Download citation
Download citation
link to html
(2R,4S)-7-Bromo-2-phenyl-2,3,4,5-tetra­hydro-1,4-epoxy­naphtho[1,2-b]azepine, C20H16BrNO, (I), exhibits evidence of a modest degree (ca 10%) of inversion twinning, while both (2RS,4SR)-7-bromo-2-(4-chloro­phenyl)-2,3,4,5-tetra­hydro-1,4-epoxy­naphtho[1,2-b]azepine, C20H15BrClNO, (II), and (2RS,4SR)-2-(4-fluoro­phen­yl)-2,3,4,5-tetra­hydro-1,4-epoxy­naphtho[1,2-b]azepine, C20H16FNO, (III), crystallize as genuine racemic mixtures. The mol­ecules of (I) are linked into sheets by a combination of one C-H...O hydrogen bond and two C-H...[pi](arene) hydrogen bonds, while those of (II) are linked into sheets of [pi]-stacked hydrogen-bonded chains. A combination of one C-H...O hydrogen bond and four independent C-H...[pi](arene) hydrogen bonds links the mol­ecules of (III) into a three-dimensional framework. The significance of this study lies in its finding, via comparison with the structures of some closely-related epoxybenzazepine analogues, of significant changes in crystal structures consequent upon small changes in the peripheral substituents.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109005265/sk3295sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005265/sk3295Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005265/sk3295IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005265/sk3295IIIsup4.hkl
Contains datablock III

CCDC references: 730094; 730095; 730096

Comment top

As part of a wider programme aimed at the synthesis and characterization of novel fused azepines, as potential antiprotozoal agents (Gómez et al., 2006; Yépez et al., 2006), we have recently reported on the molecular structures and supramolecular aggregation in several different types of substituted tetrahydro-1,4-epoxy-1-benzazepines (Acosta et al., 2008; Blanco et al., 2008; Gómez et al., 2008;). We have now extended this study to encompass analogues containing the tetrahydro-1,4-epoxy-naphth[2,1-b]azepine framework, and here we report the structure of three such compounds, (2R,4S)-7-bromo-2-exo-4-phenyl-2,3,4,5-tetrahydro-1H-1,4-epoxy naphtho[2,1-b]azepine, (I), (2RS,4SR)-7-bromo-2-exo-4- (4-chlorophenyl-2,3,4,5-tetrahydro-1H-1,4-epoxynaphtho[2,1-b]azepine, (II), and (2RS,4SR)-2-exo-4-(4-fluorophenyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxynaphtho[2,1-b]azepine, (III) (Figs. 1–3).

While compounds (II) and (III) crystallize as racemic mixtures in space groups Pbca and P21/c, respectively, compound (I) crystallizes in space group P21, and it was handled as an inversion twin, giving twin fractions for the crystal selected for data collection of 0.901 (15) for the (2R,4S) enantiomer and 0.099 (15) for the (2S,4R) enantiomer. Accordingly, the reference molecule in the racemic compounds (II) and (III) were each selected as having the (2R,4S) configuration. This behaviour in (I)–(III) may be contrasted with the behaviour (Gómez et al., 2008) of the aryl-substituted tetrahydro-1,4-epoxy-1-benzazepines (IV)–(VI). Compound (IV) crystallizes as a racemic mixture in space group Pna21, while each of (V) and (VI) crystallize as a single enantiomorph, both in space group P212121, having the opposite configuration (2S,4R), as shown by the values of the Flack (1983) x parameter. Since the majority of the other substituted tetrahydro-1,4-epoxy-1-benzazepines that we have studied recently have been found to crystallize either as true racemic mixtures (Blanco et al., 2008) or as inversion twins containing unequal numbers of the two enantiomers (Acosta et al., 2008), it seems likely that all such species are, in fact, synthesized as racemic mixtures, particularly since their syntheses offer no obvious scope for enantiospecific discrimination. It is surprising, however, that of the 12 fused epoxyazepines of this type studied to date by us, including the three reported here, only six crystallize in space groups containing reflection or inversion operators; the other six all crystallize either in P21 or in P212121, three as inversion twins and only three as single enantiomers.

The conformations of the fused heterocyclic systems in (I)–(III) are extremely similar, as shown by the values (Table 1) of the ring-puckering parameters (Cremer & Pople, 1975). The five-membered ring components adopt envelope conformations, folded across the line N1···C4 (Figs. 1–3), while the six-membered rings have conformations intermediate between envelope and half-chair forms, where the idealized values of the ring-puckering angles are θ = 54.7° and ϕ = 60n°, and θ = 50.8° and ϕ = (60n + 30)°, respectively, where n represents an integer. The N1—C2—C21—C22 torsion angles describing the orientation of the pendent aryl ring relative to the azepine ring are also fairly similar: -177.3 (4)° in (I), 172.4 (3)° in (II) and -171.98 (17)° in (III).

Despite the rather similar conformations, and the overall similarity in the molecular shapes in (I)–(III), the patterns of their supramolecular aggregation are significantly different. The hydrogen-bonded structure of (I) is dominated by one C—H···O hydrogen bond and two C—H···π(arene) hydrogen bonds (Table 2). There is a short C—H···Br contact in this structure, but this involves an aliphatic C—H bond of fairly low acidity and, more importantly, it has been shown that Br bonded to C is an extremely poor acceptor of hydrogen bonds (Aakeröy et al., 1999; Brammer et al., 2001; Thallapally & Nangia, 2001); accordingly, this contact must be regarded as being not structurally significant. The C—H···O hydrogen bonds links molecules related by the 21 screw axis along (0, y, 1) into a C(7) (Bernstein et al., 1995) chain running parallel to the [010] direction. At the same time, the C—H···π(arene) hydrogen bond having the aryl atom C23 as the donor links molecules related by translation along [010]. The combination of these two interactions then generates a chain of rings running parallel to the [010] direction (Fig. 3). The other C—H···π(arene) hydrogen bond has an aliphatic C atom as the donor and the pendent phenyl ring as the acceptor, and its effect is to link molecules related by the 21 screw axis along (1/2, y, 1) into a second chain running parallel to the [010] direction (Fig. 4). The combined action of the two independent [010] chains is to link the molecules into a sheet parallel to (001). There are no direction-specific interactions between adjacent sheets, so that the hydrogen-bonded structure in (I) is two-dimensional.

Molecules of compound (II) related by the b-glide plane at x = 1/4 are linked by a single, rather weak C—H···O hydrogen bond (Table 2) into a C(4) chain running parallel to the [010] direction. Chains of this type are linked into sheets by a single aromatic ππ stacking interaction. The chlorinated aryl rings of the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel with an interplanar spacing of 3.500 (2) Å. The ring-centroid separation is 3.833 (2) Å, corresponding to a ring-centroid offset of 1.563 (2) Å. The effect of this interaction is to link the C(4) chain involving the glide plane at x = 0.25 to the two chains involving glide planes at x = 0.75 and x = -0.25, respectively, so generating a sheet of π-stacked hydrogen-bonded chains lying parallel to (001) (Fig. 6).

The hydrogen-bonded structure of (III) is three-dimensional and it is determined by a combination of one C—H···O hydrogen bond and four independent C—H···π(arene) hydrogen bonds; in the event, just three of these interactions suffice to demonstrate the three-dimensional nature of the hydrogen-bonded structure. The C—H···π(arene) interaction having atom C3 as the donor links molecules related by the c-glide plane at y = 3/4 into a chain running parallel to the [001] direction (Fig. 7), while that having atom C5 as the donor links molecules related by the 21 screw axis along (1/2, y, 1/4) into a chain running parallel to the [010] direction (Fig. 8). The combination of these two chains generates a sheet parallel to (100), and a third hydrogen bond links adjacent sheets to form a continuous three-dimensional framework via a cyclic centrosymmetric motif (Fig. 9). The C—H···O hydrogen bond lies within the (100) sheet, while the final C—H···π(arene) interaction reinforces, albeit weakly, the linking of adjacent (100) sheets.

It is of interest briefly to compare the hydrogen-bonded structures of compounds (I)–(III) with those of the benzazepine analogues (IV)–(VI) (Gómez et al., 2008). In the monohalogented compound (VI), a combination of one C—H···O hydrogen bond and two C—H···π(arene) hydrogen bonds generates a three-dimensional structure in space group P212121. Two substructures can readily be identified, one of them one-dimensional and the other two-dimensional. Not only do the two isomeric dichloro compounds (IV) and (V) exhibit different space groups (Pna21 and P212121, respectively) with very different unit-cell dimensions, but their hydrogen-bonded structures also differ considerably. In (IV), a combination of C—H···O and C—H···N hydrogen bonds generates a chain of edge-fused R33(12) rings; this is the only example so far studied whose structure both contains a C—H···N hydrogen bond and does not contain a C—H···π(arene) hydrogen bond. In the structure of (IV), one C—H···O and two C—H···π(arene) hydrogen bonds acting individually generate three orthogonal chains of molecules related by different 21 screw axes which, in combination, give rise to a three-dimensional framework structure. Thus, although the hydrogen-bonded structures in (III), (V) and (VI) are all three-dimensional, there are few if any similarities in the detailed construction of the frameworks involved. The differences in crystal structures observed for (I)–(VI) are all consequent upon rather modest changes in the substituents.

Related literature top

For related literature, see: Aakeröy et al. (1999); Acosta et al. (2008); Bernstein et al. (1995); Blanco et al. (2008); Brammer et al. (2001); Cremer & Pople (1975); Flack (1983); Gómez et al. (2006, 2008); Hooft et al. (2008); Sheldrick (2008); Thallapally & Nangia (2001); Yépez et al. (2006).

Experimental top

To a stirred solution of 0.10 mol of the appropriately substituted 2-allyl-N-benzyl-1-naphthylamine in methanol (40 ml) was added sodium tungstate dihydrate, Na2WO4.2H2O (5 mol %), followed by 30% aqueous hydrogen peroxide solution (0.30 mol). The resulting mixtures were then stirred at room temperature for 45–50 h. Each mixture was filtered and then evaporated to dryness. The crude products were purified by column chromatography on silica gel using heptane/ethyl acetate (30:1 v/v) as eluant. Finally, the resulting 2-exo-aryl-1,4-epoxycycloadducts were recrystallized from heptane, providing crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction. For (I), colourless crystals, yield 52%, m.p. 412–413 K; MS (70 eV) m/z (%): 365 (M+, 79Br, 10), 336 (5), 286 (2), 257 (9), 243 (22), 220 (100), 180 (4), 139 (28), 128 (14), 115 (6); analysis found: C 65.7, H 4.4, N, 3.8%; C20H16BrNO requires: C 65.6, H 4.4, N 3.8%. For (II), colourless crystals, yield 48%, m.p. 459–460 K; MS (70 eV) m/z (%): 399 (M+, 79Br, 35Cl, 5), 370 (3), 291 (6), 277 (14), 220 (100), 180 (5), 152 (5), 139 (33), 128 (19), 115 (5); analysis found: C 59.9, H 3.8, N 3.6%; C20H15BrClNO requires: C 59.95, H 3.8, N 3.5%. For (III), pale-yellow crystals, yield 49%, m.p. 401–402 K; MS (70 eV) m/z (%): 305 (M+, 10), 276 (5), 262 (14), 142 (100), 115 (17); analysis found: C 78.5, H 5.3, N 4.6%; C20H16FNO requires: C 78.7, H 5.3, N, 4.6%.

Refinement top

For (I) the systematic absences permitted P21 and P21/m as possible space groups; P21 was selected and confirmed by the successful structure analysis. For (II) and (III), the space groups were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic), 0.99 Å (CH2) or 1.00 Å (aliphatic C—H) and with Uiso(H) = 1.2Ueq(C). A straightforward (`hole-in-one') calculation of the Flack (1983) x parameter for (I) gave a value of 0.089 (14), with a Hooft y parameter (Hooft et al., 2008) of 0.186 (12). In the presence of a Br atom, the deviation from zero of the Flack x parameter was significant and it seemed rather large, possibly suggesting a modest degree of inversion twinning. Calculation of the twin fractions using the TWIN/BASF procedure in SHELXL (Sheldrick, 2008) gave, for the crystal under study, twin fractions of 0.901 (15) for the (2R,4S) enantiomer and 0.099 (15) for the (2S,4R) form. Accordingly, the (2R,4S) configuration was selected for the reference molecules in the racemic compounds (II) and (III).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with configuration (2R,4S), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the (2R,4S) enantiomer in the racemic compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of the (2R,4S) enantiomer in the racemic compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a chain of rings along (0, y, 1) formed by the two hydrogen bonds having aryl C atoms as the donors. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (I), showing the formation of a chain along (1/2, y, 1) formed by the single hydrogen bond having an aliphatic C atom as the donor. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing two of the C(4) hydrogen-bonded chains, those based on the glide planes at x = 1/4 and x = 3/4, which form part of the (001) sheet of π-stacked chains For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (III), showing the formation of a chain running parallel to [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (III), showing the formation of a chain running parallel to [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. Part of the crystal structure of (III), showing the formation of a cyclic centrosymmetric motif which links adjacent (100) sheets. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (-x + 2, -y + 1, -z + 1).
(I) (2R,4S)-7-Bromo-2-phenyl-2,3,4,5-tetrahydro-1,4- epoxynaphtho[1,2-b]azepine top
Crystal data top
C20H16BrNOF(000) = 372
Mr = 366.24Dx = 1.567 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3132 reflections
a = 7.8444 (3) Åθ = 3.2–27.5°
b = 9.8146 (4) ŵ = 2.65 mm1
c = 10.0871 (4) ÅT = 120 K
β = 92.103 (3)°Lath, colourless
V = 776.08 (5) Å30.20 × 0.04 × 0.01 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3132 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 810
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.619, Tmax = 0.974l = 1213
7511 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.P)2 + 1.3066P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3132 reflectionsΔρmax = 0.44 e Å3
209 parametersΔρmin = 0.53 e Å3
1 restraintAbsolute structure: Flack (1983), 1237 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.099 (15)
Crystal data top
C20H16BrNOV = 776.08 (5) Å3
Mr = 366.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8444 (3) ŵ = 2.65 mm1
b = 9.8146 (4) ÅT = 120 K
c = 10.0871 (4) Å0.20 × 0.04 × 0.01 mm
β = 92.103 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3132 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2810 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.974Rint = 0.055
7511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.44 e Å3
S = 1.09Δρmin = 0.53 e Å3
3132 reflectionsAbsolute structure: Flack (1983), 1237 Friedel pairs
209 parametersAbsolute structure parameter: 0.099 (15)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3120 (4)0.4045 (5)0.8557 (3)0.0199 (10)
C20.3417 (6)0.5346 (5)0.7883 (5)0.0201 (11)
H20.34590.51800.69060.024*
C30.5203 (6)0.5823 (6)0.8414 (6)0.0242 (12)
H310.60460.58020.77070.029*
H320.51550.67550.87860.029*
C40.5639 (5)0.4762 (5)0.9507 (5)0.0209 (9)
H40.62010.52101.02990.025*
C50.6708 (6)0.3582 (5)0.9037 (5)0.0213 (10)
H510.76930.39350.85570.026*
H520.71510.30540.98120.026*
C5A0.5655 (6)0.2670 (6)0.8136 (5)0.0184 (10)
C60.6385 (6)0.1533 (5)0.7509 (5)0.0214 (10)
H60.75360.12920.77210.026*
C70.5455 (6)0.0775 (5)0.6600 (5)0.0237 (10)
Br70.65110 (6)0.07516 (7)0.58212 (4)0.03017 (14)
C7A0.3737 (6)0.1107 (5)0.6227 (4)0.0206 (10)
C80.2790 (6)0.0455 (5)0.5184 (5)0.0248 (10)
H80.32990.02580.47000.030*
C90.1138 (6)0.0846 (5)0.4863 (5)0.0251 (10)
H90.05250.04160.41490.030*
C100.0358 (6)0.1881 (5)0.5591 (5)0.0248 (10)
H100.07880.21310.53740.030*
C110.1222 (6)0.2534 (5)0.6606 (5)0.0242 (10)
H110.06700.32200.70980.029*
C11A0.2961 (6)0.2181 (5)0.6925 (4)0.0183 (9)
C11B0.3954 (6)0.2940 (5)0.7873 (5)0.0186 (11)
O140.3988 (3)0.4218 (6)0.9831 (2)0.0201 (6)
C210.1990 (5)0.6365 (5)0.8145 (4)0.0185 (9)
C220.2026 (6)0.7628 (5)0.7539 (5)0.0218 (10)
H220.29360.78540.69840.026*
C230.0735 (6)0.8565 (5)0.7741 (5)0.0253 (10)
H230.07480.94240.73070.030*
C240.0574 (6)0.8248 (5)0.8576 (5)0.0244 (10)
H240.14590.88880.87160.029*
C250.0585 (6)0.7003 (5)0.9200 (5)0.0247 (10)
H250.14660.67890.97870.030*
C260.0675 (6)0.6065 (5)0.8978 (5)0.0217 (10)
H260.06440.52010.94010.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0195 (16)0.022 (3)0.0183 (16)0.0027 (17)0.0010 (13)0.0014 (19)
C20.025 (3)0.015 (3)0.020 (2)0.001 (2)0.0019 (19)0.001 (2)
C30.022 (3)0.016 (3)0.034 (3)0.0010 (19)0.003 (2)0.001 (2)
C40.014 (2)0.020 (2)0.028 (2)0.0022 (16)0.0016 (18)0.0001 (18)
C50.021 (2)0.021 (2)0.022 (2)0.0003 (18)0.0072 (18)0.001 (2)
C5A0.020 (2)0.018 (3)0.017 (2)0.0017 (19)0.0016 (18)0.0003 (19)
C60.015 (2)0.022 (3)0.026 (2)0.0017 (18)0.0016 (17)0.002 (2)
C70.027 (2)0.023 (3)0.022 (2)0.006 (2)0.0039 (19)0.002 (2)
Br70.0374 (2)0.0256 (2)0.0276 (2)0.0118 (3)0.00207 (16)0.0042 (3)
C7A0.031 (2)0.015 (2)0.016 (2)0.0028 (19)0.0005 (18)0.0024 (18)
C80.030 (3)0.024 (3)0.021 (2)0.000 (2)0.0014 (19)0.001 (2)
C90.033 (3)0.019 (3)0.023 (2)0.005 (2)0.006 (2)0.000 (2)
C100.023 (2)0.020 (3)0.031 (3)0.0011 (19)0.0038 (19)0.007 (2)
C110.027 (2)0.019 (2)0.027 (2)0.0015 (19)0.0014 (19)0.002 (2)
C11A0.020 (2)0.019 (2)0.016 (2)0.0009 (18)0.0037 (17)0.0058 (18)
C11B0.026 (3)0.010 (2)0.020 (2)0.0031 (19)0.003 (2)0.0024 (19)
O140.0199 (13)0.0250 (15)0.0153 (12)0.005 (2)0.0000 (10)0.000 (2)
C210.014 (2)0.021 (2)0.020 (2)0.0001 (17)0.0023 (16)0.0044 (19)
C220.026 (2)0.019 (2)0.020 (2)0.0017 (19)0.0008 (18)0.0005 (19)
C230.031 (3)0.020 (3)0.024 (2)0.0037 (19)0.0018 (19)0.002 (2)
C240.020 (2)0.031 (3)0.022 (2)0.008 (2)0.0046 (18)0.002 (2)
C250.020 (2)0.027 (3)0.028 (3)0.0001 (19)0.0036 (18)0.002 (2)
C260.023 (2)0.018 (2)0.024 (2)0.0005 (18)0.0023 (18)0.0018 (19)
Geometric parameters (Å, º) top
N1—O141.442 (4)C7A—C81.418 (7)
N1—C11B1.454 (6)C8—C91.378 (7)
N1—C21.469 (7)C8—H80.9500
C2—C211.532 (7)C9—C101.407 (7)
C2—C31.554 (7)C9—H90.9500
C2—H21.0000C10—C111.366 (7)
C3—C41.545 (7)C10—H100.9500
C3—H310.9900C11—C11A1.433 (6)
C3—H320.9900C11—H110.9500
C4—O141.449 (5)C11A—C11B1.421 (7)
C4—C51.516 (6)C21—C221.382 (7)
C4—H41.0000C21—C261.386 (6)
C5—C5A1.501 (7)C22—C231.389 (7)
C5—H510.9900C22—H220.9500
C5—H520.9900C23—C241.387 (7)
C5A—C11B1.377 (7)C23—H230.9500
C5A—C61.414 (7)C24—C251.375 (7)
C6—C71.370 (7)C24—H240.9500
C6—H60.9500C25—C261.375 (7)
C7—C7A1.424 (6)C25—H250.9500
C7—Br71.896 (5)C26—H260.9500
C7A—C11A1.418 (6)
O14—N1—C11B107.8 (4)C8—C7A—C7123.9 (4)
O14—N1—C2103.5 (4)C9—C8—C7A120.7 (5)
C11B—N1—C2110.3 (3)C9—C8—H8119.6
N1—C2—C21111.0 (4)C7A—C8—H8119.6
N1—C2—C3105.0 (4)C8—C9—C10120.1 (4)
C21—C2—C3113.5 (4)C8—C9—H9120.0
N1—C2—H2109.1C10—C9—H9120.0
C21—C2—H2109.1C11—C10—C9121.1 (5)
C3—C2—H2109.1C11—C10—H10119.4
C4—C3—C2102.5 (4)C9—C10—H10119.4
C4—C3—H31111.3C10—C11—C11A119.8 (5)
C2—C3—H31111.3C10—C11—H11120.1
C4—C3—H32111.3C11A—C11—H11120.1
C2—C3—H32111.3C7A—C11A—C11B119.3 (4)
H31—C3—H32109.2C7A—C11A—C11119.4 (4)
O14—C4—C5107.3 (4)C11B—C11A—C11121.3 (4)
O14—C4—C3103.5 (4)C5A—C11B—C11A122.2 (5)
C5—C4—C3113.7 (4)C5A—C11B—N1120.1 (5)
O14—C4—H4110.7C11A—C11B—N1117.7 (4)
C5—C4—H4110.7N1—O14—C4103.8 (3)
C3—C4—H4110.7C22—C21—C26119.1 (4)
C5A—C5—C4110.3 (4)C22—C21—C2118.8 (4)
C5A—C5—H51109.6C26—C21—C2122.0 (4)
C4—C5—H51109.6C21—C22—C23120.1 (4)
C5A—C5—H52109.6C21—C22—H22119.9
C4—C5—H52109.6C23—C22—H22119.9
H51—C5—H52108.1C24—C23—C22120.0 (5)
C11B—C5A—C6118.1 (5)C24—C23—H23120.0
C11B—C5A—C5120.7 (5)C22—C23—H23120.0
C6—C5A—C5121.2 (4)C25—C24—C23119.6 (4)
C7—C6—C5A120.9 (4)C25—C24—H24120.2
C7—C6—H6119.6C23—C24—H24120.2
C5A—C6—H6119.6C26—C25—C24120.3 (4)
C6—C7—C7A121.9 (4)C26—C25—H25119.9
C6—C7—Br7118.4 (3)C24—C25—H25119.9
C7A—C7—Br7119.7 (4)C25—C26—C21120.8 (5)
C11A—C7A—C8118.8 (4)C25—C26—H26119.6
C11A—C7A—C7117.3 (4)C21—C26—H26119.6
O14—N1—C2—C2190.7 (4)C10—C11—C11A—C11B172.9 (5)
C11B—N1—C2—C21154.4 (4)C6—C5A—C11B—C11A4.8 (7)
O14—N1—C2—C332.4 (4)C5—C5A—C11B—C11A173.6 (4)
C11B—N1—C2—C382.6 (5)C6—C5A—C11B—N1176.1 (4)
N1—C2—C3—C46.6 (5)C5—C5A—C11B—N15.4 (7)
C21—C2—C3—C4114.8 (5)C7A—C11A—C11B—C5A0.2 (7)
C2—C3—C4—O1421.2 (5)C11—C11A—C11B—C5A176.0 (5)
C2—C3—C4—C594.9 (5)C7A—C11A—C11B—N1179.3 (4)
O14—C4—C5—C5A42.3 (5)C11—C11A—C11B—N13.0 (7)
C3—C4—C5—C5A71.5 (5)O14—N1—C11B—C5A28.3 (6)
C4—C5—C5A—C11B1.8 (6)C2—N1—C11B—C5A83.9 (5)
C4—C5—C5A—C6176.6 (4)O14—N1—C11B—C11A152.6 (4)
C11B—C5A—C6—C74.2 (7)C2—N1—C11B—C11A95.2 (5)
C5—C5A—C6—C7174.3 (5)C11B—N1—O14—C469.3 (4)
C5A—C6—C7—C7A1.2 (7)C2—N1—O14—C447.4 (4)
C5A—C6—C7—Br7179.0 (4)C5—C4—O14—N178.1 (4)
C6—C7—C7A—C11A5.8 (7)C3—C4—O14—N142.4 (5)
Br7—C7—C7A—C11A174.4 (3)N1—C2—C21—C22177.3 (4)
C6—C7—C7A—C8172.3 (5)C3—C2—C21—C2264.7 (6)
Br7—C7—C7A—C87.5 (6)N1—C2—C21—C263.3 (6)
C11A—C7A—C8—C90.8 (7)C3—C2—C21—C26114.7 (5)
C7—C7A—C8—C9178.9 (4)C26—C21—C22—C231.6 (7)
C7A—C8—C9—C101.4 (7)C2—C21—C22—C23179.0 (4)
C8—C9—C10—C111.3 (7)C21—C22—C23—C241.5 (7)
C9—C10—C11—C11A1.1 (7)C22—C23—C24—C250.0 (7)
C8—C7A—C11A—C11B173.2 (4)C23—C24—C25—C261.3 (7)
C7—C7A—C11A—C11B5.0 (6)C24—C25—C26—C211.2 (7)
C8—C7A—C11A—C113.1 (6)C22—C21—C26—C250.3 (7)
C7—C7A—C11A—C11178.7 (4)C2—C21—C26—C25179.7 (4)
C10—C11—C11A—C7A3.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br7i1.002.903.891 (5)171
C5—H52···Cg1ii0.992.553.484 (5)157
C23—H23···Cg2iii0.952.703.596 (5)157
C24—H24···O14iv0.952.533.313 (6)140
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x, y+1, z; (iv) x, y+1/2, z+2.
(II) (2RS,4SR)-7-bromo-2-(4-chlorophenyl-2,3,4,5-tetrahydro- 1,4-epoxynaphtho[1,2-b]azepine top
Crystal data top
C20H15BrClNOF(000) = 1616
Mr = 400.69Dx = 1.671 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3658 reflections
a = 9.7758 (16) Åθ = 3.2–27.5°
b = 9.8211 (14) ŵ = 2.76 mm1
c = 33.174 (3) ÅT = 120 K
V = 3185.0 (7) Å3Block, colourless
Z = 80.32 × 0.12 × 0.04 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3658 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 127
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1112
Tmin = 0.551, Tmax = 0.896l = 4242
28541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0262P)2 + 5.3752P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C20H15BrClNOV = 3185.0 (7) Å3
Mr = 400.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7758 (16) ŵ = 2.76 mm1
b = 9.8211 (14) ÅT = 120 K
c = 33.174 (3) Å0.32 × 0.12 × 0.04 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2574 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.896Rint = 0.073
28541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
3658 reflectionsΔρmin = 0.51 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4336 (3)0.5489 (3)0.37768 (7)0.0152 (5)
C20.3734 (3)0.4859 (3)0.41377 (9)0.0161 (7)
H20.41930.39680.41920.019*
C30.2232 (3)0.4606 (3)0.40147 (9)0.0189 (7)
H310.20630.36270.39650.023*
H320.15950.49310.42260.023*
C40.2072 (3)0.5427 (3)0.36305 (9)0.0184 (7)
H40.11960.59540.36330.022*
C50.2181 (3)0.4565 (3)0.32548 (9)0.0175 (7)
H510.15180.38050.32680.021*
H520.19650.51220.30150.021*
C5A0.3599 (3)0.4015 (3)0.32217 (9)0.0153 (6)
C60.3921 (3)0.3014 (3)0.29326 (9)0.0172 (7)
H60.32340.27040.27520.021*
C70.5195 (3)0.2493 (3)0.29095 (9)0.0174 (7)
Br70.55294 (3)0.11186 (3)0.251972 (10)0.02465 (10)
C7A0.6265 (3)0.2930 (3)0.31632 (9)0.0155 (7)
C80.7600 (3)0.2415 (3)0.31442 (9)0.0197 (7)
H80.78120.17090.29590.024*
C90.8594 (3)0.2916 (3)0.33882 (10)0.0206 (7)
H90.94930.25530.33740.025*
C100.8305 (3)0.3963 (3)0.36610 (10)0.0208 (7)
H100.90140.43210.38250.025*
C110.7015 (3)0.4473 (3)0.36930 (9)0.0186 (7)
H110.68280.51760.38820.022*
C11A0.5959 (3)0.3970 (3)0.34491 (9)0.0149 (6)
C11B0.4605 (3)0.4467 (3)0.34744 (9)0.0146 (6)
O140.3237 (2)0.6333 (2)0.36334 (6)0.0174 (5)
C210.3881 (3)0.5770 (3)0.44995 (9)0.0151 (7)
C220.3230 (3)0.5412 (3)0.48554 (9)0.0200 (7)
H220.27100.45960.48660.024*
C230.3323 (3)0.6222 (3)0.51960 (10)0.0216 (7)
H230.28730.59700.54390.026*
C240.4077 (3)0.7393 (3)0.51753 (9)0.0184 (7)
Cl240.41575 (9)0.84425 (9)0.55984 (2)0.0279 (2)
C250.4763 (3)0.7764 (3)0.48327 (10)0.0206 (7)
H250.53040.85680.48270.025*
C260.4652 (3)0.6943 (3)0.44955 (9)0.0192 (7)
H260.51180.71940.42560.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0147 (13)0.0147 (13)0.0162 (13)0.0064 (11)0.0008 (10)0.0000 (10)
C20.0173 (16)0.0132 (16)0.0178 (16)0.0004 (13)0.0037 (13)0.0008 (13)
C30.0202 (18)0.0160 (17)0.0206 (17)0.0013 (14)0.0020 (13)0.0036 (13)
C40.0124 (15)0.0188 (17)0.0241 (17)0.0000 (14)0.0029 (13)0.0015 (14)
C50.0130 (16)0.0173 (17)0.0223 (17)0.0006 (13)0.0007 (13)0.0001 (13)
C5A0.0157 (15)0.0126 (16)0.0175 (15)0.0012 (13)0.0020 (12)0.0044 (13)
C60.0172 (16)0.0177 (17)0.0166 (16)0.0022 (13)0.0017 (13)0.0001 (13)
C70.0229 (17)0.0134 (15)0.0158 (16)0.0005 (14)0.0041 (13)0.0034 (13)
Br70.02227 (16)0.02535 (17)0.02632 (18)0.00087 (15)0.00264 (15)0.01117 (15)
C7A0.0187 (17)0.0145 (16)0.0133 (15)0.0009 (13)0.0038 (12)0.0040 (12)
C80.0190 (16)0.0183 (17)0.0219 (17)0.0017 (15)0.0036 (14)0.0018 (14)
C90.0166 (16)0.0225 (18)0.0228 (18)0.0041 (15)0.0003 (13)0.0015 (15)
C100.0197 (17)0.0214 (18)0.0214 (17)0.0021 (15)0.0065 (13)0.0010 (15)
C110.0193 (16)0.0163 (16)0.0201 (17)0.0026 (15)0.0001 (13)0.0007 (13)
C11A0.0142 (14)0.0152 (16)0.0154 (15)0.0017 (14)0.0032 (12)0.0056 (13)
C11B0.0165 (16)0.0117 (15)0.0157 (15)0.0001 (14)0.0029 (13)0.0019 (12)
O140.0147 (11)0.0133 (12)0.0243 (12)0.0025 (9)0.0011 (9)0.0016 (9)
C210.0141 (15)0.0123 (16)0.0188 (16)0.0028 (12)0.0003 (12)0.0007 (12)
C220.0190 (17)0.0204 (18)0.0206 (17)0.0035 (14)0.0009 (13)0.0019 (14)
C230.0201 (17)0.0257 (19)0.0190 (16)0.0009 (15)0.0010 (13)0.0001 (15)
C240.0187 (16)0.0162 (17)0.0203 (16)0.0051 (14)0.0036 (13)0.0044 (13)
Cl240.0353 (5)0.0248 (4)0.0237 (4)0.0017 (4)0.0041 (4)0.0085 (4)
C250.0206 (17)0.0150 (17)0.0263 (18)0.0004 (14)0.0015 (14)0.0018 (13)
C260.0186 (17)0.0196 (17)0.0195 (16)0.0012 (14)0.0021 (13)0.0028 (13)
Geometric parameters (Å, º) top
N1—O141.438 (3)C7A—C11A1.425 (4)
N1—C11B1.443 (4)C8—C91.357 (4)
N1—C21.471 (4)C8—H80.9500
C2—C211.504 (4)C9—C101.398 (5)
C2—C31.544 (4)C9—H90.9500
C2—H21.0000C10—C111.361 (4)
C3—C41.516 (4)C10—H100.9500
C3—H310.9900C11—C11A1.402 (4)
C3—H320.9900C11—H110.9500
C4—O141.445 (4)C11A—C11B1.414 (4)
C4—C51.511 (4)C21—C261.377 (4)
C4—H41.0000C21—C221.386 (4)
C5—C5A1.492 (4)C22—C231.385 (5)
C5—H510.9900C22—H220.9500
C5—H520.9900C23—C241.368 (5)
C5A—C11B1.366 (4)C23—H230.9500
C5A—C61.408 (4)C24—C251.369 (4)
C6—C71.349 (4)C24—Cl241.743 (3)
C6—H60.9500C25—C261.383 (4)
C7—C7A1.410 (4)C25—H250.9500
C7—Br71.897 (3)C26—H260.9500
C7A—C81.401 (4)
O14—N1—C11B107.9 (2)C7—C7A—C11A117.4 (3)
O14—N1—C2102.3 (2)C9—C8—C7A120.6 (3)
C11B—N1—C2110.3 (2)C9—C8—H8119.7
N1—C2—C21111.2 (3)C7A—C8—H8119.7
N1—C2—C3103.5 (2)C8—C9—C10120.5 (3)
C21—C2—C3113.4 (3)C8—C9—H9119.7
N1—C2—H2109.5C10—C9—H9119.7
C21—C2—H2109.5C11—C10—C9120.6 (3)
C3—C2—H2109.5C11—C10—H10119.7
C4—C3—C2103.6 (2)C9—C10—H10119.7
C4—C3—H31111.0C10—C11—C11A120.5 (3)
C2—C3—H31111.0C10—C11—H11119.8
C4—C3—H32111.0C11A—C11—H11119.8
C2—C3—H32111.0C11—C11A—C11B122.2 (3)
H31—C3—H32109.0C11—C11A—C7A118.8 (3)
O14—C4—C5107.1 (2)C11B—C11A—C7A118.9 (3)
O14—C4—C3103.9 (2)C5A—C11B—C11A121.7 (3)
C5—C4—C3112.8 (3)C5A—C11B—N1121.4 (3)
O14—C4—H4110.9C11A—C11B—N1116.9 (3)
C5—C4—H4110.9N1—O14—C4103.7 (2)
C3—C4—H4110.9C26—C21—C22118.1 (3)
C5A—C5—C4109.2 (3)C26—C21—C2122.9 (3)
C5A—C5—H51109.8C22—C21—C2119.0 (3)
C4—C5—H51109.8C23—C22—C21121.3 (3)
C5A—C5—H52109.8C23—C22—H22119.4
C4—C5—H52109.8C21—C22—H22119.4
H51—C5—H52108.3C24—C23—C22118.5 (3)
C11B—C5A—C6119.0 (3)C24—C23—H23120.7
C11B—C5A—C5120.4 (3)C22—C23—H23120.7
C6—C5A—C5120.7 (3)C23—C24—C25122.0 (3)
C7—C6—C5A120.6 (3)C23—C24—Cl24118.7 (3)
C7—C6—H6119.7C25—C24—Cl24119.3 (3)
C5A—C6—H6119.7C24—C25—C26118.5 (3)
C6—C7—C7A122.4 (3)C24—C25—H25120.7
C6—C7—Br7117.9 (2)C26—C25—H25120.7
C7A—C7—Br7119.7 (2)C21—C26—C25121.6 (3)
C8—C7A—C7123.7 (3)C21—C26—H26119.2
C8—C7A—C11A119.0 (3)C25—C26—H26119.2
O14—N1—C2—C2184.7 (3)C6—C5A—C11B—C11A0.8 (4)
C11B—N1—C2—C21160.8 (2)C5—C5A—C11B—C11A179.7 (3)
O14—N1—C2—C337.4 (3)C6—C5A—C11B—N1179.9 (3)
C11B—N1—C2—C377.1 (3)C5—C5A—C11B—N10.4 (4)
N1—C2—C3—C412.9 (3)C11—C11A—C11B—C5A176.8 (3)
C21—C2—C3—C4107.7 (3)C7A—C11A—C11B—C5A2.6 (4)
C2—C3—C4—O1416.1 (3)C11—C11A—C11B—N12.5 (4)
C2—C3—C4—C599.6 (3)C7A—C11A—C11B—N1178.1 (3)
O14—C4—C5—C5A47.8 (3)O14—N1—C11B—C5A28.6 (4)
C3—C4—C5—C5A66.0 (3)C2—N1—C11B—C5A82.4 (3)
C4—C5—C5A—C11B9.1 (4)O14—N1—C11B—C11A150.7 (2)
C4—C5—C5A—C6170.3 (3)C2—N1—C11B—C11A98.3 (3)
C11B—C5A—C6—C71.1 (5)C11B—N1—O14—C467.0 (3)
C5—C5A—C6—C7178.4 (3)C2—N1—O14—C449.3 (3)
C5A—C6—C7—C7A1.3 (5)C5—C4—O14—N179.3 (3)
C5A—C6—C7—Br7178.5 (2)C3—C4—O14—N140.4 (3)
C6—C7—C7A—C8179.5 (3)N1—C2—C21—C268.4 (4)
Br7—C7—C7A—C80.7 (4)C3—C2—C21—C26124.5 (3)
C6—C7—C7A—C11A0.5 (5)N1—C2—C21—C22172.4 (3)
Br7—C7—C7A—C11A179.7 (2)C3—C2—C21—C2256.3 (4)
C7—C7A—C8—C9177.7 (3)C26—C21—C22—C231.4 (5)
C11A—C7A—C8—C91.3 (5)C2—C21—C22—C23179.4 (3)
C7A—C8—C9—C100.5 (5)C21—C22—C23—C240.1 (5)
C8—C9—C10—C111.6 (5)C22—C23—C24—C251.6 (5)
C9—C10—C11—C11A0.9 (5)C22—C23—C24—Cl24178.1 (2)
C10—C11—C11A—C11B179.7 (3)C23—C24—C25—C261.8 (5)
C10—C11—C11A—C7A1.0 (5)Cl24—C24—C25—C26177.9 (2)
C8—C7A—C11A—C112.0 (4)C22—C21—C26—C251.1 (5)
C7—C7A—C11A—C11177.0 (3)C2—C21—C26—C25179.7 (3)
C8—C7A—C11A—C11B178.6 (3)C24—C25—C26—C210.4 (5)
C7—C7A—C11A—C11B2.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H31···O14i0.992.523.485 (4)164
Symmetry code: (i) x+1/2, y1/2, z.
(III) (2RS,4SR)-2-(4-fluorophenyl)-2,3,4,5-tetrahydro-1,4- epoxynaphtho[1,2-b]azepine top
Crystal data top
C20H16FNOF(000) = 640
Mr = 305.34Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3467 reflections
a = 11.3036 (4) Åθ = 3.2–27.5°
b = 12.7585 (5) ŵ = 0.09 mm1
c = 11.1730 (3) ÅT = 120 K
β = 109.137 (2)°Plate, pale yellow
V = 1522.29 (9) Å30.09 × 0.08 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3467 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1516
Tmin = 0.986, Tmax = 0.997l = 1414
15443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.018P)2 + 1.6124P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H16FNOV = 1522.29 (9) Å3
Mr = 305.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3036 (4) ŵ = 0.09 mm1
b = 12.7585 (5) ÅT = 120 K
c = 11.1730 (3) Å0.09 × 0.08 × 0.03 mm
β = 109.137 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2667 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.997Rint = 0.044
15443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.11Δρmax = 0.26 e Å3
3467 reflectionsΔρmin = 0.24 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.66621 (14)0.62564 (13)0.43066 (15)0.0209 (4)
C20.73297 (19)0.55233 (15)0.37140 (18)0.0221 (4)
H20.81880.58020.38370.027*
C30.6548 (2)0.55638 (17)0.22753 (19)0.0275 (5)
H310.70200.59180.17850.033*
H320.63160.48500.19300.033*
C40.53856 (19)0.61970 (17)0.22436 (19)0.0260 (4)
H40.46150.58790.16320.031*
C50.5454 (2)0.73585 (17)0.19739 (19)0.0268 (5)
H510.56710.74520.11910.032*
H520.46280.76880.18420.032*
C5A0.64302 (19)0.78813 (16)0.30709 (18)0.0236 (4)
C60.67807 (19)0.89389 (16)0.29931 (19)0.0256 (4)
H60.63620.93360.22570.031*
C70.7710 (2)0.93982 (16)0.3958 (2)0.0271 (5)
H70.79401.01040.38750.033*
C7A0.83385 (18)0.88344 (16)0.50856 (19)0.0230 (4)
C80.92798 (19)0.92934 (17)0.6122 (2)0.0271 (5)
H80.95430.99920.60550.033*
C90.98160 (19)0.87396 (18)0.7221 (2)0.0293 (5)
H91.04420.90580.79110.035*
C100.94407 (19)0.77008 (17)0.73300 (19)0.0275 (5)
H100.98060.73270.80980.033*
C110.85535 (18)0.72270 (16)0.63372 (18)0.0241 (4)
H110.83260.65200.64150.029*
C11A0.79700 (18)0.77790 (15)0.51930 (18)0.0206 (4)
C11B0.70082 (18)0.73298 (15)0.41552 (18)0.0205 (4)
O140.53635 (12)0.61056 (11)0.35326 (13)0.0249 (3)
C210.74384 (18)0.44406 (15)0.42875 (18)0.0207 (4)
C220.81765 (19)0.36951 (17)0.39509 (19)0.0263 (4)
H220.85980.38790.33720.032*
C230.8303 (2)0.26892 (17)0.44504 (19)0.0278 (5)
H230.88030.21810.42200.033*
C240.76834 (19)0.24505 (16)0.52867 (19)0.0245 (4)
F240.77986 (13)0.14603 (9)0.57801 (12)0.0346 (3)
C250.69542 (18)0.31562 (16)0.56540 (18)0.0228 (4)
H250.65470.29650.62430.027*
C260.68271 (18)0.41599 (15)0.51395 (18)0.0214 (4)
H260.63180.46590.53720.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0179 (8)0.0214 (8)0.0231 (8)0.0002 (7)0.0065 (7)0.0006 (7)
C20.0226 (10)0.0225 (10)0.0234 (10)0.0006 (8)0.0105 (8)0.0007 (8)
C30.0351 (12)0.0260 (11)0.0228 (10)0.0019 (9)0.0114 (9)0.0016 (8)
C40.0248 (10)0.0293 (11)0.0221 (10)0.0030 (9)0.0053 (8)0.0000 (9)
C50.0257 (11)0.0294 (11)0.0231 (10)0.0030 (9)0.0050 (8)0.0038 (8)
C5A0.0239 (10)0.0243 (10)0.0244 (10)0.0036 (8)0.0104 (8)0.0015 (8)
C60.0295 (11)0.0225 (10)0.0269 (10)0.0060 (9)0.0120 (9)0.0051 (8)
C70.0341 (12)0.0187 (10)0.0333 (11)0.0027 (9)0.0176 (10)0.0019 (9)
C7A0.0230 (10)0.0218 (10)0.0283 (10)0.0019 (8)0.0139 (8)0.0010 (8)
C80.0235 (10)0.0234 (11)0.0374 (12)0.0004 (8)0.0140 (9)0.0057 (9)
C90.0214 (10)0.0339 (12)0.0315 (11)0.0004 (9)0.0075 (9)0.0095 (9)
C100.0246 (10)0.0330 (12)0.0230 (10)0.0034 (9)0.0051 (8)0.0007 (9)
C110.0247 (10)0.0236 (11)0.0259 (10)0.0020 (8)0.0109 (8)0.0007 (8)
C11A0.0204 (9)0.0201 (10)0.0233 (10)0.0027 (8)0.0099 (8)0.0007 (8)
C11B0.0214 (9)0.0193 (10)0.0234 (10)0.0023 (8)0.0108 (8)0.0009 (8)
O140.0186 (7)0.0300 (8)0.0266 (7)0.0015 (6)0.0080 (6)0.0016 (6)
C210.0192 (9)0.0217 (10)0.0196 (9)0.0002 (8)0.0040 (8)0.0019 (8)
C220.0281 (11)0.0288 (11)0.0247 (10)0.0036 (9)0.0123 (9)0.0009 (9)
C230.0315 (11)0.0256 (11)0.0273 (11)0.0086 (9)0.0111 (9)0.0012 (9)
C240.0282 (11)0.0189 (10)0.0225 (10)0.0006 (8)0.0029 (8)0.0015 (8)
F240.0452 (8)0.0226 (7)0.0365 (7)0.0072 (6)0.0141 (6)0.0053 (5)
C250.0228 (10)0.0239 (10)0.0211 (10)0.0008 (8)0.0063 (8)0.0000 (8)
C260.0214 (10)0.0204 (10)0.0228 (10)0.0007 (8)0.0077 (8)0.0028 (8)
Geometric parameters (Å, º) top
N1—C11B1.449 (2)C7A—C11A1.426 (3)
N1—O141.452 (2)C8—C91.374 (3)
N1—C21.487 (2)C8—H80.9500
C2—C211.511 (3)C9—C101.409 (3)
C2—C31.561 (3)C9—H90.9500
C2—H21.0000C10—C111.368 (3)
C3—C41.533 (3)C10—H100.9500
C3—H310.9900C11—C11A1.419 (3)
C3—H320.9900C11—H110.9500
C4—O141.453 (2)C11A—C11B1.424 (3)
C4—C51.519 (3)C21—C261.394 (3)
C4—H41.0000C21—C221.396 (3)
C5—C5A1.509 (3)C22—C231.388 (3)
C5—H510.9900C22—H220.9500
C5—H520.9900C23—C241.373 (3)
C5A—C11B1.368 (3)C23—H230.9500
C5A—C61.417 (3)C24—F241.367 (2)
C6—C71.366 (3)C24—C251.371 (3)
C6—H60.9500C25—C261.392 (3)
C7—C7A1.422 (3)C25—H250.9500
C7—H70.9500C26—H260.9500
C7A—C81.417 (3)
C11B—N1—O14108.34 (14)C7—C7A—C11A118.51 (19)
C11B—N1—C2110.28 (15)C9—C8—C7A120.7 (2)
O14—N1—C2102.30 (14)C9—C8—H8119.6
N1—C2—C21111.65 (15)C7A—C8—H8119.6
N1—C2—C3103.85 (15)C8—C9—C10120.3 (2)
C21—C2—C3114.02 (16)C8—C9—H9119.9
N1—C2—H2109.0C10—C9—H9119.9
C21—C2—H2109.0C11—C10—C9120.5 (2)
C3—C2—H2109.0C11—C10—H10119.8
C4—C3—C2103.45 (16)C9—C10—H10119.8
C4—C3—H31111.1C10—C11—C11A120.79 (19)
C2—C3—H31111.1C10—C11—H11119.6
C4—C3—H32111.1C11A—C11—H11119.6
C2—C3—H32111.1C11—C11A—C11B122.63 (18)
H31—C3—H32109.0C11—C11A—C7A118.83 (18)
O14—C4—C5107.05 (16)C11B—C11A—C7A118.52 (18)
O14—C4—C3103.18 (15)C5A—C11B—C11A121.98 (18)
C5—C4—C3114.81 (17)C5A—C11B—N1121.38 (18)
O14—C4—H4110.5C11A—C11B—N1116.64 (17)
C5—C4—H4110.5N1—O14—C4103.72 (13)
C3—C4—H4110.5C26—C21—C22118.87 (18)
C5A—C5—C4109.95 (17)C26—C21—C2122.34 (17)
C5A—C5—H51109.7C22—C21—C2118.79 (17)
C4—C5—H51109.7C23—C22—C21120.90 (19)
C5A—C5—H52109.7C23—C22—H22119.6
C4—C5—H52109.7C21—C22—H22119.6
H51—C5—H52108.2C24—C23—C22118.08 (19)
C11B—C5A—C6118.84 (19)C24—C23—H23121.0
C11B—C5A—C5120.11 (18)C22—C23—H23121.0
C6—C5A—C5121.05 (18)F24—C24—C25118.24 (18)
C7—C6—C5A121.20 (19)F24—C24—C23118.49 (18)
C7—C6—H6119.4C25—C24—C23123.27 (19)
C5A—C6—H6119.4C24—C25—C26118.12 (18)
C6—C7—C7A120.91 (19)C24—C25—H25120.9
C6—C7—H7119.5C26—C25—H25120.9
C7A—C7—H7119.5C25—C26—C21120.75 (18)
C8—C7A—C7122.54 (19)C25—C26—H26119.6
C8—C7A—C11A118.90 (19)C21—C26—H26119.6
C11B—N1—C2—C21156.26 (16)C5—C5A—C11B—C11A177.41 (18)
O14—N1—C2—C2188.66 (17)C6—C5A—C11B—N1178.02 (17)
C11B—N1—C2—C380.44 (18)C5—C5A—C11B—N13.0 (3)
O14—N1—C2—C334.64 (17)C11—C11A—C11B—C5A178.18 (18)
N1—C2—C3—C48.7 (2)C7A—C11A—C11B—C5A0.3 (3)
C21—C2—C3—C4112.98 (18)C11—C11A—C11B—N11.4 (3)
C2—C3—C4—O1420.2 (2)C7A—C11A—C11B—N1179.89 (16)
C2—C3—C4—C595.89 (19)O14—N1—C11B—C5A27.4 (2)
O14—C4—C5—C5A46.0 (2)C2—N1—C11B—C5A83.8 (2)
C3—C4—C5—C5A67.8 (2)O14—N1—C11B—C11A152.15 (15)
C4—C5—C5A—C11B6.4 (3)C2—N1—C11B—C11A96.64 (19)
C4—C5—C5A—C6172.52 (18)C11B—N1—O14—C467.08 (17)
C11B—C5A—C6—C72.4 (3)C2—N1—O14—C449.41 (17)
C5—C5A—C6—C7176.54 (18)C5—C4—O14—N178.33 (18)
C5A—C6—C7—C7A1.3 (3)C3—C4—O14—N143.18 (18)
C6—C7—C7A—C8178.03 (19)N1—C2—C21—C268.1 (3)
C6—C7—C7A—C11A0.6 (3)C3—C2—C21—C26109.2 (2)
C7—C7A—C8—C9176.39 (19)N1—C2—C21—C22171.98 (17)
C11A—C7A—C8—C91.1 (3)C3—C2—C21—C2270.7 (2)
C7A—C8—C9—C100.4 (3)C26—C21—C22—C230.1 (3)
C8—C9—C10—C111.0 (3)C2—C21—C22—C23179.84 (19)
C9—C10—C11—C11A1.7 (3)C21—C22—C23—C240.2 (3)
C10—C11—C11A—C11B177.49 (18)C22—C23—C24—F24179.76 (18)
C10—C11—C11A—C7A1.0 (3)C22—C23—C24—C250.3 (3)
C8—C7A—C11A—C110.4 (3)F24—C24—C25—C26179.29 (17)
C7—C7A—C11A—C11177.20 (18)C23—C24—C25—C260.8 (3)
C8—C7A—C11A—C11B178.95 (17)C24—C25—C26—C210.8 (3)
C7—C7A—C11A—C11B1.4 (3)C22—C21—C26—C250.4 (3)
C6—C5A—C11B—C11A1.5 (3)C2—C21—C26—C25179.67 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H31···Cg2i0.992.633.575 (2)160
C5—H52···Cg1ii0.992.723.605 (2)149
C9—H9···Cg1iii0.952.923.684 (2)139
C23—H23···Cg2iv0.952.853.683 (3)147
C25—H25···O14v0.952.553.184 (3)125
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H16BrNOC20H15BrClNOC20H16FNO
Mr366.24400.69305.34
Crystal system, space groupMonoclinic, P21Orthorhombic, PbcaMonoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)7.8444 (3), 9.8146 (4), 10.0871 (4)9.7758 (16), 9.8211 (14), 33.174 (3)11.3036 (4), 12.7585 (5), 11.1730 (3)
α, β, γ (°)90, 92.103 (3), 9090, 90, 9090, 109.137 (2), 90
V3)776.08 (5)3185.0 (7)1522.29 (9)
Z284
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.652.760.09
Crystal size (mm)0.20 × 0.04 × 0.010.32 × 0.12 × 0.040.09 × 0.08 × 0.03
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.619, 0.9740.551, 0.8960.986, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
7511, 3132, 2810 28541, 3658, 2574 15443, 3467, 2667
Rint0.0550.0730.044
(sin θ/λ)max1)0.6510.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.102, 1.09 0.042, 0.088, 1.06 0.061, 0.123, 1.11
No. of reflections313236583467
No. of parameters209217208
No. of restraints100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.530.39, 0.510.26, 0.24
Absolute structureFlack (1983), 1237 Friedel pairs??
Absolute structure parameter0.099 (15)??

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Ring-puckering parameters (Å, °) for compounds (I)–(III) top
Parameter(I)(II)(III)
(a) Five-membered rings
Q20.430 (5)0.442 (3)0.449 (2)
ϕ27.9 (7)16.2 (4)10.7 (3)
(b) Six-membered rings
Q0.628 (5)0.617 (3)0.6223 (19)
θ124.4 (5)128.3 (3)126.51 (18)
ϕ170.1 (5)165.1 (4)166.1 (2)
(c) Seven-membered rings
Q1.077 (5)1.101 (3)1.085 (2)
ϕ218.7 (3)15.80 (17)17.09 (12)
ϕ3302.2 (8))298.8 (6)302.6 (4)
Puckering parameters for five-membered rings are defined for the atom sequence O14—N1—C2—C3—C4, puckering parameters for six-membered rings are defined for the atom sequence O14—N1—C11B—C5A—C5—C4 and puckering parameters for seven-membered rings are defined for the atom sequence N1—C2—C3—C4—C5—C5A—C11B.
Parameters (Å, °) for hydrogen bonds and short intermolecular contacts in compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C2—H2···Br7i1.002.903.891 (5)171
C5—H52···Cg1ii0.992.553.484 (5)157
C23—H23···Cg2iii0.952.703.596 (5)157
C24—H24···O14iv0.952.533.313 (6)140
(II)C3-H31···O14v0.992.523.485 (4)164
(III)C3—H31···Cg2vi0.992.633.575 (2)160
C5—H52···Cg1vii0.992.723.605 (2)149
C9—H9···Cg1viii0.952.923.684 (2)139
C23—H23···Cg2ix0.952.853.683 (3)147
C25—H25···O14x0.952.553.184 (3)125
Notes: Cg1 represents the centroid of the C21–C26 ring and Cg2 represents the centroid of the C7A/C8–C11/C11A ring. Symmetry codes: (i) 1-x, 1/2+y, 1-z; (ii) 1-x, -1/2+y, 2-z; (iii) MISSING COMPONENT, 1+y, z; (iv) -x, 1/2+y, 2-z; (v) 1/2-x, -1/2+y, z; (vi) x, 3/2-y, -1/2+z; (vii) 1-x, 1/2+y, 1/2-z; (viii) 2-x, 1/2+y, 3/2-z; (ix) 2-x, 1-y, 1-z; (x) 1-x, 1-y, 1-z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds