 (2)
C440.049 (4)0.044 (3)0.022 (3)0.007 (3)0.005 (3)0.009 (3)
C450.050 (4)0.046 (3)0.022 (3)0.011 (3)0.003 (3)0.019 (3)
C460.036 (3)0.029 (3)0.029 (3)0.007 (2)0.005 (2)0.015 (2)
C470.025 (3)0.028 (3)0.017 (2)0.002 (2)0.0001 (19)0.013 (2)
C480.020 (2)0.022 (2)0.018 (2)0.0020 (19)0.0022 (18)0.0102 (19)
C490.037 (3)0.014 (2)0.021 (3)0.002 (2)0.002 (2)0.0135 (19)
O500.056 (3)0.0175 (16)0.0237 (19)0.0017 (17)0.0184 (18)0.0086 (15)
O510.029 (2)0.0211 (18)0.044 (2)0.0058 (16)0.0112 (17)0.0140 (17)
Geometric parameters (Å, º) top
La1—O352.430 (3)C19—O211.284 (5)
La1—O222.535 (3)C19—La2iii3.025 (5)
La1—O372.570 (3)O20—La2iii2.607 (4)
La1—O82.580 (3)O21—La2iii2.677 (3)
La1—O42.586 (3)O22—C241.272 (6)
La1—O32.596 (3)O23—C241.253 (5)
La1—O72.618 (3)C24—C251.497 (6)
La1—O36i2.622 (3)C25—C331.369 (6)
La1—O382.644 (3)C25—O261.388 (5)
La1—O35i2.787 (3)O26—C271.371 (5)
La1—C92.979 (4)C27—C281.382 (7)
La1—C392.983 (5)C27—C321.396 (6)
La2—O212.470 (3)C28—C291.391 (7)
La2—O372.515 (3)C28—H280.9500
La2—O72.517 (3)C29—C301.412 (7)
La2—O52.528 (3)C29—H290.9500
La2—O51ii2.542 (4)C30—C311.387 (7)
La2—O62.551 (4)C30—H300.9500
La2—O502.594 (4)C31—C321.404 (6)
La2—O20iii2.607 (4)C31—H310.9500
La2—O21iii2.677 (3)C32—C331.452 (7)
La2—C19iii3.025 (5)C33—C341.469 (6)
O3—H3A0.8995C34—O361.255 (5)
O3—H3B0.9002C34—O351.282 (6)
O4—H4A0.8997C34—La1i3.107 (5)
O4—H4B0.8985O35—La1i2.787 (3)
O5—H5A0.8999O36—La1i2.622 (3)
O5—H5B0.8988O37—C391.295 (6)
O6—H6A0.8907O38—C391.269 (6)
O6—H6B0.8837C39—C401.459 (6)
O7—C91.278 (5)C40—C481.354 (7)
O8—C91.250 (5)C40—O411.381 (5)
C9—C101.487 (6)O41—C421.372 (6)
C10—C181.373 (6)C42—C471.396 (7)
C10—O111.377 (5)C42—C431.402 (7)
O11—C121.383 (5)C43—C441.369 (8)
C12—C171.389 (7)C43—H430.9500
C12—C131.391 (7)C44—C451.414 (9)
C13—C141.384 (7)C44—H440.9500
C13—H130.9500C45—C461.381 (8)
C14—C151.396 (7)C45—H450.9500
C14—H140.9500C46—C471.395 (7)
C15—C161.392 (7)C46—H460.9500
C15—H150.9500C47—C481.446 (6)
C16—C171.393 (6)C48—C491.492 (7)
C16—H160.9500C49—O511.247 (6)
C17—C181.450 (6)C49—O501.274 (6)
C18—C191.478 (6)O51—La2ii2.542 (4)
C19—O201.239 (6)
O35—La1—O2269.57 (10)C9—O7—La193.4 (2)
O35—La1—O37141.73 (11)La2—O7—La1115.01 (11)
O22—La1—O3789.61 (10)C9—O8—La195.9 (3)
O35—La1—O891.94 (10)O8—C9—O7120.8 (4)
O22—La1—O872.73 (10)O8—C9—C10118.9 (4)
O37—La1—O8112.72 (9)O7—C9—C10120.3 (4)
O35—La1—O4135.46 (11)O8—C9—La159.5 (2)
O22—La1—O4138.51 (10)O7—C9—La161.3 (2)
O37—La1—O481.20 (11)C10—C9—La1178.3 (3)
O8—La1—O473.89 (11)C18—C10—O11112.2 (4)
O35—La1—O368.29 (11)C18—C10—C9135.3 (4)
O22—La1—O3130.19 (11)O11—C10—C9112.3 (4)
O37—La1—O3140.19 (11)C10—O11—C12105.4 (3)
O8—La1—O383.34 (10)O11—C12—C17111.0 (4)
O4—La1—O368.24 (11)O11—C12—C13124.1 (4)
O35—La1—O7131.44 (10)C17—C12—C13124.9 (4)
O22—La1—O770.57 (10)C14—C13—C12114.7 (4)
O37—La1—O762.78 (9)C14—C13—H13122.6
O8—La1—O750.01 (9)C12—C13—H13122.6
O4—La1—O769.26 (10)C13—C14—C15122.4 (5)
O3—La1—O7123.49 (10)C13—C14—H14118.8
O35—La1—O36i110.78 (10)C15—C14—H14118.8
O22—La1—O36i141.15 (11)C16—C15—C14121.3 (4)
O37—La1—O36i66.07 (10)C16—C15—H15119.4
O8—La1—O36i143.53 (11)C14—C15—H15119.4
O4—La1—O36i69.90 (10)C15—C16—C17117.7 (4)
O3—La1—O36i79.47 (11)C15—C16—H16121.1
O7—La1—O36i117.60 (10)C17—C16—H16121.1
O35—La1—O3892.06 (10)C12—C17—C16119.0 (4)
O22—La1—O3872.41 (10)C12—C17—C18105.8 (4)
O37—La1—O3850.28 (9)C16—C17—C18135.2 (4)
O8—La1—O38140.92 (10)C10—C18—C17105.5 (4)
O4—La1—O38125.59 (10)C10—C18—C19130.9 (4)
O3—La1—O38133.67 (10)C17—C18—C19123.3 (4)
O7—La1—O38101.27 (9)O20—C19—O21120.4 (4)
O36i—La1—O3868.75 (10)O20—C19—C18117.8 (4)
O35—La1—O35i63.84 (12)O21—C19—C18121.9 (4)
O22—La1—O35i112.56 (10)O20—C19—La2iii58.8 (3)
O37—La1—O35i98.27 (9)O21—C19—La2iii62.1 (2)
O8—La1—O35i148.79 (9)C18—C19—La2iii170.9 (4)
O4—La1—O35i108.78 (10)C19—O20—La2iii97.3 (3)
O3—La1—O35i69.88 (10)C19—O21—La2151.0 (3)
O7—La1—O35i161.03 (9)C19—O21—La2iii92.8 (3)
O36i—La1—O35i47.69 (9)La2—O21—La2iii114.92 (12)
O38—La1—O35i63.81 (9)C24—O22—La1132.0 (3)
O35—La1—C9112.31 (12)O23—C24—O22126.2 (4)
O22—La1—C969.72 (12)O23—C24—C25117.3 (4)
O37—La1—C988.09 (11)O22—C24—C25116.5 (4)
O8—La1—C924.66 (11)C33—C25—O26110.3 (4)
O4—La1—C969.62 (12)C33—C25—C24135.1 (4)
O3—La1—C9103.62 (12)O26—C25—C24114.5 (4)
O7—La1—C925.34 (11)C27—O26—C25107.3 (3)
O36i—La1—C9134.54 (12)O26—C27—C28125.9 (4)
O38—La1—C9122.71 (11)O26—C27—C32110.0 (4)
O35i—La1—C9173.18 (11)C28—C27—C32124.1 (4)
O35—La1—C39117.20 (12)C27—C28—C29116.2 (4)
O22—La1—C3983.42 (12)C27—C28—H28121.9
O37—La1—C3925.61 (11)C29—C28—H28121.9
O8—La1—C39132.91 (10)C28—C29—C30121.2 (5)
O4—La1—C39102.27 (12)C28—C29—H29119.4
O3—La1—C39140.12 (12)C30—C29—H29119.4
O7—La1—C3984.11 (10)C31—C30—C29121.5 (4)
O36i—La1—C3961.36 (11)C31—C30—H30119.2
O38—La1—C3925.14 (11)C29—C30—H30119.2
O35i—La1—C3977.84 (11)C30—C31—C32117.7 (4)
C9—La1—C39108.94 (12)C30—C31—H31121.1
O21—La2—O37129.19 (10)C32—C31—H31121.1
O21—La2—O770.47 (10)C27—C32—C31119.3 (4)
O37—La2—O764.96 (10)C27—C32—C33105.8 (4)
O21—La2—O585.94 (11)C31—C32—C33134.9 (4)
O37—La2—O5144.54 (11)C25—C33—C32106.6 (4)
O7—La2—O5138.27 (11)C25—C33—C34130.2 (4)
O21—La2—O51ii73.94 (12)C32—C33—C34123.2 (4)
O37—La2—O51ii112.42 (11)O36—C34—O35119.5 (4)
O7—La2—O51ii72.22 (11)O36—C34—C33119.5 (4)
O5—La2—O51ii68.30 (11)O35—C34—C33120.8 (4)
O21—La2—O677.14 (11)O36—C34—La1i56.1 (2)
O37—La2—O667.23 (11)O35—C34—La1i63.7 (2)
O7—La2—O672.19 (11)C33—C34—La1i175.3 (3)
O5—La2—O6136.46 (11)C34—O35—La1148.9 (3)
O51ii—La2—O6139.84 (12)C34—O35—La1i92.0 (3)
O21—La2—O50160.56 (10)La1—O35—La1i116.16 (12)
O37—La2—O5069.01 (11)C34—O36—La1i100.6 (3)
O7—La2—O50120.39 (11)C39—O37—La2128.6 (3)
O5—La2—O5075.54 (11)C39—O37—La195.3 (3)
O51ii—La2—O5093.42 (12)La2—O37—La1116.81 (12)
O6—La2—O50120.59 (11)C39—O38—La192.5 (3)
O21—La2—O20iii112.89 (12)O38—C39—O37119.7 (4)
O37—La2—O20iii89.69 (11)O38—C39—C40125.0 (4)
O7—La2—O20iii142.09 (13)O37—C39—C40115.3 (4)
O5—La2—O20iii78.45 (12)O38—C39—La162.3 (2)
O51ii—La2—O20iii145.68 (13)O37—C39—La159.1 (2)
O6—La2—O20iii72.08 (14)C40—C39—La1163.8 (3)
O50—La2—O20iii69.53 (13)C48—C40—O41113.3 (4)
O21—La2—O21iii65.08 (12)C48—C40—C39128.0 (4)
O37—La2—O21iii128.38 (10)O41—C40—C39118.2 (4)
O7—La2—O21iii126.82 (10)C42—O41—C40104.6 (4)
O5—La2—O21iii65.68 (10)O41—C42—C47111.2 (4)
O51ii—La2—O21iii118.97 (10)O41—C42—C43125.3 (5)
O6—La2—O21iii70.81 (10)C47—C42—C43123.6 (5)
O50—La2—O21iii111.00 (11)C44—C43—C42116.0 (5)
O20iii—La2—O21iii48.92 (10)C44—C43—H43122.0
O21—La2—C19iii89.90 (12)C42—C43—H43122.0
O37—La2—C19iii110.40 (11)C43—C44—C45121.9 (5)
O7—La2—C19iii141.60 (12)C43—C44—H44119.0
O5—La2—C19iii68.74 (12)C45—C44—H44119.0
O51ii—La2—C19iii134.86 (11)C46—C45—C44121.0 (5)
O6—La2—C19iii71.40 (12)C46—C45—H45119.5
O50—La2—C19iii88.84 (13)C44—C45—H45119.5
O20iii—La2—C19iii23.97 (12)C45—C46—C47118.4 (5)
O21iii—La2—C19iii25.07 (11)C45—C46—H46120.8
La1—O3—H3A126.7C47—C46—H46120.8
La1—O3—H3B130.1C46—C47—C42119.1 (5)
H3A—O3—H3B95.8C46—C47—C48135.2 (5)
La1—O4—H4A122.7C42—C47—C48105.7 (4)
La1—O4—H4B112.0C40—C48—C47105.2 (4)
H4A—O4—H4B99.0C40—C48—C49127.4 (4)
La2—O5—H5A131.2C47—C48—C49126.6 (4)
La2—O5—H5B128.5O51—C49—O50122.2 (5)
H5A—O5—H5B100.1O51—C49—C48116.0 (4)
La2—O6—H6A130.3O50—C49—C48121.8 (5)
La2—O6—H6B124.7C49—O50—La2127.8 (3)
H6A—O6—H6B104.8C49—O51—La2ii113.2 (3)
C9—O7—La2151.6 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O38i0.902.012.865 (4)159
O3—H3B···O26iv0.902.213.008 (5)148
O4—H4A···O50ii0.901.932.816 (5)168
O4—H4B···O5ii0.902.392.963 (5)122
O5—H5A···O36v0.901.842.705 (5)162
O5—H5B···O23iii0.901.952.750 (4)148
O6—H6B···O220.881.882.736 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[La2(C10H4O5)3(H2O)4]
Mr962.28
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)9.1011 (2), 13.1771 (2), 13.7172 (3)
α, β, γ (°)67.3835 (9), 81.1791 (9), 84.8788 (10)
V3)1499.76 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.90
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.430, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
16461, 7169, 5523
Rint0.038
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.03
No. of reflections7169
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.68, 1.67

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
La1—O352.430 (3)La2—O212.470 (3)
La1—O222.535 (3)La2—O372.515 (3)
La1—O372.570 (3)La2—O72.517 (3)
La1—O82.580 (3)La2—O52.528 (3)
La1—O42.586 (3)La2—O51ii2.542 (4)
La1—O32.596 (3)La2—O62.551 (4)
La1—O72.618 (3)La2—O502.594 (4)
La1—O36i2.622 (3)La2—O20iii2.607 (4)
La1—O382.644 (3)La2—O21iii2.677 (3)
La1—O35i2.787 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O38i0.902.012.865 (4)159
O3—H3B···O26iv0.902.213.008 (5)148
O4—H4A···O50ii0.901.932.816 (5)168
O4—H4B···O5ii0.902.392.963 (5)122
O5—H5A···O36v0.901.842.705 (5)162
O5—H5B···O23iii0.901.952.750 (4)148
O6—H6B···O220.881.882.736 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds