Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, bis­[[mu]3-cis-N-(2-amino­prop­yl)-N'-(2-carboxyl­atophen­yl)oxamidato(3-)]-1:2:4[kappa]7N,N',N'',O:O',O'':O''';2:3:4[kappa]7O''':N,N',N'',O:O',O''-bis­(2,2'-bipyridine)-2[kappa]2N,N';4[kappa]2N,N'-dichlorido-1[kappa]Cl,3[kappa]Cl-tetra­copper(II) dihydrate, [Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O, consists of a neutral cyclic tetra­copper(II) system having an embedded centre of inversion and two solvent water mol­ecules. The coordination of each CuII atom is square-pyramidal. The separations of CuII atoms bridged by cis-N-(2-amino­prop­yl)-N'-(2-carboxyl­ato­phen­yl)oxamidate(3-) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three-dimensional supra­molecular structure involving hydrogen bonding and aromatic stacking is observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109002571/sk3285sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109002571/sk3285Isup2.hkl
Contains datablock I

CCDC reference: 728194

Comment top

It is known that N,N'-bis(substituted)oxamides could be good candidates in forming polynuclear complexes, because their coordinating ability toward transition-metal ions can be modified and tuned by changing the nature of the amide substituents (Ojima & Nonoyama, 1988). A typical feature of these ligands is an easy transformation of cistrans conformations, which makes it practical to design tunable molecular materials with desired properties (Ruiz et al., 1999). To date, many polynuclear complexes containing oxamide bridges have been synthesized and their properties studied extensively (Messori et al., 2003; Wang et al., 2004). Compared with studies dealing with symmetrical N,N'-bis(substituted)oxamide polynuclear systems, relatively few studies dealing with dissymmetrical N,N'-bis(substituted)oxamide polynuclear complexes have been reported, owing to difficulties in the synthesis (Matović et al., 2005; Zang et al., 2003). However, the fact that those complexes bridged by dissymmetrical N,N'-bis(substituted)oxamides have shown predominant properties (Costes et al., 2000; Erxleben, 2001; Larionova et al., 1997; Pei et al., 1989, 1991) stimulated us to design and synthesize new polynuclear complexes with dissymmetrical N,N'-bis(substituted)oxamides to explore their special structures and functionalities. In continuation of our earlier work (Li et al., 2003, 2004; Liu et al., 2008), in this paper, a novel tetranuclear copper(II) complex bridged by an asymmetrical oxamide ligand, cis-N-(2-aminopropyl)-N'-(2-carboxylatophenyl)oxamidate(3-) (oxbm), and end-capped with 2,2'-bipyridine (bpy), namely, [Cu4(oxbm)2(bpy)2Cl2].2H2O, (I), has been synthesized, and the crystal structure of the complex is reported here.

A perspective view of complex (I) is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. As shown in Fig. 1, the asymmetric unit can be considered as a cis-oxamide-bridged dinuclear copper(II) complex linked with a solvent water molecule by an O—H···Cl hydrogen bond, [Cu2(oxbm)(bpy)Cl].H2O. Through carboxyl bridges, a pair of units assemble to form a circular tetranuclear system with inversion symmetry. The cis-oxamide group coordinates to atoms Cu1 and Cu2 in an usual mode with bite angles of 83.40 (9) and 85.23 (8)°, respectively. The carboxyl group bridges Cu atoms in a nonplanar skew–skew fashion. The Cu1—O1—C1—O2 and Cu2i—O2—C1—O1 torsion angles [symmetry code: (i) -x + 1, -y, -z + 1; Table 1] are similar to those found in other complexes with skew–skew carboxyl bridges (Duan et al., 2006; Tong et al., 1997). The Cu···Cu separations through the oxamide and carboxyl bridges are 5.2096 (4) and 5.1961 (5) Å, respectively. To date, seven cyclic tetranuclear complexes with symmetrical oxamide bridges have been synthesized and structurally characterized (Abbati et al., 1999; Li et al., 2008; Ribas et al., 1998; Zhu et al., 2007). However, the title complex is the first instance of a dissymmetrical oxamide.

Atoms Cu1 and Cu2 are both in square-pyramidal coordination geometries with τ values of 0.08 and 0.03 (Addison et al., 1984), respectively. Atom Cu1 resides in an inner site of the cis-oxbm3- ligand; the basal plane is defined by atoms N1, N2, N3 and O1, and from the least-squares plane ddefined by these atoms the maximum displacement is 0.1073 (15) Å for N2 and the displacement of atom Cu1 is 0.2403 (13) Å. The apical position is occupied by atom Cl1. Atom Cu2 coordinates to the exo-cis O atoms of the oxbm3- ligand (O3 and O4), and the N atoms (N4 and N5) of the bpy ligand complete the basal plane, from which the maximum deviation is 0.0190 (12) Å (N4). The apical site is occupied by a carboxyl O atom (O2i). Atom Cu2 is pulled 0.2101 (12) Å out of the basal plane by the apical O2i atom.

The oxbm3- ligand chelates atom Cu1 to form two five-membered and a six-membered chelate rings. One of the five-membered rings is planar, and the other has an envelope conformation puckered on the chiral C11 atom, the puckering parameters (Cremer & Pople, 1975) being Q = 0.399 (3) Å and ϕ = 114.2 (4)°. The six-membered ring adopts a boat conformation with puckering parameters Q = 0.304 (3) Å, θ = 87.9 (6)° and ϕ = 300.8 (5)°. The Cu1—N1 and Cu1—N2 bonds are shorter than the Cu1—N3 bond (Table 1), which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the primary amine N atom (Jubert et al., 2002).

In the crystal structure, neutral tetranuclear complexes and solvent water molecules are connected by classical hydrogen bonds into a one-dimensional chain parallel to the a axis (Table 2). The chains are linked through non-classical C—H···Cl hydrogen bonds into a two-dimensional hydrogen-bonding network extending along the (011) plane (Fig. 2). Moreover, offset ππ stacking is observed between the pyridine ring containing N4 and the phenyl ring belonging to a neighbouring complex, the nearest separation being 3.421 (4) Å for atom C6iv [symmetry code: (iv) x, y, z - 1; Fig. 3]. The stackings dominate the interactions between the hydrogen-bond layers and hold them together to create a three-dimensional supramolecular structure.

Related literature top

For related literature, see: Abbati et al. (1999); Addison et al. (1984); Costes et al. (2000); Cremer & Pople (1975); Duan et al. (2006); Erxleben (2001); Jubert et al. (2002); Larionova et al. (1997); Li et al. (2003, 2004, 2008); Liu et al. (2008); Matović et al. (2005); Messori et al. (2003); Ojima & Nonoyama (1988); Pei et al. (1989, 1991); Ribas et al. (1998); Ruiz et al. (1999); Tao et al. (2003); Tong et al. (1997); Wang et al. (2004); Zang et al. (2003); Zhu et al. (2007).

Experimental top

All reagents were of analytical reagent grade and were used without further purification. The Na[Cu(oxbm)] ligand was prepared according to the method described by Tao et al. (2003). The title complex, [Cu2(oxbm)(bpy)Cl]2.2H2O was obtained as follows. A methanol (5 ml) solution of CuCl2.2H2O (0.0085 g, 0.05 mmol) was added dropwise into an aqueous solution (5 ml) of Na[Cu(oxbm)] (0.0349 g, 0.1 mmol) with continuous stirring. The mixture was stirred quickly for an hour and then 2,2'-bipyridine (0.0078 g, 0.05 mmol) in methanol (5 ml) was added dropwise. The solution obtained was further stirred at 333 K for 6 h. The resulting solution was then filtered and the filtrate was allowed to stand at room temperature for one week to give well shaped green crystals suitable for X-ray analysis (yield 72%). Elemental analysis for C44H44Cl2Cu4N10O10, calculated: C 44.11, H 3.70, N 11.69%; found: C 44.31, H 3.78, N 11.71%.

Refinement top

The methyl group is disordered over two positions, C12A and C12B, whose occupancy factors were refined and then fixed at 0.7 and 0.3, respectively. The C11—C12B bond length of was restrained to a reasonable C—C value, and the C10···C12A and C10···C12B distances of were limited to be equal, as were the N3···C12A and N3···C12B distances. Water H atoms were found in a difference Fourier map and were treated as riding, with fixed Uiso(H) values of 0.08 Å2. The remaining H atoms were placed in calculated positions with N—H distance of 0.90 Å and C—H distances of 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) or 0.98 Å (methine), and refined in riding mode, with Uiso(H) set at 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, the atoms of the asymmetric residue unit and its counterpart are represented in different styles, and the bonds of C12B are depicted with open lines. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) -x +1, -y, -z +1.]
[Figure 2] Fig. 2. A view of the two-dimensional hydrogen-bonding structure of (I). Hydrogen bonds are shown as dotted lines; H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y + 1, -z]
[Figure 3] Fig. 3. A view showing the ππ stacking interactions along the c axis, viewed perpendicular to the pyridine plane. H atoms and water molecules have been omitted for clarity. [Symmetry codes: (iv) x, y, z - 1.]
bis[µ3-cis-N-(2-aminopropyl)-N'-(2- carboxylatophenyl)oxamidato(3-)]-1:2:4κ7N,N',N'', O:O',O":O''';2:4:3κ7O''':O', O":N,N',N'',O-bis(2,2'-bipyridine)- 2κ2N,N';4κ2N,N'-dichlorido-1κCl,3κCl- tetracopper(II) dihydrate top
Crystal data top
[Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2OZ = 1
Mr = 1197.95F(000) = 608
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9622 (1) ÅCell parameters from 7568 reflections
b = 11.1330 (2) Åθ = 2.4–27.6°
c = 11.2876 (2) ŵ = 1.98 mm1
α = 67.072 (1)°T = 298 K
β = 69.842 (1)°Block, green
γ = 72.688 (1)°0.28 × 0.22 × 0.17 mm
V = 1169.57 (3) Å3
Data collection top
Bruker APEX area-detector
diffractometer
5441 independent reflections
Radiation source: fine-focus sealed tube4353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1414
Tmin = 0.607, Tmax = 0.730k = 1414
16602 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0413P)2 + 1.5166P]
where P = (Fo2 + 2Fc2)/3
5441 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.98 e Å3
3 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2Oγ = 72.688 (1)°
Mr = 1197.95V = 1169.57 (3) Å3
Triclinic, P1Z = 1
a = 10.9622 (1) ÅMo Kα radiation
b = 11.1330 (2) ŵ = 1.98 mm1
c = 11.2876 (2) ÅT = 298 K
α = 67.072 (1)°0.28 × 0.22 × 0.17 mm
β = 69.842 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
5441 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
4353 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.730Rint = 0.017
16602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.98 e Å3
5441 reflectionsΔρmin = 0.78 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.77756 (3)0.05900 (4)0.44379 (3)0.03567 (11)
Cu20.45722 (3)0.28278 (3)0.13513 (3)0.03533 (10)
Cl10.85509 (9)0.27782 (9)0.41557 (9)0.0578 (2)
O10.75838 (19)0.0232 (2)0.63187 (19)0.0425 (5)
O20.6451 (2)0.1184 (2)0.83390 (19)0.0398 (5)
O30.44344 (18)0.2359 (2)0.32489 (19)0.0373 (4)
O40.63968 (19)0.1901 (2)0.12240 (18)0.0383 (4)
O51.0895 (3)0.2385 (3)0.1443 (3)0.0651 (7)
H5A1.03910.26430.21710.080*
H5B1.16160.20810.16010.080*
N10.5857 (2)0.1356 (2)0.4648 (2)0.0313 (5)
N20.7760 (2)0.0862 (3)0.2650 (2)0.0391 (6)
N30.9681 (2)0.0300 (3)0.3808 (2)0.0441 (6)
H3A1.02270.02730.35430.053*
H3B0.99190.10090.44770.053*
N40.4793 (3)0.3625 (3)0.0577 (2)0.0440 (6)
N50.2875 (3)0.4153 (3)0.1380 (3)0.0450 (6)
C10.6514 (3)0.0291 (3)0.7237 (3)0.0325 (6)
C20.5284 (3)0.0757 (3)0.7064 (3)0.0316 (5)
C30.4974 (2)0.1543 (3)0.5842 (3)0.0310 (5)
C40.3812 (3)0.2504 (3)0.5856 (3)0.0433 (7)
H40.35920.30250.50590.052*
C50.2983 (3)0.2691 (4)0.7037 (3)0.0527 (8)
H50.22270.33500.70220.063*
C60.3269 (3)0.1908 (4)0.8236 (3)0.0500 (8)
H60.27060.20260.90310.060*
C70.4399 (3)0.0950 (3)0.8238 (3)0.0408 (7)
H70.45820.04110.90480.049*
C80.5542 (3)0.1770 (3)0.3515 (3)0.0312 (5)
C90.6666 (3)0.1484 (3)0.2351 (3)0.0321 (5)
C100.8970 (3)0.0388 (3)0.1771 (3)0.0445 (7)
H10A0.94590.10990.12170.053*
H10B0.87720.00490.12000.053*
C110.9770 (3)0.0721 (4)0.2685 (3)0.0551 (9)
H11B0.93080.14710.30740.066*0.70
H11A1.06980.07890.21680.066*0.30
C12A1.1116 (5)0.1214 (6)0.1989 (5)0.0626 (15)0.70
H12A1.15500.19110.26210.094*0.70
H12B1.16020.05010.15490.094*0.70
H12C1.10760.15510.13420.094*0.70
C12B0.9513 (17)0.2058 (7)0.3121 (14)0.092 (5)0.30
H12D0.98390.23890.23790.137*0.30
H12E0.85780.20370.34670.137*0.30
H12F0.99520.26270.38040.137*0.30
C130.5817 (4)0.3278 (4)0.1497 (4)0.0610 (10)
H130.65150.26170.12350.073*
C140.5882 (5)0.3881 (5)0.2864 (4)0.0762 (13)
H140.66060.36420.35150.091*
C150.4814 (6)0.4844 (4)0.3182 (4)0.0753 (13)
H150.48250.52640.40760.090*
C160.3749 (5)0.5208 (4)0.2256 (4)0.0664 (11)
H160.30420.58620.25040.080*
C170.3743 (4)0.4577 (3)0.0925 (3)0.0506 (9)
C180.2666 (3)0.4848 (3)0.0172 (4)0.0476 (8)
C190.1460 (4)0.5739 (4)0.0047 (5)0.0687 (12)
H190.13210.62360.07910.082*
C200.0518 (4)0.5863 (5)0.1146 (6)0.0826 (14)
H200.02850.64380.10740.099*
C210.0730 (4)0.5152 (5)0.2367 (5)0.0785 (13)
H210.00800.52380.31330.094*
C220.1931 (3)0.4297 (4)0.2454 (4)0.0574 (9)
H220.20790.38100.32900.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02575 (17)0.0496 (2)0.02596 (17)0.00529 (14)0.01248 (13)0.01034 (14)
Cu20.03379 (18)0.0419 (2)0.02658 (17)0.00226 (14)0.01659 (14)0.00315 (14)
Cl10.0507 (5)0.0529 (5)0.0608 (5)0.0018 (4)0.0240 (4)0.0067 (4)
O10.0294 (10)0.0571 (13)0.0289 (10)0.0011 (9)0.0138 (8)0.0026 (9)
O20.0403 (11)0.0438 (11)0.0292 (10)0.0081 (9)0.0158 (8)0.0006 (8)
O30.0282 (9)0.0502 (12)0.0296 (10)0.0039 (8)0.0151 (8)0.0105 (8)
O40.0334 (10)0.0532 (12)0.0258 (9)0.0028 (9)0.0129 (8)0.0096 (8)
O50.0536 (15)0.0720 (17)0.0689 (17)0.0010 (13)0.0351 (13)0.0145 (14)
N10.0244 (10)0.0417 (12)0.0231 (10)0.0004 (9)0.0092 (8)0.0078 (9)
N20.0282 (11)0.0575 (15)0.0285 (12)0.0046 (10)0.0115 (9)0.0164 (11)
N30.0329 (12)0.0540 (15)0.0382 (13)0.0111 (11)0.0171 (10)0.0148 (11)
N40.0519 (15)0.0498 (15)0.0297 (12)0.0150 (12)0.0162 (11)0.0034 (11)
N50.0436 (14)0.0383 (13)0.0547 (16)0.0007 (11)0.0311 (13)0.0069 (12)
C10.0347 (14)0.0373 (14)0.0274 (13)0.0072 (11)0.0153 (11)0.0056 (11)
C20.0309 (13)0.0364 (13)0.0266 (12)0.0058 (11)0.0106 (10)0.0069 (10)
C30.0259 (12)0.0398 (14)0.0253 (12)0.0032 (10)0.0083 (10)0.0091 (10)
C40.0356 (15)0.0536 (18)0.0316 (14)0.0056 (13)0.0118 (12)0.0118 (13)
C50.0388 (16)0.063 (2)0.0429 (18)0.0118 (15)0.0093 (14)0.0205 (16)
C60.0437 (17)0.066 (2)0.0341 (16)0.0028 (15)0.0025 (13)0.0217 (15)
C70.0437 (16)0.0504 (17)0.0252 (13)0.0074 (13)0.0101 (12)0.0090 (12)
C80.0276 (12)0.0364 (13)0.0271 (12)0.0025 (10)0.0118 (10)0.0061 (10)
C90.0303 (13)0.0406 (14)0.0246 (12)0.0045 (11)0.0098 (10)0.0089 (10)
C100.0336 (15)0.063 (2)0.0337 (15)0.0079 (13)0.0111 (12)0.0225 (14)
C110.0495 (19)0.063 (2)0.0463 (18)0.0181 (16)0.0200 (15)0.0255 (16)
C12A0.042 (3)0.084 (4)0.055 (3)0.020 (2)0.016 (2)0.036 (3)
C12B0.112 (14)0.058 (9)0.117 (14)0.004 (9)0.066 (12)0.024 (9)
C130.068 (2)0.073 (3)0.0412 (19)0.021 (2)0.0147 (17)0.0124 (17)
C140.098 (3)0.094 (3)0.040 (2)0.046 (3)0.001 (2)0.021 (2)
C150.119 (4)0.067 (3)0.047 (2)0.034 (3)0.041 (3)0.0037 (19)
C160.108 (3)0.050 (2)0.046 (2)0.019 (2)0.042 (2)0.0016 (16)
C170.074 (2)0.0365 (16)0.0495 (19)0.0190 (15)0.0427 (18)0.0069 (13)
C180.0547 (19)0.0343 (15)0.057 (2)0.0049 (13)0.0352 (17)0.0029 (14)
C190.072 (3)0.046 (2)0.086 (3)0.0003 (18)0.054 (3)0.0016 (19)
C200.052 (2)0.069 (3)0.109 (4)0.017 (2)0.035 (3)0.018 (3)
C210.049 (2)0.076 (3)0.094 (3)0.016 (2)0.023 (2)0.027 (3)
C220.0433 (18)0.060 (2)0.061 (2)0.0070 (16)0.0201 (17)0.0166 (18)
Geometric parameters (Å, º) top
Cu1—Cl12.6832 (10)C6—C71.372 (4)
Cu1—N11.988 (2)C6—H60.9300
Cu1—N21.925 (2)C7—H70.9300
Cu1—N32.035 (2)C8—C91.524 (4)
Cu1—O11.9188 (19)C10—C111.531 (4)
Cu2—N41.961 (2)C10—H10A0.9700
Cu2—N52.000 (3)C10—H10B0.9700
Cu2—O2i2.276 (2)C11—C12B1.456 (7)
Cu2—O31.9586 (19)C11—C12A1.466 (5)
Cu2—O41.9430 (19)C11—H11B0.9800
O1—C11.269 (3)C11—H11A0.9800
O2—C11.248 (3)C12A—H11A0.5960
O2—Cu2i2.276 (2)C12A—H12A0.9600
O3—C81.273 (3)C12A—H12B0.9600
O4—C91.280 (3)C12A—H12C0.9600
O5—H5A0.9167C12B—H12D0.9600
O5—H5B0.8134C12B—H12E0.9600
N1—C81.310 (3)C12B—H12F0.9600
N1—C31.414 (3)C13—C141.408 (5)
N2—C91.279 (3)C13—H130.9300
N2—C101.451 (3)C14—C151.375 (7)
N3—C111.479 (4)C14—H140.9300
N3—H3A0.9000C15—C161.352 (7)
N3—H3B0.9000C15—H150.9300
N4—C131.318 (5)C16—C171.387 (5)
N4—C171.365 (4)C16—H160.9300
N5—C221.324 (5)C17—C181.445 (5)
N5—C181.341 (4)C18—C191.412 (5)
C1—C21.511 (4)C19—C201.338 (7)
C2—C71.399 (4)C19—H190.9300
C2—C31.410 (3)C20—C211.356 (7)
C3—C41.399 (4)C20—H200.9300
C4—C51.383 (4)C21—C221.386 (5)
C4—H40.9300C21—H210.9300
C5—C61.379 (5)C22—H220.9300
C5—H50.9300
N1—Cu1—N283.40 (9)N1—C8—C9115.1 (2)
O3—Cu2—O485.23 (8)N2—C9—O4129.2 (3)
O1—Cu1—N2159.82 (11)N2—C9—C8114.2 (2)
O1—Cu1—N193.77 (8)O4—C9—C8116.6 (2)
O1—Cu1—N397.86 (9)N2—C10—C11105.8 (2)
N2—Cu1—N382.10 (10)N2—C10—H10A110.6
N1—Cu1—N3164.39 (10)C11—C10—H10A110.6
O1—Cu1—Cl197.77 (7)N2—C10—H10B110.6
N2—Cu1—Cl1102.41 (9)C11—C10—H10B110.6
N1—Cu1—Cl197.27 (7)H10A—C10—H10B108.7
N3—Cu1—Cl191.45 (9)C12B—C11—C12A87.8 (8)
O4—Cu2—N495.30 (10)C12B—C11—N3112.6 (6)
O3—Cu2—N4168.64 (10)C12A—C11—N3115.1 (3)
O4—Cu2—N5166.56 (10)C12B—C11—C10117.4 (6)
O3—Cu2—N595.10 (10)C12A—C11—C10114.2 (3)
N4—Cu2—N581.76 (12)N3—C11—C10108.7 (3)
O4—Cu2—O2i101.63 (8)C12A—C11—H11B106.0
O3—Cu2—O2i94.04 (8)N3—C11—H11B106.0
N4—Cu2—O2i96.96 (9)C10—C11—H11B106.0
N5—Cu2—O2i91.75 (9)C12B—C11—H11A104.3
C1—O1—Cu1127.26 (17)N3—C11—H11A106.5
C1—O2—Cu2i114.78 (17)C10—C11—H11A106.5
C8—O3—Cu2111.56 (17)H11B—C11—H11A122.6
C9—O4—Cu2111.12 (17)C11—C12A—H12A109.5
H5A—O5—H5B102.6H11A—C12A—H12A119.0
C8—N1—C3124.3 (2)C11—C12A—H12B109.5
C8—N1—Cu1111.55 (17)H11A—C12A—H12B81.6
C3—N1—Cu1123.92 (16)C11—C12A—H12C109.5
C9—N2—C10126.4 (2)H11A—C12A—H12C123.0
C9—N2—Cu1115.30 (19)C11—C12B—H12D109.5
C10—N2—Cu1118.28 (18)C11—C12B—H12E109.5
C11—N3—Cu1108.06 (19)H12D—C12B—H12E109.5
C11—N3—H3A110.1C11—C12B—H12F109.5
Cu1—N3—H3A110.1H12D—C12B—H12F109.5
C11—N3—H3B110.1H12E—C12B—H12F109.5
Cu1—N3—H3B110.1N4—C13—C14121.7 (4)
H3A—N3—H3B108.4N4—C13—H13119.1
C13—N4—C17120.6 (3)C14—C13—H13119.1
C13—N4—Cu2125.4 (2)C15—C14—C13116.2 (4)
C17—N4—Cu2113.9 (2)C15—C14—H14121.9
C22—N5—C18119.4 (3)C13—C14—H14121.9
C22—N5—Cu2126.3 (2)C16—C15—C14123.1 (4)
C18—N5—Cu2114.0 (2)C16—C15—H15118.4
O2—C1—O1121.3 (2)C14—C15—H15118.4
O2—C1—C2117.4 (2)C15—C16—C17118.0 (4)
O1—C1—C2121.2 (2)C15—C16—H16121.0
C7—C2—C3118.5 (2)C17—C16—H16121.0
C7—C2—C1115.6 (2)N4—C17—C16120.3 (4)
C3—C2—C1125.9 (2)N4—C17—C18115.5 (3)
C4—C3—C2118.5 (2)C16—C17—C18124.1 (3)
C4—C3—N1122.3 (2)N5—C18—C19120.2 (4)
C2—C3—N1119.2 (2)N5—C18—C17114.6 (3)
C5—C4—C3121.1 (3)C19—C18—C17125.1 (3)
C5—C4—H4119.4C20—C19—C18119.3 (4)
C3—C4—H4119.4C20—C19—H19120.3
C6—C5—C4120.6 (3)C18—C19—H19120.3
C6—C5—H5119.7C19—C20—C21120.2 (4)
C4—C5—H5119.7C19—C20—H20119.9
C7—C6—C5118.9 (3)C21—C20—H20119.9
C7—C6—H6120.5C20—C21—C22119.0 (4)
C5—C6—H6120.5C20—C21—H21120.5
C6—C7—C2122.3 (3)C22—C21—H21120.5
C6—C7—H7118.8N5—C22—C21121.8 (4)
C2—C7—H7118.8N5—C22—H22119.1
O3—C8—N1129.6 (2)C21—C22—H22119.1
O3—C8—C9115.3 (2)
Cu1—O1—C1—O2155.8 (2)Cu1—N1—C3—C4154.7 (2)
Cu2i—O2—C1—O1103.9 (3)C8—N1—C3—C2162.3 (3)
N2—Cu1—O1—C175.0 (4)Cu1—N1—C3—C224.0 (4)
N1—Cu1—O1—C16.1 (3)C2—C3—C4—C50.4 (5)
N3—Cu1—O1—C1163.5 (3)N1—C3—C4—C5178.2 (3)
Cl1—Cu1—O1—C1104.0 (2)C3—C4—C5—C61.7 (6)
O4—Cu2—O3—C83.68 (19)C4—C5—C6—C70.8 (6)
N4—Cu2—O3—C889.5 (5)C5—C6—C7—C21.3 (5)
N5—Cu2—O3—C8162.8 (2)C3—C2—C7—C62.4 (5)
O2i—Cu2—O3—C8105.04 (19)C1—C2—C7—C6177.0 (3)
O3—Cu2—O4—C92.40 (19)Cu2—O3—C8—N1176.9 (3)
N4—Cu2—O4—C9166.2 (2)Cu2—O3—C8—C94.1 (3)
N5—Cu2—O4—C989.6 (5)C3—N1—C8—O32.4 (5)
O2i—Cu2—O4—C995.55 (19)Cu1—N1—C8—O3176.8 (3)
O1—Cu1—N1—C8165.6 (2)C3—N1—C8—C9178.6 (2)
N2—Cu1—N1—C85.7 (2)Cu1—N1—C8—C94.2 (3)
N3—Cu1—N1—C827.4 (5)C10—N2—C9—O44.7 (5)
Cl1—Cu1—N1—C896.05 (19)Cu1—N2—C9—O4173.6 (2)
O1—Cu1—N1—C320.0 (2)C10—N2—C9—C8176.0 (3)
N2—Cu1—N1—C3179.9 (2)Cu1—N2—C9—C85.8 (3)
N3—Cu1—N1—C3158.2 (3)Cu2—O4—C9—N2178.4 (3)
Cl1—Cu1—N1—C378.4 (2)Cu2—O4—C9—C80.9 (3)
O1—Cu1—N2—C989.4 (3)O3—C8—C9—N2178.3 (3)
N1—Cu1—N2—C96.4 (2)N1—C8—C9—N20.8 (4)
N3—Cu1—N2—C9179.3 (2)O3—C8—C9—O42.2 (4)
Cl1—Cu1—N2—C989.6 (2)N1—C8—C9—O4178.6 (2)
O1—Cu1—N2—C1092.2 (3)C9—N2—C10—C11158.0 (3)
N1—Cu1—N2—C10175.1 (3)Cu1—N2—C10—C1123.7 (3)
N3—Cu1—N2—C100.9 (2)Cu1—N3—C11—C12B89.7 (7)
Cl1—Cu1—N2—C1088.8 (2)Cu1—N3—C11—C12A171.8 (3)
O1—Cu1—N3—C11136.3 (2)Cu1—N3—C11—C1042.2 (3)
N2—Cu1—N3—C1123.3 (2)N2—C10—C11—C12B87.2 (8)
N1—Cu1—N3—C111.5 (5)N2—C10—C11—C12A172.1 (4)
Cl1—Cu1—N3—C11125.7 (2)N2—C10—C11—N342.1 (4)
O4—Cu2—N4—C1313.3 (3)C17—N4—C13—C141.0 (6)
O3—Cu2—N4—C13105.5 (5)Cu2—N4—C13—C14178.4 (3)
N5—Cu2—N4—C13179.9 (3)N4—C13—C14—C150.4 (6)
O2i—Cu2—N4—C1389.1 (3)C13—C14—C15—C160.1 (7)
O4—Cu2—N4—C17169.1 (2)C14—C15—C16—C170.1 (7)
O3—Cu2—N4—C1776.9 (6)C13—N4—C17—C161.0 (5)
N5—Cu2—N4—C172.3 (2)Cu2—N4—C17—C16178.7 (3)
O2i—Cu2—N4—C1788.4 (2)C13—N4—C17—C18178.5 (3)
O4—Cu2—N5—C22104.9 (5)Cu2—N4—C17—C180.8 (4)
O3—Cu2—N5—C2214.2 (3)C15—C16—C17—N40.4 (5)
N4—Cu2—N5—C22176.8 (3)C15—C16—C17—C18179.0 (4)
O2i—Cu2—N5—C2280.1 (3)C22—N5—C18—C191.0 (5)
O4—Cu2—N5—C1881.8 (5)Cu2—N5—C18—C19174.7 (3)
O3—Cu2—N5—C18172.6 (2)C22—N5—C18—C17177.9 (3)
N4—Cu2—N5—C183.6 (2)Cu2—N5—C18—C174.1 (4)
O2i—Cu2—N5—C1893.2 (2)N4—C17—C18—N52.2 (4)
Cu2i—O2—C1—C279.0 (3)C16—C17—C18—N5178.3 (3)
Cu1—O1—C1—C227.2 (4)N4—C17—C18—C19176.5 (3)
O2—C1—C2—C724.4 (4)C16—C17—C18—C192.9 (6)
O1—C1—C2—C7152.7 (3)N5—C18—C19—C201.3 (6)
O2—C1—C2—C3156.3 (3)C17—C18—C19—C20177.4 (4)
O1—C1—C2—C326.7 (4)C18—C19—C20—C211.0 (7)
C7—C2—C3—C41.5 (4)C19—C20—C21—C220.3 (8)
C1—C2—C3—C4177.8 (3)C18—N5—C22—C210.3 (6)
C7—C2—C3—N1179.8 (3)Cu2—N5—C22—C21173.2 (3)
C1—C2—C3—N10.9 (4)C20—C21—C22—N50.1 (7)
C8—N1—C3—C419.1 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl10.922.473.335 (3)159
O5—H5B···O2ii0.812.072.870 (3)168
N3—H3B···Cl1ii0.902.553.406 (2)158
N3—H3A···O1ii0.902.443.172 (3)138
C16—H16···Cl1iii0.932.703.549 (4)152
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O
Mr1197.95
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.9622 (1), 11.1330 (2), 11.2876 (2)
α, β, γ (°)67.072 (1), 69.842 (1), 72.688 (1)
V3)1169.57 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.28 × 0.22 × 0.17
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.607, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
16602, 5441, 4353
Rint0.017
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.04
No. of reflections5441
No. of parameters328
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.78

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), XP (Siemens, 1994) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—Cl12.6832 (10)Cu2—N41.961 (2)
Cu1—N11.988 (2)Cu2—N52.000 (3)
Cu1—N21.925 (2)Cu2—O2i2.276 (2)
Cu1—N32.035 (2)Cu2—O31.9586 (19)
Cu1—O11.9188 (19)Cu2—O41.9430 (19)
N1—Cu1—N283.40 (9)O3—Cu2—O485.23 (8)
Cu1—O1—C1—O2155.8 (2)Cu2i—O2—C1—O1103.9 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl10.922.473.335 (3)159
O5—H5B···O2ii0.812.072.870 (3)168
N3—H3B···Cl1ii0.902.553.406 (2)158
N3—H3A···O1ii0.902.443.172 (3)138
C16—H16···Cl1iii0.932.703.549 (4)152
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds