Download citation
Download citation
link to html
The title solvates, (I) and (II), both C18H16N6O3·C2H6OS, are isomeric. The conformations adopted by the 6-substituent are significantly different, with the 6-amino­phenyl unit remote from the nitro­phenyl ring in methoxy­pyrimidine (I) but adjacent to it in pyrimidinone (II). Pairs of pyrimidine mol­ecules in (I) are linked by N-H...N hydrogen bonds to form cyclic centrosymmetric dimers from which the dimethyl sulfoxide mol­ecules are pendent, while in (II) a combination of three independent N-H...O hydrogen bonds links the components into a chain containing both R22(8) and R42(8) rings, in which the dimethyl sulfoxide component acts as a double acceptor of hydrogen bonds. The significance of this study lies in its observation of different conformations for the pyrimidine components in (I) and (II), and different hydrogen-bonded structures, apparently dominated by the different roles adopted by the dimethyl sulfoxide components.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109004181/sk3294sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004181/sk3294Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004181/sk3294IIsup3.hkl
Contains datablock II

CCDC references: 728219; 728220

Comment top

Pyrimidodiazepines belong to the so-called bicyclic privileged structures, which may be useful in the field of medicinal chemistry. (Horton et al., 2003). We have already reported the preparations (Cobo et al., 2008) and structures (Rodríguez et al., 2008) of some 6-aryl-2-amino-4-methoxy-11H-pyrimido[4,5-b][1,4]benzodiazepines using as final key step a Bischler–Napieralski cyclocondensation involving reaction of 2-amino-6-(methoxy)-5-amino-4-phenylaminopyrimidine with acid derivatives. We have now modified this procedure, replacing the aromatic acid used previously (Cobo et al., 2008) with an aromatic aldehyde, in the expectation of producing the corresponding dihydropyrimidobenzo[4,5-b][1,4]diazepine analogue. By the use of 4-nitrobenzaldehyde in the absence of phosphoryl choride, so preventing the cyclization step, we have isolated the intermediate Schiff bases (I) and (II), whose molecular and supramolecular structures we report here, both of them as stoichiometric monosolvates with dimethyl sulfoxide. The Schiff base components of the title solvates, 2-amino-6-anilino-4-methoxy-5-[(E)-4-nitrobenzylideneamino]pyrimidine dimethyl sulfoxide solvate, (I), and 2-amino-6-[methyl(phenyl)amino]-5-[(E)-4-nitrobenzylideneamino]pyrimidin-4(3H)-one dimethyl sulfoxide solvate, (II), are isomeric, and they were prepared by the acid-promoted condensation of 4-nitrobenzaldehyde with the isomeric heterocycles (A) for the formation of (I), and (B) for the formation of (II) (see scheme).

The molecular conformations can be defined in terms of a rather small number of torsion angles (Table 1): these show that the Schiff base backbone, running from the amino atom N2 to the nitro atom N51, has the (E) configuration, and that is does not deviate markedly from planarity: similarly the nitro group in each compound deviates only a little from the plane of the adjacent aryl ring, as does the methoxy atom C41 in compound (I). On the other hand the substituent at N6 shows some differences between (I) and (II), particularly in the location and orientation of the C61–C66 aryl ring. The location of this ring in (II) may be influenced both by the intramolecular C—H···π(arene) interaction in the compound and, perhaps more significantly, by the necessity to locate the neighbouring methyl group containing atom C67 away from the C51–C56 ring, in particular away from atom H56. The location of the C61–C66 ring in (I) may be a consequence of the intramolecular N—H···N interaction.

The Schiff base frameworks of compounds (I) and (II) can be regarded as chain-extended homologues of 4-nitroaniline but, despite the near planarity of these frameworks in both compounds, the bond distances provide no evidence for any significant polarization of the electronic structure, with its concomitant development of quinonoid character in the nitro-aryl ring, The distances in both (I) and (II) show no significant deviations from the expected values for unperturbed systems (Allen et al., 1987). Although the development of such quinonoid character is particularly marked in 4-nitroaniline itself (Qian et al., 2006), it is scarcely apparent in the homologous 4-amino-4'-nitrobiphenyl, although more developed in the similarly substituted biphenyl analogues where the two rings are separated by acetylene spacer units (Graham et al., 1989).

In each compound, the two independent components are linked within the selected asymmetric units (Figs. 1 and 2) by a fairly short, and nearly linear, N—H···O hydrogen bond (Table 2). Despite this, the further linking of these bimolecular aggregates differs significantly between the two compounds. In (I), paired N—H···N hydrogen bonds, having one of the pyrimidine N atoms as the acceptor, form a centrosymmetric R22(8) (Bernstein et al., 1995) motif, but there are no further direction-specific intermolecular interactions. The hydrogen-bonded structure thus consists of a four-component aggregate (Fig. 1), whose overall graph-set descriptor is D33(9)[R22(8)]. By contrast, the structure of (II) contains no N—H···N hydrogen bonds and the solvent atom O1 acts as a double acceptor in N—H···O hydrogen bonds (Table 2). The reference atom O1 at (x, y, z) accepts hydrogen bonds from atoms N2 at (x, y, z), via H21, and at (1 - x, 2 - y, 1 - z), via H22. The combined effect of the three independent N—H···O hydrogen bonds is the formation of a C33(12)[R22(8)][R42(8)] chain of rings running parallel to the [010] direction, in which the R22(8) rings formed by paired amide units are centred at (1/2, n + 1/2, 1/2), and the R42(8) rings are centred at (1/2, n, 1/2), where in both cases n represents an integer (Fig. 3). There are no direction-specific interactions between the four-component aggregates in (I), or between the chains in (II). The only C—H···π interaction observed is the intramolecular contact in (II) (Table 2).

The principal differences between the hydrogen-bonded structures of (I) and (II) arise from the nature of the hydrogen-bonds deployed and from the role of the dimethyl sulfoxide components. The formation of an N—H..N hydrogen bond with the pyrimidine ring atom N3, as found in (I), is not feasible in (II) because N3 now carries an H atom; the alternative ring site N1 is very effectively shielded in (II), by the adjacent amine and methyl substituents, while the Schiff base atom N5 is shielded by the C61–C66 aryl ring, so that formation of N—H···N hydrogen bonds is wholly impeded. On the other hand, in (II) not only are there three N—H bonds readily available as donors, but also atom O4 is available as a hydrogen-bond acceptor. Finally, the dimethyl sulfoxide component acts only as a single acceptor of hydrogen bonds in (I), and thus it plays only a marginal role in the supramolecular aggregation, possibly by simply filling space which would otherwise be empty. In contrast, this component acts as a double acceptor in (II), where it plays a key role in the chain formation, by acting as the sole link between R22(8) dimer units built from paired N—H···OC hydrogen bonds.

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Cobo et al. (2008); Graham et al. (1989); Horton et al. (2003); Qian et al. (2006); Rodríguez et al. (2008).

Experimental top

For the synthesis of (I), a mixture of 2,5-amino-4-methoxy-6-(phenylamino)pyrimidine (0.856 mmol) and 4-nitrobenzaldehyde (0.860 mmol) was added to a mixture of methanol (10 ml) and acetic acid (0.5 ml), and the resulting solution was stirred overnight (ca 12 h) at ambient temperature. The resulting orange product 2-amino-6-anilino-4-methoxy-5-[(E)-4-nitrobenzylideneamino]pyrimidine, was collected by filtration, washed several times with water and then dried (yield 99%, m.p. 487–489 K). For the synthesis of (II), a mixture of 2,5-diamino-6-[methyl(phenyl)amino]-pyrimidin-4(3H)-one (0.822 mmol) and 4-nitrobenzaldehyde (0.827 mmol) was added to a mixture of methanol (10 ml) and acetic acid (0.5 ml), and the resulting solution was stirred overnight (ca 12 h) at ambient temperature. The resulting dark-red product,2-amino-6-[methyl(phenyl)amino]-5-[(E)-4-nitrobenzylideneamino]pyrimidin-4(3H)-one, was collected by filtration, washed several times with water and then dried (yield 83%, m.p. 510–512 K). Recrystallization of both compounds from dimethyl sulfoxide gave crystals of the monosolvates suitable for single-crystal X-ray diffraction.

Refinement top

Crystals of (I) and (II) are triclinic; for each, the space group P1 was chosen, and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (aromatic and methylidene) or 0.98 Å (methyl) and N—H distances of 0.88 Å, with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and k = 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme and the formation of a centrosymmetric four-component aggregate containing pendent dimethyl sulfoxide units. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with A or B are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain along [010] containing R22(8) and R42(8) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) 2-amino-6-anilino-4-methoxy-5-[(E)-4-nitrobenzylideneamino]pyrimidine dimethyl sulfoxide solvate top
Crystal data top
C18H16N6O3·C2H6OSZ = 2
Mr = 442.50F(000) = 464
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0386 (8) ÅCell parameters from 4614 reflections
b = 10.6862 (14) Åθ = 2.7–27.5°
c = 12.8856 (13) ŵ = 0.20 mm1
α = 71.007 (11)°T = 120 K
β = 74.463 (9)°Plate, orange
γ = 88.672 (12)°0.45 × 0.32 × 0.08 mm
V = 1005.9 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4614 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.944, Tmax = 0.984l = 1616
29080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.6801P]
where P = (Fo2 + 2Fc2)/3
4614 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C18H16N6O3·C2H6OSγ = 88.672 (12)°
Mr = 442.50V = 1005.9 (2) Å3
Triclinic, P1Z = 2
a = 8.0386 (8) ÅMo Kα radiation
b = 10.6862 (14) ŵ = 0.20 mm1
c = 12.8856 (13) ÅT = 120 K
α = 71.007 (11)°0.45 × 0.32 × 0.08 mm
β = 74.463 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4614 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2569 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.984Rint = 0.089
29080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4614 reflectionsΔρmin = 0.47 e Å3
283 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7112 (3)0.2112 (2)0.61976 (19)0.0267 (5)
C20.6449 (3)0.3173 (3)0.5598 (2)0.0249 (6)
N30.5928 (3)0.3306 (2)0.46596 (19)0.0257 (5)
C40.6184 (3)0.2297 (3)0.4279 (2)0.0256 (6)
C50.6977 (3)0.1163 (3)0.4759 (2)0.0252 (6)
C60.7369 (3)0.1128 (3)0.5773 (2)0.0248 (6)
N20.6292 (3)0.4192 (2)0.59872 (19)0.0293 (6)
H210.64440.41100.66570.035*
H220.57340.48870.57160.035*
O40.5623 (2)0.23074 (18)0.33871 (16)0.0291 (5)
C410.4634 (4)0.3396 (3)0.2958 (2)0.0333 (7)
H41A0.36630.34610.35840.050*
H41B0.41890.32480.23670.050*
H41C0.53750.42230.26310.050*
N50.7357 (3)0.0055 (2)0.44428 (19)0.0268 (5)
C570.7052 (3)0.0193 (3)0.3605 (2)0.0267 (6)
H570.64770.04160.31210.032*
C510.7595 (3)0.1421 (3)0.3397 (2)0.0270 (6)
C520.7093 (4)0.1783 (3)0.2582 (2)0.0318 (7)
H520.64030.12230.21550.038*
C530.7580 (4)0.2940 (3)0.2383 (3)0.0357 (7)
H530.72190.31980.18340.043*
C540.8603 (4)0.3716 (3)0.3000 (3)0.0340 (7)
C550.9123 (4)0.3395 (3)0.3816 (3)0.0327 (7)
H550.98200.39580.42350.039*
C560.8615 (3)0.2246 (3)0.4011 (2)0.0291 (6)
H560.89630.20050.45740.035*
N510.9171 (3)0.4936 (3)0.2770 (3)0.0438 (7)
O510.8807 (3)0.5157 (2)0.1980 (2)0.0562 (7)
O520.9990 (3)0.5657 (3)0.3366 (3)0.0578 (7)
N60.8016 (3)0.0000 (2)0.63230 (19)0.0298 (6)
H60.81580.05750.59540.036*
C610.8406 (3)0.0433 (3)0.7369 (2)0.0256 (6)
C620.9050 (3)0.1676 (3)0.7648 (2)0.0295 (7)
H620.91910.21710.71400.035*
C630.9486 (4)0.2195 (3)0.8661 (3)0.0327 (7)
H630.99360.30450.88460.039*
C640.9275 (4)0.1492 (3)0.9404 (3)0.0337 (7)
H640.95740.18501.01030.040*
C650.8625 (4)0.0264 (3)0.9122 (2)0.0319 (7)
H650.84800.02250.96350.038*
C660.8179 (4)0.0276 (3)0.8115 (2)0.0287 (6)
H660.77210.11240.79370.034*
S10.70572 (10)0.31598 (8)0.92073 (6)0.0351 (2)
O10.6022 (4)0.3805 (3)0.8414 (2)0.0620 (7)
C110.7263 (5)0.4279 (4)0.9929 (4)0.0590 (11)
H11A0.79710.50770.93860.089*
H11B0.78190.38551.05340.089*
H11C0.61130.45251.02660.089*
C120.5621 (5)0.1958 (4)1.0365 (3)0.0555 (10)
H12A0.45490.23601.06230.083*
H12B0.61580.16221.09930.083*
H12C0.53570.12241.01230.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (12)0.0282 (13)0.0266 (12)0.0049 (10)0.0101 (10)0.0091 (11)
C20.0203 (14)0.0302 (16)0.0227 (14)0.0024 (11)0.0056 (11)0.0069 (12)
N30.0257 (12)0.0264 (13)0.0248 (12)0.0014 (9)0.0086 (10)0.0068 (10)
C40.0232 (14)0.0328 (16)0.0203 (14)0.0018 (12)0.0061 (11)0.0078 (12)
C50.0241 (14)0.0263 (15)0.0247 (15)0.0027 (11)0.0066 (12)0.0080 (12)
C60.0207 (14)0.0278 (15)0.0241 (14)0.0006 (11)0.0057 (11)0.0065 (12)
N20.0373 (14)0.0299 (13)0.0245 (12)0.0099 (10)0.0130 (11)0.0109 (11)
O40.0347 (11)0.0295 (11)0.0260 (10)0.0063 (8)0.0138 (9)0.0089 (9)
C410.0384 (17)0.0365 (17)0.0282 (16)0.0118 (13)0.0159 (14)0.0101 (14)
N50.0241 (12)0.0301 (13)0.0250 (13)0.0004 (10)0.0049 (10)0.0091 (11)
C570.0249 (15)0.0292 (15)0.0224 (14)0.0009 (11)0.0059 (12)0.0045 (12)
C510.0238 (14)0.0327 (16)0.0223 (14)0.0042 (12)0.0020 (12)0.0093 (12)
C520.0331 (16)0.0372 (17)0.0233 (15)0.0040 (13)0.0073 (13)0.0075 (13)
C530.0377 (17)0.0397 (18)0.0300 (17)0.0082 (14)0.0026 (14)0.0166 (15)
C540.0298 (16)0.0336 (17)0.0379 (17)0.0029 (13)0.0021 (14)0.0200 (15)
C550.0295 (16)0.0314 (16)0.0356 (17)0.0007 (12)0.0048 (13)0.0121 (14)
C560.0268 (15)0.0347 (17)0.0283 (15)0.0028 (12)0.0078 (12)0.0135 (13)
N510.0284 (15)0.0453 (17)0.0581 (19)0.0069 (13)0.0056 (14)0.0310 (16)
O510.0599 (16)0.0610 (17)0.0585 (16)0.0068 (12)0.0035 (13)0.0434 (14)
O520.0429 (14)0.0506 (16)0.096 (2)0.0155 (12)0.0210 (15)0.0455 (16)
N60.0385 (14)0.0285 (13)0.0273 (13)0.0080 (11)0.0146 (11)0.0115 (11)
C610.0234 (14)0.0283 (15)0.0241 (14)0.0013 (11)0.0081 (12)0.0061 (12)
C620.0299 (15)0.0285 (16)0.0309 (16)0.0043 (12)0.0095 (13)0.0102 (13)
C630.0355 (17)0.0278 (16)0.0345 (17)0.0052 (12)0.0157 (14)0.0056 (13)
C640.0375 (17)0.0346 (17)0.0286 (16)0.0017 (13)0.0154 (14)0.0049 (14)
C650.0361 (17)0.0317 (16)0.0284 (16)0.0014 (13)0.0121 (13)0.0081 (13)
C660.0314 (16)0.0271 (15)0.0279 (15)0.0023 (12)0.0098 (13)0.0084 (13)
S10.0371 (4)0.0369 (5)0.0301 (4)0.0043 (3)0.0081 (3)0.0105 (3)
O10.096 (2)0.0627 (17)0.0363 (14)0.0343 (15)0.0358 (14)0.0156 (13)
C110.047 (2)0.071 (3)0.074 (3)0.0007 (18)0.015 (2)0.046 (2)
C120.055 (2)0.044 (2)0.050 (2)0.0007 (17)0.0005 (18)0.0033 (18)
Geometric parameters (Å, º) top
N1—C61.324 (3)C55—C561.364 (4)
N1—C21.337 (3)C55—H550.9500
C2—N21.330 (4)C56—H560.9500
C2—N31.347 (3)N51—O521.216 (4)
N3—C41.313 (3)N51—O511.225 (4)
C4—O41.340 (3)N6—C611.394 (3)
C4—C51.395 (4)N6—H60.8800
C5—N51.375 (3)C61—C661.380 (4)
C5—C61.413 (4)C61—C621.386 (4)
C6—N61.356 (3)C62—C631.378 (4)
N2—H210.8800C62—H620.9500
N2—H220.8800C63—C641.373 (4)
O4—C411.437 (3)C63—H630.9500
C41—H41A0.9800C64—C651.374 (4)
C41—H41B0.9800C64—H640.9500
C41—H41C0.9800C65—C661.378 (4)
N5—C571.276 (3)C65—H650.9500
C57—C511.457 (4)C66—H660.9500
C57—H570.9500S1—O11.477 (2)
C51—C521.383 (4)S1—C121.763 (3)
C51—C561.392 (4)S1—C111.771 (3)
C52—C531.370 (4)C11—H11A0.9800
C52—H520.9500C11—H11B0.9800
C53—C541.372 (4)C11—H11C0.9800
C53—H530.9500C12—H12A0.9800
C54—C551.370 (4)C12—H12B0.9800
C54—N511.465 (4)C12—H12C0.9800
C6—N1—C2115.6 (2)C55—C56—C51120.9 (3)
N2—C2—N1115.4 (2)C55—C56—H56119.6
N2—C2—N3117.6 (2)C51—C56—H56119.6
N1—C2—N3127.0 (3)O52—N51—O51124.0 (3)
C4—N3—C2115.2 (2)O52—N51—C54118.2 (3)
N3—C4—O4119.5 (2)O51—N51—C54117.8 (3)
N3—C4—C5124.6 (2)C6—N6—C61132.3 (2)
O4—C4—C5115.8 (2)C6—N6—H6112.3
N5—C5—C4130.9 (3)C61—N6—H6115.3
N5—C5—C6115.2 (2)C66—C61—C62119.9 (3)
C4—C5—C6113.9 (2)C66—C61—N6124.8 (3)
N1—C6—N6120.3 (2)C62—C61—N6115.3 (2)
N1—C6—C5123.5 (2)C63—C62—C61120.0 (3)
N6—C6—C5116.2 (2)C63—C62—H62120.0
C2—N2—H21121.1C61—C62—H62120.0
C2—N2—H22122.3C64—C63—C62120.4 (3)
H21—N2—H22114.0C64—C63—H63119.8
C4—O4—C41116.8 (2)C62—C63—H63119.8
O4—C41—H41A109.5C63—C64—C65119.1 (3)
O4—C41—H41B109.5C63—C64—H64120.5
H41A—C41—H41B109.5C65—C64—H64120.5
O4—C41—H41C109.5C64—C65—C66121.6 (3)
H41A—C41—H41C109.5C64—C65—H65119.2
H41B—C41—H41C109.5C66—C65—H65119.2
C57—N5—C5127.8 (3)C65—C66—C61119.0 (3)
N5—C57—C51119.4 (3)C65—C66—H66120.5
N5—C57—H57120.3C61—C66—H66120.5
C51—C57—H57120.3O1—S1—C12105.52 (18)
C52—C51—C56119.0 (3)O1—S1—C11106.08 (17)
C52—C51—C57120.1 (3)C12—S1—C1197.49 (19)
C56—C51—C57120.9 (2)S1—C11—H11A109.5
C53—C52—C51120.8 (3)S1—C11—H11B109.5
C53—C52—H52119.6H11A—C11—H11B109.5
C51—C52—H52119.6S1—C11—H11C109.5
C52—C53—C54118.2 (3)H11A—C11—H11C109.5
C52—C53—H53120.9H11B—C11—H11C109.5
C54—C53—H53120.9S1—C12—H12A109.5
C55—C54—C53122.8 (3)S1—C12—H12B109.5
C55—C54—N51118.6 (3)H12A—C12—H12B109.5
C53—C54—N51118.6 (3)S1—C12—H12C109.5
C56—C55—C54118.3 (3)H12A—C12—H12C109.5
C56—C55—H55120.9H12B—C12—H12C109.5
C54—C55—H55120.9
C6—N1—C2—N2176.0 (2)C51—C52—C53—C541.2 (4)
C6—N1—C2—N34.3 (4)C52—C53—C54—C551.4 (4)
N2—C2—N3—C4176.9 (2)C52—C53—C54—N51178.3 (3)
N1—C2—N3—C43.4 (4)C53—C54—C55—C560.8 (4)
C2—N3—C4—O4176.4 (2)N51—C54—C55—C56178.8 (3)
C2—N3—C4—C51.8 (4)C54—C55—C56—C510.0 (4)
N3—C4—C5—N5178.6 (3)C52—C51—C56—C550.2 (4)
O4—C4—C5—N53.2 (4)C57—C51—C56—C55180.0 (3)
N3—C4—C5—C65.0 (4)C55—C54—N51—O524.6 (4)
O4—C4—C5—C6173.2 (2)C53—C54—N51—O52175.7 (3)
C2—N1—C6—N6179.2 (2)C55—C54—N51—O51174.5 (3)
C2—N1—C6—C50.3 (4)C53—C54—N51—O515.1 (4)
N5—C5—C6—N1179.1 (2)N1—C6—N6—C615.2 (4)
C4—C5—C6—N13.9 (4)C5—C6—N6—C61173.7 (3)
N5—C5—C6—N62.0 (4)C6—N6—C61—C660.2 (5)
C4—C5—C6—N6175.0 (2)C6—N6—C61—C62179.6 (3)
N3—C4—O4—C415.0 (4)C66—C61—C62—C630.9 (4)
C5—C4—O4—C41173.3 (2)N6—C61—C62—C63179.6 (2)
C4—C5—N5—C570.2 (5)C61—C62—C63—C640.5 (4)
C6—C5—N5—C57176.2 (2)C62—C63—C64—C650.1 (4)
C5—N5—C57—C51178.7 (2)C63—C64—C65—C660.1 (4)
N5—C57—C51—C52172.1 (2)C64—C65—C66—C610.6 (4)
N5—C57—C51—C567.7 (4)C62—C61—C66—C651.0 (4)
C56—C51—C52—C530.4 (4)N6—C61—C66—C65179.7 (2)
C57—C51—C52—C53179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.882.112.966 (3)163
N2—H22···N3i0.882.323.186 (3)170
N6—H6···N50.882.112.598 (3)114
Symmetry code: (i) x+1, y+1, z+1.
(II) 2-amino-6-[methyl(phenyl)amino]-5-[(E)-4-nitrobenzylideneamino]pyrimidin- 4(3H)-one dimethyl sulfoxide solvate top
Crystal data top
C18H16N6O3·C2H6OSZ = 2
Mr = 442.50F(000) = 464
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2601 (8) ÅCell parameters from 4556 reflections
b = 10.4555 (6) Åθ = 3.0–27.5°
c = 11.4537 (14) ŵ = 0.21 mm1
α = 113.230 (7)°T = 120 K
β = 112.295 (8)°Plate, red
γ = 96.709 (8)°0.35 × 0.26 × 0.08 mm
V = 992.0 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4556 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.941, Tmax = 0.984l = 1414
29046 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.0668P]
where P = (Fo2 + 2Fc2)/3
4556 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C18H16N6O3·C2H6OSγ = 96.709 (8)°
Mr = 442.50V = 992.0 (2) Å3
Triclinic, P1Z = 2
a = 10.2601 (8) ÅMo Kα radiation
b = 10.4555 (6) ŵ = 0.21 mm1
c = 11.4537 (14) ÅT = 120 K
α = 113.230 (7)°0.35 × 0.26 × 0.08 mm
β = 112.295 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2896 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.984Rint = 0.074
29046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
4556 reflectionsΔρmin = 0.66 e Å3
283 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4034 (2)0.6213 (2)0.1845 (2)0.0202 (5)
C20.4609 (3)0.6622 (3)0.3230 (3)0.0199 (6)
N30.4525 (3)0.5672 (2)0.3729 (2)0.0224 (5)
H30.50300.60000.46600.027*
C40.3799 (3)0.4195 (3)0.2843 (3)0.0203 (6)
C50.3097 (3)0.3722 (3)0.1344 (3)0.0197 (6)
C60.3260 (3)0.4785 (3)0.0914 (3)0.0198 (6)
N20.5310 (3)0.8042 (2)0.4185 (2)0.0258 (5)
H210.51600.86550.38350.031*
H220.54310.83040.50590.031*
O40.3818 (2)0.3384 (2)0.33964 (19)0.0247 (4)
N50.2329 (2)0.2282 (2)0.0290 (2)0.0200 (5)
C570.2049 (3)0.1195 (3)0.0503 (3)0.0209 (6)
H570.24160.13200.14500.025*
C510.1149 (3)0.0251 (3)0.0746 (3)0.0203 (6)
C520.1086 (3)0.1508 (3)0.0601 (3)0.0240 (6)
H520.16360.14300.03170.029*
C530.0240 (3)0.2868 (3)0.1767 (3)0.0267 (6)
H530.02190.37300.16680.032*
C540.0575 (3)0.2952 (3)0.3082 (3)0.0248 (6)
C550.0585 (3)0.1733 (3)0.3267 (3)0.0252 (6)
H550.11830.18190.41780.030*
C560.0298 (3)0.0379 (3)0.2094 (3)0.0241 (6)
H560.03260.04750.22050.029*
N510.1490 (3)0.4388 (3)0.4325 (3)0.0319 (6)
O510.1545 (3)0.5454 (2)0.4130 (3)0.0545 (7)
O520.2188 (3)0.4460 (2)0.5495 (2)0.0397 (6)
N60.2700 (3)0.4454 (2)0.0507 (2)0.0216 (5)
C610.1260 (3)0.3456 (3)0.1574 (3)0.0207 (6)
C620.0105 (3)0.3350 (3)0.1250 (3)0.0229 (6)
H620.02780.39090.02910.027*
C630.1310 (3)0.2433 (3)0.2312 (3)0.0255 (6)
H630.21000.23600.20770.031*
C640.1572 (3)0.1623 (3)0.3714 (3)0.0284 (7)
H640.25420.09990.44460.034*
C650.0422 (3)0.1727 (3)0.4038 (3)0.0274 (6)
H650.05980.11700.50000.033*
C660.0995 (3)0.2634 (3)0.2979 (3)0.0240 (6)
H660.17850.26950.32140.029*
C670.3280 (3)0.5553 (3)0.0822 (3)0.0265 (6)
H67A0.29570.64090.04710.040*
H67B0.29070.51370.18620.040*
H67C0.43670.58500.03440.040*
S10.50481 (9)1.00119 (8)0.19238 (8)0.0311 (2)
O10.4690 (2)1.0149 (2)0.3099 (2)0.0311 (5)
C110.6266 (4)1.1739 (3)0.2533 (4)0.0357 (7)
H11A0.70701.20690.34970.054*
H11B0.57201.24500.25650.054*
H11C0.66841.16540.18750.054*
C120.6310 (4)0.9017 (3)0.1989 (4)0.0345 (7)
H12A0.58410.80460.18210.052*
H12B0.71860.95400.29360.052*
H12C0.66100.89070.12470.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (12)0.0184 (11)0.0161 (11)0.0041 (9)0.0071 (9)0.0067 (9)
C20.0195 (13)0.0204 (13)0.0181 (13)0.0056 (11)0.0083 (11)0.0083 (11)
N30.0258 (12)0.0202 (12)0.0134 (11)0.0037 (9)0.0044 (9)0.0066 (9)
C40.0217 (14)0.0198 (13)0.0190 (13)0.0058 (11)0.0092 (11)0.0092 (11)
C50.0213 (14)0.0188 (13)0.0171 (13)0.0062 (11)0.0083 (11)0.0074 (11)
C60.0201 (13)0.0208 (13)0.0175 (13)0.0063 (11)0.0094 (11)0.0078 (11)
N20.0337 (14)0.0197 (12)0.0178 (12)0.0041 (10)0.0092 (11)0.0072 (10)
O40.0295 (11)0.0213 (10)0.0175 (10)0.0035 (8)0.0065 (8)0.0097 (8)
N50.0202 (11)0.0183 (11)0.0195 (11)0.0061 (9)0.0091 (10)0.0076 (9)
C570.0201 (13)0.0232 (14)0.0187 (13)0.0069 (11)0.0086 (11)0.0097 (11)
C510.0204 (13)0.0203 (13)0.0196 (14)0.0057 (11)0.0095 (11)0.0091 (11)
C520.0256 (15)0.0236 (14)0.0228 (14)0.0072 (12)0.0109 (12)0.0116 (12)
C530.0275 (15)0.0239 (15)0.0304 (16)0.0069 (12)0.0133 (13)0.0150 (13)
C540.0248 (15)0.0198 (14)0.0222 (14)0.0024 (11)0.0100 (12)0.0055 (11)
C550.0252 (15)0.0273 (15)0.0206 (14)0.0046 (12)0.0094 (12)0.0114 (12)
C560.0274 (15)0.0224 (14)0.0230 (14)0.0063 (12)0.0122 (12)0.0113 (12)
N510.0367 (15)0.0230 (13)0.0275 (14)0.0036 (11)0.0124 (12)0.0083 (11)
O510.0718 (19)0.0218 (12)0.0401 (14)0.0021 (11)0.0045 (13)0.0121 (11)
O520.0503 (14)0.0301 (12)0.0202 (11)0.0020 (10)0.0079 (10)0.0074 (9)
N60.0254 (12)0.0195 (11)0.0145 (11)0.0010 (9)0.0065 (10)0.0076 (9)
C610.0234 (14)0.0199 (13)0.0170 (13)0.0065 (11)0.0068 (11)0.0098 (11)
C620.0246 (14)0.0225 (14)0.0206 (14)0.0086 (11)0.0089 (12)0.0107 (11)
C630.0229 (14)0.0286 (15)0.0283 (15)0.0088 (12)0.0104 (12)0.0178 (13)
C640.0214 (14)0.0272 (15)0.0268 (16)0.0025 (12)0.0029 (12)0.0134 (13)
C650.0288 (16)0.0262 (15)0.0180 (14)0.0045 (12)0.0060 (12)0.0080 (12)
C660.0266 (15)0.0252 (14)0.0184 (14)0.0073 (12)0.0097 (12)0.0099 (11)
C670.0322 (16)0.0256 (15)0.0203 (14)0.0034 (12)0.0094 (12)0.0140 (12)
S10.0304 (4)0.0334 (4)0.0283 (4)0.0076 (3)0.0134 (3)0.0146 (3)
O10.0437 (13)0.0296 (11)0.0329 (12)0.0159 (10)0.0257 (10)0.0179 (10)
C110.0406 (19)0.0278 (16)0.044 (2)0.0094 (14)0.0245 (16)0.0171 (15)
C120.0362 (18)0.0245 (16)0.0383 (18)0.0049 (13)0.0227 (15)0.0072 (14)
Geometric parameters (Å, º) top
N1—C21.319 (3)N51—O511.220 (3)
N1—C61.350 (3)N51—O521.223 (3)
C2—N31.337 (3)N6—C611.425 (3)
C2—N21.338 (3)N6—C671.461 (3)
N3—C41.375 (3)C61—C621.375 (4)
N3—H30.8799C61—C661.387 (4)
C4—O41.241 (3)C62—C631.386 (4)
C4—C51.421 (4)C62—H620.9500
C5—N51.382 (3)C63—C641.383 (4)
C5—C61.399 (4)C63—H630.9500
C6—N61.378 (3)C64—C651.370 (4)
N2—H210.8800C64—H640.9500
N2—H220.8800C65—C661.384 (4)
N5—C571.276 (3)C65—H650.9500
C57—C511.467 (4)C66—H660.9500
C57—H570.9500C67—H67A0.9800
C51—C521.386 (4)C67—H67B0.9800
C51—C561.396 (4)C67—H67C0.9800
C52—C531.376 (4)S1—O11.484 (2)
C52—H520.9500S1—C121.752 (3)
C53—C541.378 (4)S1—C111.768 (3)
C53—H530.9500C11—H11A0.9800
C54—C551.372 (4)C11—H11B0.9800
C54—N511.460 (4)C11—H11C0.9800
C55—C561.380 (4)C12—H12A0.9800
C55—H550.9500C12—H12B0.9800
C56—H560.9500C12—H12C0.9800
C2—N1—C6117.7 (2)O52—N51—C54118.8 (2)
N1—C2—N3122.7 (2)C6—N6—C61122.5 (2)
N1—C2—N2119.4 (2)C6—N6—C67117.4 (2)
N3—C2—N2118.0 (2)C61—N6—C67115.3 (2)
C2—N3—C4122.8 (2)C62—C61—C66119.2 (3)
C2—N3—H3117.9C62—C61—N6121.0 (2)
C4—N3—H3119.0C66—C61—N6119.7 (2)
O4—C4—N3118.5 (2)C61—C62—C63120.6 (3)
O4—C4—C5125.2 (2)C61—C62—H62119.7
N3—C4—C5116.2 (2)C63—C62—H62119.7
N5—C5—C6118.2 (2)C64—C63—C62120.0 (3)
N5—C5—C4124.5 (2)C64—C63—H63120.0
C6—C5—C4117.2 (2)C62—C63—H63120.0
N1—C6—N6113.8 (2)C65—C64—C63119.5 (3)
N1—C6—C5123.3 (2)C65—C64—H64120.2
N6—C6—C5122.8 (2)C63—C64—H64120.2
C2—N2—H21115.5C64—C65—C66120.6 (3)
C2—N2—H22116.1C64—C65—H65119.7
H21—N2—H22119.5C66—C65—H65119.7
C57—N5—C5125.8 (2)C65—C66—C61120.1 (3)
N5—C57—C51118.5 (2)C65—C66—H66120.0
N5—C57—H57120.7C61—C66—H66120.0
C51—C57—H57120.7N6—C67—H67A109.5
C52—C51—C56118.8 (2)N6—C67—H67B109.5
C52—C51—C57120.6 (2)H67A—C67—H67B109.5
C56—C51—C57120.5 (2)N6—C67—H67C109.5
C53—C52—C51121.0 (3)H67A—C67—H67C109.5
C53—C52—H52119.5H67B—C67—H67C109.5
C51—C52—H52119.5O1—S1—C12105.48 (14)
C52—C53—C54118.5 (3)O1—S1—C11106.46 (14)
C52—C53—H53120.8C12—S1—C1198.81 (15)
C54—C53—H53120.8S1—C11—H11A109.5
C55—C54—C53122.5 (3)S1—C11—H11B109.5
C55—C54—N51118.5 (3)H11A—C11—H11B109.5
C53—C54—N51119.0 (3)S1—C11—H11C109.5
C54—C55—C56118.3 (3)H11A—C11—H11C109.5
C54—C55—H55120.9H11B—C11—H11C109.5
C56—C55—H55120.9S1—C12—H12A109.5
C55—C56—C51120.8 (3)S1—C12—H12B109.5
C55—C56—H56119.6H12A—C12—H12B109.5
C51—C56—H56119.6S1—C12—H12C109.5
O51—N51—O52123.3 (3)H12A—C12—H12C109.5
O51—N51—C54117.9 (3)H12B—C12—H12C109.5
C6—N1—C2—N33.9 (4)C53—C54—C55—C562.2 (4)
C6—N1—C2—N2176.2 (2)N51—C54—C55—C56179.1 (3)
N1—C2—N3—C41.7 (4)C54—C55—C56—C511.6 (4)
N2—C2—N3—C4178.3 (2)C52—C51—C56—C550.5 (4)
C2—N3—C4—O4177.6 (3)C57—C51—C56—C55178.2 (3)
C2—N3—C4—C51.6 (4)C55—C54—N51—O51175.5 (3)
O4—C4—C5—N50.2 (4)C53—C54—N51—O513.4 (4)
N3—C4—C5—N5179.3 (2)C55—C54—N51—O522.6 (4)
O4—C4—C5—C6176.6 (3)C53—C54—N51—O52178.5 (3)
N3—C4—C5—C62.5 (4)N1—C6—N6—C61140.1 (2)
C2—N1—C6—N6180.0 (2)C5—C6—N6—C6142.6 (4)
C2—N1—C6—C52.8 (4)N1—C6—N6—C6714.0 (3)
N5—C5—C6—N1177.5 (2)C5—C6—N6—C67163.3 (3)
C4—C5—C6—N10.4 (4)C6—N6—C61—C6234.1 (4)
N5—C5—C6—N60.5 (4)C67—N6—C61—C62120.4 (3)
C4—C5—C6—N6176.5 (2)C6—N6—C61—C66149.4 (3)
C6—C5—N5—C57178.0 (3)C67—N6—C61—C6656.0 (3)
C4—C5—N5—C575.3 (4)C66—C61—C62—C630.0 (4)
C5—N5—C57—C51176.8 (2)N6—C61—C62—C63176.5 (2)
N5—C57—C51—C52165.6 (3)C61—C62—C63—C640.5 (4)
N5—C57—C51—C5616.8 (4)C62—C63—C64—C650.5 (4)
C56—C51—C52—C532.1 (4)C63—C64—C65—C660.1 (4)
C57—C51—C52—C53179.7 (3)C64—C65—C66—C610.3 (4)
C51—C52—C53—C541.6 (4)C62—C61—C66—C650.4 (4)
C52—C53—C54—C550.6 (4)N6—C61—C66—C65176.2 (2)
C52—C53—C54—N51179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.862.739 (3)176
N2—H21···O10.882.072.949 (3)175
N2—H22···O1ii0.882.152.935 (3)148
C56—H56···Cg0.952.463.397 (4)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H16N6O3·C2H6OSC18H16N6O3·C2H6OS
Mr442.50442.50
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)8.0386 (8), 10.6862 (14), 12.8856 (13)10.2601 (8), 10.4555 (6), 11.4537 (14)
α, β, γ (°)71.007 (11), 74.463 (9), 88.672 (12)113.230 (7), 112.295 (8), 96.709 (8)
V3)1005.9 (2)992.0 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.200.21
Crystal size (mm)0.45 × 0.32 × 0.080.35 × 0.26 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.944, 0.9840.941, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
29080, 4614, 2569 29046, 4556, 2896
Rint0.0890.074
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.05 0.057, 0.161, 1.07
No. of reflections46144556
No. of parameters283283
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.470.40, 0.66

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (°) for compounds (I) and (II) top
Parameter(I)(II)
N1—C6—N6—C615.2 (4)-140.1
C6—N6—C61—C62179.6 (3)34.1 (4)
C6—C5—N5—C57176.2 (2)-178.0 (3)
C5—N5—C57—C51178.7 (2)176.8 (2)
N5—C57—C51—C52172.1 (2)165.6 (3)
C53—C54—N51—O515.1 (4)3.4 (4)
N3—C4—O4—C41-5.0 (4)
Hydrogen bonds and short intramolecular contacts (Å, °) for (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N2—H21···O10.882.112.966 (3)163
N2—H22···N3i0.882.323.186 (3)170
N6—H6···N50.882.112.598 (3)114
(II)N2—H21···O10.882.072.949 (3)175
N2—H22···O1ii0.882.152.935 (3)148
N3—H3···O4i0.881.862.739 (3)176
C56—H56···Cg0.952.463.397 (4)168
Cg represents the centroid of the C61–C66 ring. Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds