Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of three new polymeric lanthanide complexes, poly[[bis­(2,2'-bipyridine)-[mu]4-itaconato-di-[mu]3-itaconato-digadolinium(III)] tetra­hydrate], {[Gd2(C5H4O4)3(C10H8N2)2]·4H2O}n, (I), poly[diaqua­(2,2'-bipyridine)di-[mu]3-itaconato-[mu]2-ita­conato-digadolinium(III)], [Gd2(C5H4O4)3(C10H8N2)(H2O)2]n, (II), and poly­[[bis­(2,2'-bipyridine)-[mu]4-itaconato-di-[mu]3-itaconato-di­holmium(III)] dihydrate], {[Ho2(C5H4O4)3(C10H8N2)2]·2H2O}n, (III), have been solved from twinned specimens. Compound (I) presents a two-dimensional polymeric structure parallel to (011) built up around two independent nine-coordinated Gd centres displaying similar GdO7N2 environments, with both N-donor atoms in each provided by a chelating 2,2'-bipyridine (bpy) unit. The coord­inating O atoms are from three different itaconate (ita) anions (itaconic acid is 2-methyl­idene­butane­dioic acid). Compound (II) also presents two independent Gd centres (one ten- and the other eight-coordinated), but the overall formula and individual coordinations are different from those of (I). The chemical unit is in this case completed by one bpy ligand, three ita anions (one of them displaying a new, hitherto unreported, [mu]3-O,O':O',O'':O''' binding mode) and two aqua ligands. The whole structure is built up around a twofold rotation axis passing through both cations, as well as through the centre of the bpy ligand and one of the ita anions, thus making only half of the chemical unit independent. Finally, compound (III) presents a single independent Ho centre, a bpy unit and one and a half ita anions (one of them bisected by a twofold rotation axis) in the asymmetric unit, plus two (disordered) nonbonded solvent water mol­ecules. In compounds (II) and (III), those ita anions bisected by a symmetry element incompatible with the inter­nal symmetry of the ligand exhibit disorder in the C=CH2 group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109002534/sk3282sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109002534/sk3282Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109002534/sk3282IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109002534/sk3282IIIsup4.hkl
Contains datablock III

CCDC references: 728196; 728197; 728198

Comment top

The generation of high-dimensional coordination polymers assembled from metal–organic compounds and characterized by open frameworks has been (and still is) an important branch of crystal engineering (see, for example, Eddaoudi et al., 2001), due to the expected potential properties of the eventual novel compounds, e.g. catalysis (Seo et al., 2000), ion-exchange (Yaghi et al., 1997), gas absorption (Yaghi et al., 2003), and so on. While carboxylic acids have been extensively exploited in order to provide promising functional frameworks, aliphatic acids in particular do not seem to have been adequately explored [although for a recent report on the subject, see Zhang et al. (2006)], in spite of their well known flexibility which would make them extremely suitable to achieve a variety of different architectures. One of these rather unexploited ligands is itaconic acid (hereinafter ita), the common name of methylene succinic acid (systematic name 2-methylidenebutanedioic acid), an extremely flexible ligand which, by way of its capability of binding through two carboxylic acid ends, can provide an extensive variety of coordination modes.

In spite of this potentiality there are only a limited number of reported complexes containing the coordinated ita anion. A survey of the Cambridge Structural Database (2008 version; Allen, 2002) showed that there are nine such complexes in total, three of them with the ligand bound to transition metals [Ni (Burrows, Harrington et al., 2004), Zn (Burrows, Donovan et al., 2004) and Cd (Contreras et al., 1997)], one to an alkaline earth [Ba (Briceño et al., 1999)] and five to lanthanides [La, Eu, Dy, Er and Yb (Liu et al., 2005)]. Surprisingly, in spite of this limited number of complexes, as many as ten different coordination modes could be distinguished for the ligand (coordination modes Nos. 1–10, shown in the second scheme).

The extended character of the molecule and its double-ended binding ability render it able to fulfil an efficient bridging role in (usually complex) three-dimensional structures in which voids and cavities can easily build up. Looking for new compounds of this kind, we have tried to synthesize via hydrothermal methods some lanthanide complexes bearing itaconate (ita) as the stabilizing anion and bipyridine (bpy) as an ancillary ligand. Unfortunately, and in spite of having attempted the synthesis with a diversity of lanthanide atoms, the process only afforded crystals for Ln = Gd [two different phases, compounds (I) and (II)] and Ho [compound (III)], and in all three cases the colourless thin rectangular plates obtained proved to be multiple or twinned to a greater or lesser degree. The results presented here are the outcome of a laborious and painstaking sample screening, which afforded the few crystals amenable to a full crystallographic study. However, the unaccountable effect of twinning showed up in the requirement for a large number of restraints in order to refine successfully the models obtained, as well as in the large residual electron density found in the final difference electron-density maps. In spite of these drawbacks, the structures obtained appear quite reasonable and they provide a rich survey of (at least qualitative) crystallographic results, in particular, a new, hitherto unreported, coordination mode for the ita anion (coordination mode No. 11 in the second scheme).

Tables 1, 2 and 3 present some relevant structural parameters for the three structures. Intermolecular interactions are surveyed in Tables 4 and 5.

Compound (I), [Gd2(bpy)2(ita)3].4H2O, is shown in Fig. 1. It presents a two-dimensional polymeric structure built up around two independent Gd atoms displaying similar GdO7N2 environments, with both N atoms provided by two chelating bpy units each. The coordinating O atoms are from the three different ita anions, which act in two well differentiated ways. (In what follows, trailing digits will indicate a definite group of atoms. Thus, ita3 indicates the anion composed of atoms C13–C53/O13–O43, etc.)

Ita3 and ita5 (Fig. 2a). present a µ3-(O,O':O'',O''':O''') binding mode (coordination mode No. 4), bridging three symmetry-related Gd atoms of the same sort each, i.e. ita5 to atoms Gd1 and ita 3 to atoms Gd2. The bridging effect of these two anions is to generate columnar arrays of centrosymmetric dimers made up of either Gd1 or Gd2 coordination polyhedra, respectively, parallel to b (vertical arrays in Fig. 2a)

Ita4 (Fig. 2b) presents a µ4-(O:O':O'':O''') coordination mode (No. 7) and joins neighbouring columns of different kinds through transverse bridging, i.e. Gd1 columns are joined to Gd2 columns (horizontal arrays in Fig. 2a), to generate the above-mentioned two-dimensional polymeric structure parallel to (011). The hydrophobic aromatic bpy groups stretch outwards, enlarging these sheets on both sides, and serve as interaction agents between neighbouring sheets through interdigitation (Fig. 2b), resulting in rather short interplanar ππ distances (Table 4).

Compound (II), [Gd2(bpy)(ita)3(H2O)2], is shown in Fig. 3. This second gadolinium phase also presents two independent Gd atoms, but the overall formula and individual coordination are different. The chemical unit is in this case constructed out of two Gd cations, one bpy ligand, three ita anions and two aqua ligands, to give the minimum formula shown above, but since the whole structure is built up around a twofold axis passing through both cations, as well as through the centre of the bpy ligand and one of the ita anions, only half of the chemical unit is independent (Z' = 0.5).

Contrasting with (I), the two coordination polyhedra of (II) are completely different from each other (Fig. 3). Gd1 is ten-coordinated by five chelating ligands, one bpy and four carboxylate groups from two pairs of symmetry-related ita2 and ita3 groups (coordination mode No. 4). Gd2, instead, receives four bonds from two very open –O—C4—O– bites from ita2 and two extra bridging bonds from the vacant carboxylate atom O12, completing a new, hitherto unreported, µ3-(O,O':O',O'':O''') binding mode for the ita2 anion (coordination mode No. 11). Two water molecules complete an eightfold coordination of the cation (Fig. 3).

The tight ita linkage drives the formation of very broad strips, the width of four coordination polyhedra, which run along [001] (Fig. 4a). In these arrays the hydrophobic bpy are located at the ribbon `edges', so that the structures link laterally (along [010]) in a rather feeble fashion through interdigitation of the distorted weakly interacting bpy groups (Fig. 4b and Table 4), to form a two-dimensional structure parallel to the (100) plane. The chains also interact at right angles to the latter contact, along [100], through a non-conventional C52—H52B···O42(3/2 - x, 1/2 - y, -z) bond [C—H = 0.93 Å, H···O = 2.380 (19) Å and C—H···O = 161°].

Compound (III), [Ho2(bpy)2(ita)3].4H2O, is shown in Fig. 5. The structure presents a single independent cation (Ho1), a bpy unit and one and a half ita anions in the coordination polyhedron, plus one non-bonded solvent water molecule (split over two disordered halves) stabilizing the structure. These entities are disposed around a centre of symmetry as dimeric units of general formula [Ho2(bpy)2(ita)3].2H2O, the cation being eight-coordinated by a chelating bpy and two chelating carboxylate groups from an ita2 unit and its [010] translational image (coordination mode No. 4), thus generating a chain structure along the b axis, similar to (I). The difference arises in the way in which the two bridging O atoms of the remaining ita3 unit interact. The result is an array of chains running along b, made up of dimers bridged by ita2, and these chains are in turn interconnected sideways by the centrosymmetric (and accordingly disordered at the CCH2 group) ita3. The two-dimensional structure parallel to (100) presents the bpy pointing outwards, so that interaction between sheets is provided, as in (I), by ππ contacts between interdigitated aromatic rings.

Summarizing, in the structures reported here the itaconate ligand has again shown a great coordination capability giving rise to tightly interconnected structures, all of them polymeric. Compounds (I) and (III) present two-dimensional arrays further connected by weaker ππ contacts, while compound (II) shows instead a broad strip-like formation packed via an assembly of diverse interactions. In compounds (II) and (III), some of the itaconate units present a disordered structure (in the CCH2 group) due to the ligand being bisected by a symmetry element incompatible with its internal symmetry. This is not an unusual feature in the anion, and it has already been found in many of the previously reported itaconate structures, viz. nickel itaconate (Burrows, Harrington et al., 2004), and many of the lanthanide itaconate complexes, viz. Ln = Eu, Dy, Er and Yb (Liu et al., 2005).

Experimental top

The reactants for the syntheses were the corresponding lanthanide oxides (Gd2O3 or Ho2O3, 5.0 × 10-4 M), itaconic acid (1.5 × 10-3 M) and 2,2'-bipyridine (5.0 or 10.0 × 10-4 M), corresponding to molar ratios 1:3:2 for (I), 1:3:1 for (II) and 1:3:1 for (III). Starting materials were used as purchased, without further purification. The mixture of the corresponding oxide in H2O (50 ml) was heated under reflux for about 30 min, after which the itaconic acid was added and then the base, in that specific order. This was relevant, since on inversion of the sequence the reaction would not take place. On standing, colourless crystals for the gadolinium complexes, and pink for the holmium one, appeared. In all three cases the crystals obtained were multiple to a larger or smaller degree, necessitating a lengthy screening process to find the most suitable (though far from perfect) crystals for X-ray diffraction analysis. The first two compounds came out formulated as planned in the synthesis, i.e. in 1:3:2 and 1:3:1 ratios, respectively. Compound (III) instead appeared in a 1:3:2 ratio, with a doubling of the (expected) bpy content. Hydrothermal methods were also tried in the (unsuccessful) search for better specimens.

Refinement top

As already stated, the specimens were multiply twinned in a way that made it impossible to find an adequate twin law to separate them. However, in the three crystals finally chosen for data collection it was possible to integrate the main contribution as an independent set by appropriately setting the orientation matrix, which thus acted as a filter. This worked fine with structures (II) and (III), but not so well for structure (I), where severe overlap forced the rejection of a fraction of the data set (ca 13%). In the remaining two structures, the final integrated fraction at a level of 2θ = 50° was almost unity.

Structure resolution was in all cases straightforward by standard direct methods, but refinement was only possible by applying similarity restraints to (expected) similar bonds and angles in different ligands. This was directly linked to the degree of difficulty found in the integration of each structure. Thus, (I) required the full power of the SHELXL97 package (Sheldrick, 2008) (instructions SADI, DELU, SIMU and, in a few pathological cases, ISOR, DFIX and DANG). Structures (II) and (III) required milder restrictions.

The unavoidable problems resulting from poor data quality were evident in the high R values obtained, the unusual SHELXL97 weighting schemes and the large unaccounted-for electron-density peaks and holes, which were, for (I): 7.17 e A-3 (0.36 Å from C45) and -3.02 e A-3 (1.16 Å from C43); for (II): 1.83 e A-3 (0.74 Å from C23) and -4.17 e A-3 (1.29 Å from H41); for (III): 10.21 e A-3 (1.02 Å from HO1) and -3.30 e A-3 (1.02 Å from H81)

C-bound H atoms were placed in their expected positions and allowed to ride in both coordinates (C—H = 0.93–0.97 Å) and isotropic displacement parameters [Uiso(H) = 1.2 or 1.5Ueq(C)]. O-bound H atoms could not be found and were not included in the model.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The two Gd coordination polyhedra in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z - 1; (iv) -x, -y + 1, -z - 1.]
[Figure 2] Fig. 2. Packing views of (I). (a) Showing the binding modes displayed by ita3 and ita5. (b) Showing the binding mode displayed by ita4 and the interdigitation of the bpy groups. Gd1-only columns are along the AA lines and Gd2-only columns along the BB lines.
[Figure 3] Fig. 3. The elemental dimeric unit in (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, y, -z + 1/2; (ii) -x + 1, -y + 1, -z; (iii) x, -y + 1, z + 1/2.]
[Figure 4] Fig. 4. Packing views of (II). (a) Showing the formation of the broad strips running along c. (b) Viewed down the strip direction, showing their mutual interactions. [Symmetry code: (i) 1/2 - x, 1/2 - y, 1 - z.]
[Figure 5] Fig. 5. The centrosymmetric dimeric unit in (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y + 1, z.]
[Figure 6] Fig. 6. Packing views of (III). (a) Showing the formation of chains running along c. (b) Viewed down the chain direction, showing their mutual interactions. [Symmetry code: (i) -x + 2, -y + 1, -z + 1.]
(I) Poly[[bis(2,2'-bipyridine)-µ4-itaconato-di-µ3-itaconato-digadolinium(III)] tetrahydrate] top
Crystal data top
[Gd2(C5H4O4)3(C10H8N2)2]·4H2OZ = 2
Mr = 1083.18F(000) = 1060
Triclinic, P1Dx = 1.928 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5507 (19) ÅCell parameters from 8754 reflections
b = 12.598 (3) Åθ = 2.0–26.3°
c = 17.582 (4) ŵ = 3.60 mm1
α = 71.60 (3)°T = 293 K
β = 82.32 (3)°Plate, colourless
γ = 68.39 (3)°0.20 × 0.15 × 0.08 mm
V = 1865.9 (9) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
6922 independent reflections
Radiation source: fine-focus sealed tube5639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1112
Tmin = 0.50, Tmax = 0.75k = 1516
9794 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1319P)2 + 23.4752P]
where P = (Fo2 + 2Fc2)/3
6922 reflections(Δ/σ)max = 0.001
512 parametersΔρmax = 7.16 e Å3
541 restraintsΔρmin = 3.02 e Å3
Crystal data top
[Gd2(C5H4O4)3(C10H8N2)2]·4H2Oγ = 68.39 (3)°
Mr = 1083.18V = 1865.9 (9) Å3
Triclinic, P1Z = 2
a = 9.5507 (19) ÅMo Kα radiation
b = 12.598 (3) ŵ = 3.60 mm1
c = 17.582 (4) ÅT = 293 K
α = 71.60 (3)°0.20 × 0.15 × 0.08 mm
β = 82.32 (3)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
6922 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
5639 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.75Rint = 0.076
9794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075541 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1319P)2 + 23.4752P]
where P = (Fo2 + 2Fc2)/3
6922 reflectionsΔρmax = 7.16 e Å3
512 parametersΔρmin = 3.02 e Å3
Special details top

Experimental. Data collected from twinned crystals

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.54142 (6)0.08123 (5)0.07013 (3)0.02018 (18)
Gd20.33097 (6)0.64895 (4)0.49861 (3)0.01835 (18)
N110.5043 (12)0.1010 (10)0.2137 (7)0.039 (2)
N210.4343 (13)0.2964 (11)0.0841 (6)0.040 (2)
C110.5467 (16)0.0002 (14)0.2747 (7)0.045 (3)
H110.58990.07310.26350.054*
C210.5271 (18)0.0021 (15)0.3536 (8)0.054 (3)
H210.55180.06830.39540.065*
C310.4702 (19)0.1114 (13)0.3687 (10)0.059 (4)
H310.45110.11600.42110.070*
C410.4420 (19)0.2142 (16)0.3049 (8)0.057 (4)
H410.41930.28760.31400.068*
C510.4477 (17)0.2077 (12)0.2275 (8)0.047 (3)
C610.4101 (17)0.3160 (12)0.1558 (8)0.045 (3)
C710.341 (2)0.4301 (12)0.1616 (11)0.060 (4)
H710.32720.44230.21200.073*
C810.292 (2)0.5270 (17)0.0952 (9)0.072 (4)
H810.24120.60320.10040.087*
C910.322 (2)0.5074 (14)0.0205 (12)0.069 (4)
H910.29070.56930.02630.083*
C1010.4005 (19)0.3915 (11)0.0189 (10)0.054 (3)
H1010.43210.37860.03080.065*
N120.2390 (14)0.7852 (9)0.4029 (6)0.039 (2)
N220.2316 (12)0.8729 (9)0.5647 (6)0.035 (2)
C120.2394 (18)0.7356 (13)0.3233 (8)0.049 (3)
H120.26610.65330.30220.058*
C220.200 (2)0.8069 (12)0.2728 (10)0.053 (3)
H220.19730.77430.21750.064*
C320.165 (2)0.9282 (12)0.3072 (9)0.054 (3)
H320.14370.97660.27360.064*
C420.1588 (18)0.9812 (13)0.3890 (8)0.049 (3)
H420.13341.06310.41150.058*
C520.1932 (16)0.9038 (10)0.4355 (8)0.039 (3)
C620.1917 (16)0.9551 (9)0.5252 (8)0.038 (3)
C720.1478 (19)1.0763 (11)0.5631 (9)0.051 (3)
H720.12091.13070.53360.061*
C820.1448 (19)1.1143 (12)0.6455 (8)0.052 (3)
H820.11681.19530.67250.062*
C920.1834 (18)1.0320 (10)0.6881 (9)0.049 (3)
H920.18181.05600.74390.058*
C1020.2246 (16)0.9128 (10)0.6451 (7)0.037 (3)
H1020.24890.85700.67340.045*
O130.1201 (9)0.6941 (8)0.5862 (5)0.034 (2)
O230.0762 (9)0.6483 (8)0.4540 (4)0.0285 (18)
O330.3706 (9)0.5375 (6)0.4844 (5)0.0260 (17)
O430.4711 (8)0.7276 (6)0.4863 (6)0.0272 (18)
C130.0305 (9)0.6616 (11)0.5252 (5)0.034 (2)
C230.1234 (8)0.6718 (6)0.5386 (5)0.024 (2)
C330.1988 (8)0.6296 (9)0.4617 (5)0.026 (2)
H33A0.20710.68060.42870.031*
H33B0.13460.54980.43400.031*
C430.3522 (9)0.6268 (7)0.4678 (7)0.0217 (19)
C530.1760 (14)0.7136 (12)0.6109 (6)0.041 (3)
H53A0.11620.73730.65440.049*
H53B0.27330.71980.61890.049*
O140.4750 (12)0.1058 (8)0.1445 (5)0.034 (2)
O240.4983 (12)0.2025 (8)0.0628 (4)0.037 (2)
O340.3925 (9)0.5320 (6)0.3922 (4)0.0205 (15)
O440.5557 (10)0.3423 (7)0.3765 (5)0.037 (2)
C140.4915 (19)0.2033 (10)0.1380 (5)0.047 (3)
C240.5472 (16)0.2844 (12)0.2068 (6)0.074 (4)
H24A0.61460.23880.24070.089*
H24B0.60310.32020.18680.089*
C340.4163 (19)0.3810 (14)0.2552 (6)0.087 (5)
C440.4433 (15)0.4161 (9)0.3437 (5)0.045 (3)
C540.288 (2)0.428 (2)0.2179 (12)0.116 (8)
H54A0.20660.48680.24750.140*
H54B0.27950.40110.16240.140*
O150.2119 (9)0.0298 (8)0.1379 (5)0.034 (2)
O250.2449 (8)0.1484 (7)0.0479 (5)0.0283 (18)
O350.3230 (8)0.0445 (7)0.0087 (5)0.0280 (17)
O450.2615 (9)0.1472 (8)0.0960 (5)0.0299 (18)
C150.1499 (8)0.0477 (7)0.0917 (5)0.0174 (13)
C250.0092 (8)0.0311 (7)0.0992 (5)0.026 (2)
C350.0502 (8)0.1281 (8)0.0410 (6)0.027 (2)
H35A0.02500.13230.01180.033*
H35B0.01380.20210.05180.033*
C450.2035 (9)0.1239 (8)0.0370 (6)0.0174 (13)
C550.0973 (14)0.0594 (11)0.1516 (8)0.042 (3)
H55A0.19720.06690.15450.051*
H55B0.06030.11650.18610.051*
O1W0.066 (2)0.2802 (13)0.1664 (11)0.090 (5)
O2W0.034 (2)0.5836 (17)0.2922 (11)0.101 (6)
O3W0.157 (2)0.3996 (15)0.2784 (10)0.087 (5)
O4W0.024 (2)0.648 (2)0.1446 (18)0.148 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0152 (3)0.0299 (3)0.0176 (3)0.0106 (2)0.0006 (2)0.0068 (2)
Gd20.0127 (3)0.0149 (3)0.0258 (3)0.0051 (2)0.0027 (2)0.0023 (2)
N110.020 (5)0.065 (6)0.051 (6)0.025 (4)0.001 (4)0.030 (5)
N210.031 (5)0.046 (5)0.058 (6)0.021 (4)0.006 (5)0.029 (5)
C110.029 (6)0.078 (7)0.046 (6)0.024 (5)0.003 (5)0.032 (6)
C210.041 (6)0.085 (8)0.042 (6)0.015 (6)0.003 (5)0.034 (6)
C310.042 (7)0.085 (8)0.048 (7)0.013 (6)0.003 (6)0.032 (6)
C410.043 (6)0.078 (8)0.054 (7)0.015 (6)0.007 (6)0.033 (6)
C510.029 (5)0.064 (6)0.055 (6)0.018 (5)0.008 (5)0.031 (5)
C610.034 (5)0.055 (6)0.059 (6)0.016 (5)0.012 (5)0.037 (5)
C710.056 (7)0.054 (7)0.072 (8)0.014 (6)0.012 (6)0.031 (6)
C810.064 (8)0.060 (7)0.082 (8)0.012 (7)0.015 (7)0.024 (7)
C910.061 (8)0.057 (7)0.080 (8)0.014 (7)0.015 (7)0.022 (7)
C1010.050 (7)0.047 (6)0.069 (7)0.017 (6)0.010 (6)0.026 (6)
N120.037 (5)0.039 (5)0.049 (5)0.011 (4)0.008 (5)0.030 (5)
N220.027 (5)0.026 (4)0.051 (6)0.010 (4)0.007 (4)0.006 (4)
C120.042 (6)0.051 (6)0.052 (6)0.010 (5)0.011 (5)0.026 (6)
C220.049 (7)0.058 (7)0.052 (7)0.016 (6)0.013 (6)0.024 (6)
C320.051 (7)0.053 (7)0.061 (7)0.016 (6)0.005 (6)0.025 (6)
C420.045 (6)0.042 (6)0.064 (7)0.013 (5)0.003 (6)0.026 (6)
C520.035 (5)0.033 (5)0.057 (6)0.017 (4)0.000 (5)0.021 (5)
C620.030 (5)0.028 (5)0.057 (6)0.012 (4)0.001 (5)0.013 (5)
C720.045 (6)0.029 (6)0.069 (7)0.013 (5)0.000 (6)0.001 (6)
C820.046 (7)0.027 (5)0.066 (7)0.012 (5)0.005 (6)0.008 (6)
C920.042 (6)0.031 (6)0.057 (7)0.009 (5)0.011 (6)0.008 (5)
C1020.033 (6)0.026 (5)0.048 (6)0.009 (4)0.011 (5)0.001 (5)
O130.019 (4)0.039 (5)0.040 (5)0.014 (4)0.010 (4)0.004 (4)
O230.027 (3)0.030 (3)0.032 (3)0.016 (2)0.000 (2)0.006 (2)
O330.023 (4)0.020 (4)0.029 (4)0.002 (3)0.005 (3)0.005 (3)
O430.019 (4)0.020 (4)0.046 (5)0.010 (3)0.003 (3)0.010 (4)
C130.021 (5)0.030 (5)0.038 (5)0.001 (4)0.001 (4)0.006 (4)
C230.016 (4)0.028 (4)0.030 (5)0.010 (4)0.003 (4)0.010 (4)
C330.017 (5)0.028 (5)0.029 (5)0.005 (4)0.004 (4)0.006 (4)
C430.020 (3)0.019 (3)0.028 (3)0.010 (2)0.005 (2)0.009 (2)
C530.024 (6)0.050 (7)0.045 (7)0.014 (5)0.002 (5)0.004 (6)
O140.053 (5)0.040 (5)0.014 (4)0.026 (4)0.001 (4)0.002 (4)
O240.050 (5)0.040 (5)0.016 (4)0.013 (4)0.006 (4)0.004 (4)
O340.0202 (18)0.0219 (17)0.0222 (17)0.0059 (10)0.0031 (10)0.0109 (11)
O440.039 (5)0.033 (5)0.029 (4)0.004 (4)0.003 (4)0.006 (4)
C140.063 (6)0.052 (6)0.025 (5)0.020 (5)0.002 (5)0.007 (5)
C240.085 (8)0.069 (7)0.044 (7)0.013 (7)0.002 (7)0.001 (6)
C340.079 (8)0.075 (7)0.054 (7)0.001 (7)0.014 (6)0.012 (6)
C440.042 (5)0.046 (5)0.031 (5)0.005 (5)0.002 (5)0.002 (5)
C540.100 (11)0.095 (11)0.081 (10)0.006 (10)0.017 (10)0.019 (10)
O150.020 (4)0.044 (5)0.037 (5)0.012 (4)0.001 (4)0.012 (4)
O250.023 (3)0.030 (3)0.030 (3)0.009 (2)0.005 (2)0.007 (2)
O350.025 (4)0.034 (4)0.025 (4)0.009 (3)0.002 (3)0.010 (3)
O450.021 (4)0.041 (4)0.031 (4)0.007 (3)0.002 (3)0.021 (3)
C150.019 (2)0.017 (2)0.021 (2)0.0111 (18)0.0110 (19)0.0113 (19)
C250.025 (5)0.027 (4)0.029 (5)0.008 (4)0.004 (4)0.013 (4)
C350.027 (5)0.023 (5)0.028 (5)0.006 (4)0.006 (4)0.008 (4)
C450.019 (2)0.017 (2)0.021 (2)0.0111 (18)0.0110 (19)0.0113 (19)
C550.025 (6)0.045 (7)0.049 (7)0.010 (5)0.006 (5)0.004 (6)
O1W0.100 (13)0.053 (8)0.092 (12)0.020 (8)0.024 (10)0.015 (8)
O2W0.116 (15)0.096 (13)0.089 (13)0.032 (12)0.003 (11)0.034 (11)
O3W0.106 (13)0.077 (10)0.089 (12)0.033 (9)0.022 (10)0.030 (9)
O4W0.084 (14)0.134 (19)0.23 (3)0.017 (13)0.046 (16)0.10 (2)
Geometric parameters (Å, º) top
Gd1—O35i2.346 (7)C32—H320.9300
Gd1—O242.346 (8)C42—C521.385 (10)
Gd1—O14i2.358 (8)C42—H420.9300
Gd1—O25ii2.426 (8)C52—C621.503 (16)
Gd1—O15ii2.489 (9)C62—C721.383 (10)
Gd1—O452.514 (8)C72—C821.376 (11)
Gd1—N112.580 (11)C72—H720.9300
Gd1—N212.600 (11)C82—C921.380 (11)
Gd1—O352.713 (8)C82—H820.9300
Gd1—Gd1i3.9748 (13)C92—C1021.382 (10)
Gd2—O341.983 (7)C92—H920.9300
Gd2—O44iii2.304 (8)C102—H1020.9300
Gd2—O33iv2.347 (7)O13—C131.336 (9)
Gd2—O232.456 (8)O23—C131.321 (9)
Gd2—O132.487 (9)O33—C431.322 (8)
Gd2—O43ii2.496 (7)O43—C431.336 (9)
Gd2—N222.542 (11)C13—C231.472 (8)
Gd2—N122.621 (10)C23—C531.303 (9)
Gd2—O33ii2.679 (8)C23—C331.482 (8)
Gd2—Gd2iii3.9573 (19)C33—C431.498 (8)
N11—C511.340 (11)C33—H33A0.9700
N11—C111.346 (11)C33—H33B0.9700
N21—C611.334 (11)C53—H53A0.9300
N21—C1011.342 (11)C53—H53B0.9300
C11—C211.383 (10)O14—C141.335 (9)
C11—H110.9300O24—C141.329 (9)
C21—C311.380 (11)O34—C441.378 (9)
C21—H210.9300O44—C441.336 (9)
C31—C411.384 (11)C14—C241.496 (9)
C31—H310.9300C24—C341.510 (12)
C41—C511.381 (11)C24—H24A0.9700
C41—H410.9300C24—H24B0.9700
C51—C611.501 (17)C34—C541.33 (2)
C61—C711.375 (11)C34—C441.492 (8)
C71—C811.378 (11)C54—H54A0.9300
C71—H710.9300C54—H54B0.9300
C81—C911.39 (2)O15—C151.327 (8)
C81—H810.9300O25—C151.322 (8)
C91—C1011.381 (11)O35—C451.368 (8)
C91—H910.9300O45—C451.390 (9)
C101—H1010.9300C15—C251.473 (8)
N12—C121.340 (11)C15—Gd1v2.880 (8)
N12—C521.341 (11)C25—C551.301 (9)
N22—C621.339 (10)C25—C351.466 (8)
N22—C1021.345 (11)C35—C451.439 (8)
C12—C221.380 (11)C35—H35A0.9700
C12—H120.9300C35—H35B0.9700
C22—C321.381 (11)C55—H55A0.9300
C22—H220.9300C55—H55B0.9300
C32—C421.382 (11)
O35i—Gd1—O2475.0 (3)C51—C41—C31120.0 (16)
O35i—Gd1—O14i76.2 (3)C51—C41—H41120.0
O24—Gd1—O14i135.9 (3)C31—C41—H41120.0
O35i—Gd1—O25ii85.6 (3)N11—C51—C41119.4 (14)
O24—Gd1—O25ii80.3 (3)N11—C51—C61117.3 (11)
O14i—Gd1—O25ii129.5 (3)C41—C51—C61122.9 (12)
O35i—Gd1—O15ii76.5 (3)N21—C61—C71120.2 (14)
O24—Gd1—O15ii127.4 (3)N21—C61—C51116.6 (11)
O14i—Gd1—O15ii75.8 (3)C71—C61—C51123.0 (12)
O25ii—Gd1—O15ii54.2 (2)C61—C71—C81122.0 (17)
O35i—Gd1—O45126.0 (2)C61—C71—H71119.0
O24—Gd1—O4589.1 (3)C81—C71—H71119.0
O14i—Gd1—O4581.7 (3)C71—C81—C91117.9 (17)
O25ii—Gd1—O45142.8 (3)C71—C81—H81121.1
O15ii—Gd1—O45142.9 (3)C91—C81—H81121.1
O35i—Gd1—N11144.0 (3)C101—C91—C81116.9 (17)
O24—Gd1—N11139.6 (3)C101—C91—H91121.6
O14i—Gd1—N1178.9 (3)C81—C91—H91121.6
O25ii—Gd1—N1190.7 (3)N21—C101—C91124.6 (16)
O15ii—Gd1—N1172.4 (3)N21—C101—H101117.7
O45—Gd1—N1174.6 (3)C91—C101—H101117.7
O35i—Gd1—N21147.5 (3)C12—N12—C52121.7 (11)
O24—Gd1—N2176.5 (3)C12—N12—Gd2119.8 (8)
O14i—Gd1—N21136.2 (3)C52—N12—Gd2118.5 (8)
O25ii—Gd1—N2174.6 (3)C62—N22—C102117.0 (11)
O15ii—Gd1—N21109.9 (3)C62—N22—Gd2124.5 (8)
O45—Gd1—N2168.3 (3)C102—N22—Gd2118.4 (7)
N11—Gd1—N2163.2 (3)N12—C12—C22119.8 (14)
O35i—Gd1—O3576.7 (3)N12—C12—H12120.1
O24—Gd1—O3570.7 (3)C22—C12—H12120.1
O14i—Gd1—O3570.7 (3)C12—C22—C32117.8 (15)
O25ii—Gd1—O35149.0 (3)C12—C22—H22121.1
O15ii—Gd1—O35141.0 (3)C32—C22—H22121.1
O45—Gd1—O3549.52 (19)C22—C32—C42123.0 (15)
N11—Gd1—O35118.5 (3)C22—C32—H32118.5
N21—Gd1—O35107.9 (3)C42—C32—H32118.5
O35i—Gd1—C15ii76.7 (3)C32—C42—C52115.5 (14)
O24—Gd1—C15ii102.6 (3)C32—C42—H42122.3
O14i—Gd1—C15ii102.4 (3)C52—C42—H42122.3
O25ii—Gd1—C15ii27.15 (18)N12—C52—C42121.8 (12)
O15ii—Gd1—C15ii27.40 (19)N12—C52—C62119.6 (10)
O45—Gd1—C15ii156.9 (2)C42—C52—C62118.3 (10)
N11—Gd1—C15ii83.8 (3)N22—C62—C72123.2 (13)
N21—Gd1—C15ii94.8 (3)N22—C62—C52113.8 (10)
O35—Gd1—C15ii153.4 (2)C72—C62—C52122.9 (11)
O35i—Gd1—Gd1i41.6 (2)C82—C72—C62118.4 (14)
O24—Gd1—Gd1i67.7 (2)C82—C72—H72120.8
O14i—Gd1—Gd1i68.52 (18)C62—C72—H72120.8
O25ii—Gd1—Gd1i122.7 (2)C72—C82—C92119.9 (14)
O15ii—Gd1—Gd1i113.2 (2)C72—C82—H82120.0
O45—Gd1—Gd1i84.49 (15)C92—C82—H82120.0
N11—Gd1—Gd1i143.4 (2)C82—C92—C102117.7 (14)
N21—Gd1—Gd1i135.1 (3)C82—C92—H92121.2
O35—Gd1—Gd1i35.05 (14)C102—C92—H92121.2
C15ii—Gd1—Gd1i118.32 (19)N22—C102—C92123.8 (13)
O34—Gd2—O44iii131.3 (3)N22—C102—H102118.1
O34—Gd2—O33iv74.6 (3)C92—C102—H102118.1
O44iii—Gd2—O33iv75.5 (3)C13—O13—Gd294.2 (5)
O34—Gd2—O2384.7 (3)C13—O23—Gd296.0 (5)
O44iii—Gd2—O23129.5 (3)C43—O33—Gd2iv163.3 (6)
O33iv—Gd2—O2384.8 (3)C43—O33—Gd2v92.6 (5)
O34—Gd2—O13131.4 (3)Gd2iv—O33—Gd2v103.7 (3)
O44iii—Gd2—O1376.6 (3)C43—O43—Gd2v100.7 (5)
O33iv—Gd2—O1377.4 (3)O23—C13—O13114.3 (7)
O23—Gd2—O1353.7 (2)O23—C13—C23122.4 (7)
O34—Gd2—O43ii87.5 (3)O13—C13—C23121.4 (7)
O44iii—Gd2—O43ii80.5 (3)O23—C13—Gd257.2 (4)
O33iv—Gd2—O43ii126.6 (2)O13—C13—Gd258.6 (5)
O23—Gd2—O43ii144.0 (3)C23—C13—Gd2178.3 (7)
O13—Gd2—O43ii140.8 (3)C53—C23—C13120.4 (8)
O34—Gd2—N22140.4 (3)C53—C23—C33128.7 (8)
O44iii—Gd2—N2279.8 (3)C13—C23—C33110.9 (6)
O33iv—Gd2—N22144.4 (3)C23—C33—C43116.0 (7)
O23—Gd2—N2291.6 (3)C23—C33—H33A108.3
O13—Gd2—N2272.1 (3)C43—C33—H33A108.3
O43ii—Gd2—N2272.8 (3)C23—C33—H33B108.3
O34—Gd2—N1277.8 (3)C43—C33—H33B108.3
O44iii—Gd2—N12137.3 (3)H33A—C33—H33B107.4
O33iv—Gd2—N12147.0 (3)O33—C43—O43113.2 (7)
O23—Gd2—N1274.8 (3)O33—C43—C33121.7 (7)
O13—Gd2—N12108.9 (3)O43—C43—C33120.8 (7)
O43ii—Gd2—N1269.2 (3)O33—C43—Gd2v61.6 (4)
N22—Gd2—N1263.2 (3)O43—C43—Gd2v53.8 (4)
O34—Gd2—O33ii66.2 (3)C33—C43—Gd2v172.7 (7)
O44iii—Gd2—O33ii69.9 (3)C23—C53—H53A120.0
O33iv—Gd2—O33ii76.3 (3)C23—C53—H53B120.0
O23—Gd2—O33ii148.5 (3)H53A—C53—H53B120.0
O13—Gd2—O33ii141.5 (3)C14—O14—Gd1i143.5 (6)
O43ii—Gd2—O33ii50.62 (19)C14—O24—Gd1144.6 (7)
N22—Gd2—O33ii118.4 (3)C44—O34—Gd2150.7 (7)
N12—Gd2—O33ii108.6 (3)C44—O44—Gd2iii136.2 (6)
O34—Gd2—C13106.6 (3)O24—C14—O14113.9 (8)
O44iii—Gd2—C13102.6 (3)O24—C14—C24121.5 (9)
O33iv—Gd2—C1376.4 (3)O14—C14—C24121.7 (9)
O23—Gd2—C1326.87 (19)C14—C24—C34110.1 (10)
O13—Gd2—C1327.27 (19)C14—C24—H24A109.6
O43ii—Gd2—C13156.2 (3)C34—C24—H24A109.6
N22—Gd2—C1384.5 (3)C14—C24—H24B109.6
N12—Gd2—C1394.7 (4)C34—C24—H24B109.6
O33ii—Gd2—C13152.7 (3)H24A—C24—H24B108.1
O34—Gd2—C43ii71.8 (3)C54—C34—C44125.0 (12)
O44iii—Gd2—C43ii77.9 (3)C54—C34—C24119.7 (11)
O33iv—Gd2—C43ii102.0 (2)C44—C34—C24115.4 (8)
O23—Gd2—C43ii152.5 (3)O44—C44—O34113.8 (8)
O13—Gd2—C43ii153.7 (3)O44—C44—C34119.5 (7)
O43ii—Gd2—C43ii25.57 (18)O34—C44—C34123.8 (8)
N22—Gd2—C43ii97.4 (3)C34—C54—H54A120.0
N12—Gd2—C43ii86.1 (3)C34—C54—H54B120.0
O33ii—Gd2—C43ii25.73 (17)H54A—C54—H54B120.0
C13—Gd2—C43ii178.1 (3)C15—O15—Gd1v92.9 (5)
O34—Gd2—Gd2iii64.5 (2)C15—O25—Gd1v96.0 (5)
O44iii—Gd2—Gd2iii67.6 (2)C45—O35—Gd1i159.1 (6)
O33iv—Gd2—Gd2iii41.13 (19)C45—O35—Gd196.5 (5)
O23—Gd2—Gd2iii121.5 (2)Gd1i—O35—Gd1103.3 (3)
O13—Gd2—Gd2iii113.6 (2)C45—O45—Gd1105.0 (5)
O43ii—Gd2—Gd2iii85.65 (15)O25—C15—O15115.4 (7)
N22—Gd2—Gd2iii143.5 (2)O25—C15—C25122.1 (6)
N12—Gd2—Gd2iii135.5 (3)O15—C15—C25121.7 (7)
O33ii—Gd2—Gd2iii35.19 (14)O25—C15—Gd1v56.9 (4)
C13—Gd2—Gd2iii117.5 (2)O15—C15—Gd1v59.7 (4)
C43ii—Gd2—Gd2iii60.89 (15)C25—C15—Gd1v177.7 (6)
C51—N11—C11120.9 (12)C55—C25—C35126.5 (9)
C51—N11—Gd1121.6 (9)C55—C25—C15122.5 (8)
C11—N11—Gd1117.5 (8)C35—C25—C15111.0 (6)
C61—N21—C101117.8 (13)C45—C35—C25118.8 (8)
C61—N21—Gd1121.4 (9)C45—C35—H35A107.6
C101—N21—Gd1120.8 (9)C25—C35—H35A107.6
N11—C11—C21121.2 (14)C45—C35—H35B107.6
N11—C11—H11119.4C25—C35—H35B107.6
C21—C11—H11119.4H35A—C35—H35B107.0
C31—C21—C11118.4 (16)O35—C45—O45105.5 (7)
C31—C21—H21120.8O35—C45—C35124.6 (7)
C11—C21—H21120.8O45—C45—C35121.5 (7)
C21—C31—C41119.1 (15)C25—C55—H55A120.0
C21—C31—H31120.5C25—C55—H55B120.0
C41—C31—H31120.5H55A—C55—H55B120.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z1; (iv) x, y+1, z1; (v) x1, y, z.
(II) Poly[diaqua(2,2'-bipyridine)di-µ3-itaconato-µ2-itaconato- digadolinium(III)] top
Crystal data top
[Gd2(C5H4O4)3(C10H8N2)(H2O)2]F(000) = 1712
Mr = 890.96Dx = 2.085 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8794 reflections
a = 16.427 (5) Åθ = 1.9–26.9°
b = 18.645 (5) ŵ = 4.71 mm1
c = 9.300 (3) ÅT = 293 K
β = 94.949 (6)°Plate, colourless
V = 2837.7 (14) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART? CCD area-detector
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 2121
Tmin = 0.25, Tmax = 0.62k = 2323
9298 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0517P)2 + 103.4472P]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 1.83 e Å3
150 restraintsΔρmin = 4.17 e Å3
Crystal data top
[Gd2(C5H4O4)3(C10H8N2)(H2O)2]V = 2837.7 (14) Å3
Mr = 890.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.427 (5) ŵ = 4.71 mm1
b = 18.645 (5) ÅT = 293 K
c = 9.300 (3) Å0.30 × 0.25 × 0.10 mm
β = 94.949 (6)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
2689 reflections with I > 2σ(I)
Tmin = 0.25, Tmax = 0.62Rint = 0.105
9298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066150 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0517P)2 + 103.4472P]
where P = (Fo2 + 2Fc2)/3
3098 reflectionsΔρmax = 1.83 e Å3
200 parametersΔρmin = 4.17 e Å3
Special details top

Experimental. Data collected from twinned crystals

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.50000.21882 (4)0.25000.0331 (2)
Gd20.50000.43946 (3)0.25000.01846 (19)
N110.5779 (8)0.1029 (6)0.3113 (13)0.050 (3)
C110.6484 (11)0.1063 (8)0.3928 (17)0.060 (4)
H110.67600.14980.40300.073*
C210.6816 (13)0.0458 (11)0.463 (2)0.080 (5)
H210.73300.04700.51350.097*
C310.6368 (13)0.0141 (11)0.455 (2)0.085 (6)
H310.65320.05280.51400.102*
C410.5691 (13)0.0201 (10)0.366 (2)0.078 (5)
H410.54320.06420.35290.093*
C510.5372 (8)0.0409 (7)0.2915 (15)0.045 (3)
O120.5749 (5)0.4617 (4)0.1544 (8)0.0327 (17)
O220.5910 (5)0.4710 (4)0.0827 (7)0.0267 (15)
O320.5644 (5)0.3314 (4)0.1796 (9)0.0360 (18)
O420.6508 (6)0.2446 (5)0.2084 (11)0.054 (3)
C120.6088 (6)0.4432 (5)0.0358 (11)0.024 (2)
C220.6712 (7)0.3861 (6)0.0265 (13)0.032 (2)
C320.6989 (8)0.3539 (7)0.1154 (14)0.041 (3)
H32A0.71270.39210.18420.050*
H32B0.74800.32610.10560.050*
C420.6355 (7)0.3063 (6)0.1735 (12)0.033 (2)
C520.7024 (10)0.3670 (8)0.1438 (17)0.059 (4)
H52A0.68540.38920.23080.071*
H52B0.74190.33120.14100.071*
O130.5309 (7)0.1816 (5)0.0072 (10)0.060 (3)
O230.4288 (6)0.2548 (4)0.0199 (9)0.041 (2)
C130.4747 (8)0.2186 (6)0.0533 (12)0.038 (3)
C230.4674 (8)0.2241 (6)0.2172 (14)0.044 (3)
C530.4022 (18)0.2275 (15)0.269 (3)0.053 (7)0.50
H53A0.39250.23070.36880.064*0.50
H53B0.35860.22710.21150.064*0.50
O1W0.5856 (5)0.3969 (4)0.4555 (8)0.0347 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0624 (6)0.0188 (4)0.0203 (4)0.0000.0161 (3)0.000
Gd20.0240 (4)0.0180 (3)0.0136 (3)0.0000.0024 (2)0.000
N110.071 (7)0.035 (5)0.047 (6)0.006 (5)0.026 (5)0.005 (4)
C110.078 (8)0.050 (7)0.055 (7)0.006 (6)0.016 (6)0.007 (6)
C210.084 (9)0.086 (9)0.073 (9)0.018 (7)0.014 (7)0.017 (7)
C310.095 (9)0.079 (9)0.084 (9)0.000 (8)0.019 (8)0.025 (7)
C410.089 (9)0.064 (8)0.084 (9)0.001 (7)0.029 (7)0.001 (7)
C510.052 (5)0.038 (4)0.046 (5)0.010 (4)0.014 (4)0.002 (4)
O120.047 (4)0.035 (4)0.018 (3)0.012 (3)0.013 (3)0.000 (3)
O220.040 (4)0.025 (3)0.017 (3)0.002 (3)0.011 (3)0.004 (3)
O320.045 (4)0.027 (3)0.038 (4)0.005 (3)0.013 (3)0.011 (3)
O420.065 (6)0.037 (4)0.065 (6)0.021 (4)0.024 (5)0.019 (4)
C120.031 (5)0.021 (4)0.022 (4)0.000 (4)0.006 (4)0.007 (4)
C220.032 (5)0.033 (5)0.035 (5)0.005 (4)0.017 (4)0.010 (4)
C320.042 (6)0.039 (5)0.043 (6)0.001 (5)0.004 (5)0.014 (5)
C420.044 (6)0.027 (5)0.029 (5)0.009 (4)0.013 (4)0.002 (4)
C520.069 (7)0.054 (7)0.055 (7)0.022 (6)0.013 (6)0.006 (6)
O130.089 (6)0.055 (5)0.037 (5)0.032 (5)0.018 (4)0.006 (4)
O230.061 (5)0.032 (4)0.030 (4)0.010 (4)0.012 (4)0.011 (3)
C130.062 (7)0.032 (5)0.024 (5)0.001 (5)0.016 (5)0.001 (4)
C230.053 (5)0.037 (4)0.039 (4)0.021 (4)0.010 (4)0.005 (3)
C530.050 (10)0.064 (11)0.050 (10)0.013 (8)0.025 (8)0.003 (8)
O1W0.054 (5)0.030 (4)0.019 (3)0.000 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
Gd1—O23i2.443 (9)C31—C411.33 (3)
Gd1—O232.443 (9)C31—H310.9300
Gd1—O132.456 (9)C41—C511.41 (2)
Gd1—O13i2.456 (9)C41—H410.9300
Gd1—O32i2.464 (7)C51—C51i1.39 (3)
Gd1—O322.464 (7)O12—C121.241 (13)
Gd1—N11i2.551 (11)O12—Gd2ii2.348 (8)
Gd1—N112.551 (11)O22—C121.275 (12)
Gd1—O42i2.585 (10)O32—C421.264 (13)
Gd1—O422.585 (10)O42—C421.216 (13)
Gd1—Gd24.1139 (15)C12—C221.476 (14)
Gd2—O22i2.324 (7)C22—C521.294 (18)
Gd2—O222.324 (7)C22—C321.485 (16)
Gd2—O12ii2.348 (8)C32—C421.504 (16)
Gd2—O12iii2.348 (8)C32—H32A0.9700
Gd2—O32i2.394 (8)C32—H32B0.9700
Gd2—O322.394 (8)C52—H52A0.9300
Gd2—O1Wi2.407 (8)C52—H52B0.9300
Gd2—O1W2.407 (8)O13—C131.248 (16)
N11—C511.339 (17)O23—C131.254 (14)
N11—C111.33 (2)C13—C231.522 (17)
C11—C211.39 (2)C23—C531.14 (3)
C11—H110.9300C23—C23iv1.28 (3)
C21—C311.34 (3)C53—H53A0.9300
C21—H210.9300C53—H53B0.9300
O23i—Gd1—O23148.2 (4)O22—Gd2—O3272.9 (2)
O23i—Gd1—O13139.6 (3)O12ii—Gd2—O32141.9 (3)
O23—Gd1—O1352.7 (3)O12iii—Gd2—O32122.3 (3)
O23i—Gd1—O13i52.7 (3)O32i—Gd2—O3265.3 (4)
O23—Gd1—O13i139.6 (3)O22i—Gd2—O1Wi104.4 (3)
O13—Gd1—O13i147.2 (5)O22—Gd2—O1Wi85.3 (3)
O23i—Gd1—O32i73.6 (3)O12ii—Gd2—O1Wi73.0 (3)
O23—Gd1—O32i79.3 (3)O12iii—Gd2—O1Wi144.1 (3)
O13—Gd1—O32i127.8 (3)O32i—Gd2—O1Wi72.4 (3)
O13i—Gd1—O32i82.5 (3)O32—Gd2—O1Wi75.4 (3)
O23i—Gd1—O3279.3 (3)O22i—Gd2—O1W85.3 (3)
O23—Gd1—O3273.6 (3)O22—Gd2—O1W104.4 (3)
O13—Gd1—O3282.5 (3)O12ii—Gd2—O1W144.1 (3)
O13i—Gd1—O32127.8 (3)O12iii—Gd2—O1W73.0 (3)
O32i—Gd1—O3263.2 (4)O32i—Gd2—O1W75.4 (3)
O23i—Gd1—N11i128.4 (3)O32—Gd2—O1W72.4 (3)
O23—Gd1—N11i81.0 (4)O1Wi—Gd2—O1W141.5 (4)
O13—Gd1—N11i72.2 (4)C51—N11—C11121.3 (13)
O13i—Gd1—N11i80.0 (3)C51—N11—Gd1117.7 (9)
O32i—Gd1—N11i124.2 (3)C11—N11—Gd1118.8 (10)
O32—Gd1—N11i151.7 (3)N11—C11—C21121.0 (17)
O23i—Gd1—N1181.0 (4)N11—C11—H11119.5
O23—Gd1—N11128.4 (3)C21—C11—H11119.5
O13—Gd1—N1180.0 (3)C31—C21—C11117 (2)
O13i—Gd1—N1172.2 (4)C31—C21—H21121.3
O32i—Gd1—N11151.7 (3)C11—C21—H21121.3
O32—Gd1—N11124.2 (3)C21—C31—C41122 (2)
N11i—Gd1—N1164.1 (6)C21—C31—H31119.0
O23i—Gd1—O42i102.2 (3)C41—C31—H31119.0
O23—Gd1—O42i71.8 (3)C31—C41—C51119.6 (18)
O13—Gd1—O42i117.8 (4)C31—C41—H41120.2
O13i—Gd1—O42i68.8 (4)C51—C41—H41120.2
O32i—Gd1—O42i50.4 (3)N11—C51—C51i118.8 (8)
O32—Gd1—O42i108.7 (3)N11—C51—C41117.9 (14)
N11i—Gd1—O42i73.9 (3)C51i—C51—C41123.1 (11)
N11—Gd1—O42i126.3 (3)C12—O12—Gd2ii137.3 (7)
O23i—Gd1—O4271.8 (3)C12—O22—Gd2133.2 (6)
O23—Gd1—O42102.2 (3)C42—O32—Gd2139.1 (8)
O13—Gd1—O4268.8 (4)C42—O32—Gd196.7 (6)
O13i—Gd1—O42117.8 (4)Gd2—O32—Gd1115.7 (3)
O32i—Gd1—O42108.7 (3)C42—O42—Gd192.1 (7)
O32—Gd1—O4250.4 (3)O12—C12—O22122.5 (9)
N11i—Gd1—O42126.3 (3)O12—C12—C22120.6 (10)
N11—Gd1—O4273.9 (3)O22—C12—C22117.0 (9)
O42i—Gd1—O42158.6 (4)C52—C22—C12118.2 (12)
O23i—Gd1—C13153.7 (3)C52—C22—C32121.7 (12)
O23—Gd1—C1326.4 (3)C12—C22—C32120.1 (10)
O13—Gd1—C1326.3 (3)C22—C32—C42112.9 (11)
O13i—Gd1—C13153.6 (3)C22—C32—H32A109.0
O32i—Gd1—C13103.7 (3)C42—C32—H32A109.0
O32—Gd1—C1376.4 (3)C22—C32—H32B109.0
N11i—Gd1—C1375.3 (4)C42—C32—H32B109.0
N11—Gd1—C13104.5 (4)H32A—C32—H32B107.8
O42i—Gd1—C1395.1 (4)O42—C42—O32120.5 (11)
O42—Gd1—C1384.9 (4)O42—C42—C32121.4 (11)
O23i—Gd1—C13i26.4 (3)O32—C42—C32118.0 (10)
O23—Gd1—C13i153.7 (3)O42—C42—Gd163.1 (7)
O13—Gd1—C13i153.6 (3)O32—C42—Gd157.6 (6)
O13i—Gd1—C13i26.3 (3)C32—C42—Gd1172.3 (9)
O32i—Gd1—C13i76.4 (3)C22—C52—H52A120.0
O32—Gd1—C13i103.7 (3)C22—C52—H52B120.0
N11i—Gd1—C13i104.5 (4)H52A—C52—H52B120.0
N11—Gd1—C13i75.3 (4)C13—O13—Gd193.1 (7)
O42i—Gd1—C13i84.9 (4)C13—O23—Gd193.6 (8)
O42—Gd1—C13i95.1 (4)O13—C13—O23120.6 (11)
C13—Gd1—C13i179.8 (5)O13—C13—C23118.7 (10)
O22i—Gd2—O22150.7 (3)O23—C13—C23120.5 (11)
O22i—Gd2—O12ii73.0 (2)O13—C13—Gd160.6 (6)
O22—Gd2—O12ii83.9 (3)O23—C13—Gd160.0 (6)
O22i—Gd2—O12iii83.9 (3)C23—C13—Gd1174.4 (9)
O22—Gd2—O12iii73.0 (2)C53—C23—C23iv127 (2)
O12ii—Gd2—O12iii76.6 (4)C53—C23—C13114.6 (19)
O22i—Gd2—O32i72.9 (2)C23iv—C23—C13118.8 (15)
O22—Gd2—O32i136.2 (2)C23—C53—H53A120.0
O12ii—Gd2—O32i122.3 (3)C23—C53—H53B120.0
O12iii—Gd2—O32i141.9 (3)H53A—C53—H53B120.0
O22i—Gd2—O32136.2 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z+1/2; (iv) x+1, y, z1/2.
(III) poly[[bis(2,2'-bipyridine)-µ4-itaconato-di-µ3-itaconato-diholmium(III)] dihydrate] top
Crystal data top
[Ho2(C5H4O4)3(C10H8N2)2]·2H2OF(000) = 2064
Mr = 1062.51Dx = 1.804 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8672 reflections
a = 25.023 (5) Åθ = 2.0–25.0°
b = 9.3994 (19) ŵ = 4.09 mm1
c = 18.229 (4) ÅT = 293 K
β = 114.13 (3)°Plate, colourless
V = 3912.8 (17) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4299 independent reflections
Radiation source: fine-focus sealed tube3770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 3129
Tmin = 0.28, Tmax = 0.54k = 1212
15034 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.159P)2 + 95.0201P]
where P = (Fo2 + 2Fc2)/3
4299 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 10.21 e Å3
34 restraintsΔρmin = 3.30 e Å3
Crystal data top
[Ho2(C5H4O4)3(C10H8N2)2]·2H2OV = 3912.8 (17) Å3
Mr = 1062.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.023 (5) ŵ = 4.09 mm1
b = 9.3994 (19) ÅT = 293 K
c = 18.229 (4) Å0.30 × 0.25 × 0.15 mm
β = 114.13 (3)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4299 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
3770 reflections with I > 2σ(I)
Tmin = 0.28, Tmax = 0.54Rint = 0.057
15034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07934 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.159P)2 + 95.0201P]
where P = (Fo2 + 2Fc2)/3
4299 reflectionsΔρmax = 10.21 e Å3
263 parametersΔρmin = 3.30 e Å3
Special details top

Experimental. Data collected from twinned crystals

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ho10.923904 (18)0.39931 (4)0.44997 (3)0.0243 (2)
N110.8197 (5)0.4134 (11)0.4471 (8)0.046 (3)
N210.8370 (4)0.3439 (11)0.3155 (6)0.042 (2)
C110.8112 (7)0.450 (2)0.5125 (11)0.065 (4)
H110.84390.47660.55790.078*
C210.7579 (8)0.451 (2)0.5179 (14)0.080 (5)
H210.75500.47550.56550.096*
C310.7078 (9)0.4135 (18)0.4483 (15)0.074 (6)
H310.67040.41510.44740.089*
C410.7170 (7)0.3764 (19)0.3853 (17)0.083 (7)
H410.68490.35040.33900.100*
C510.7726 (6)0.3735 (14)0.3832 (12)0.059 (4)
C610.7827 (5)0.3348 (13)0.3107 (8)0.046 (3)
C710.7382 (6)0.278 (2)0.2383 (12)0.074 (5)
H710.70020.26650.23470.089*
C810.7503 (8)0.241 (2)0.1768 (11)0.078 (5)
H810.72120.20460.13030.093*
C910.8068 (8)0.258 (2)0.1818 (10)0.072 (5)
H910.81660.23460.13940.087*
C1010.8480 (6)0.3128 (18)0.2537 (9)0.060 (4)
H1010.88580.32790.25770.072*
O1W0.9281 (14)0.187 (5)0.6855 (17)0.116 (12)0.50
O2W0.9471 (15)0.061 (3)0.2613 (15)0.091 (10)0.50
O120.9308 (4)0.1558 (9)0.4104 (5)0.0410 (19)
O220.9112 (4)0.1850 (9)0.5152 (6)0.051 (2)
C120.9207 (5)0.1060 (9)0.4671 (7)0.036 (3)
C220.9219 (5)0.0519 (10)0.4768 (6)0.036 (2)
C320.9283 (5)0.1368 (11)0.4133 (6)0.035 (2)
H32A0.96420.10910.40890.042*
H32B0.89600.11520.36250.042*
C420.9296 (4)0.2944 (12)0.4274 (6)0.031 (2)
C520.9191 (8)0.1104 (13)0.5413 (9)0.063 (4)
H52A0.92130.20870.54760.075*
H52B0.91510.05310.58040.075*
O320.9784 (3)0.3555 (8)0.4715 (4)0.0313 (15)
O420.8837 (4)0.3705 (8)0.3958 (6)0.0416 (19)
O130.9683 (3)0.4257 (8)0.3623 (5)0.0361 (17)
O231.0590 (3)0.5139 (9)0.4245 (4)0.0381 (17)
C131.0154 (4)0.4730 (12)0.3633 (6)0.038 (2)
C231.0256 (4)0.476 (2)0.2882 (5)0.088 (6)
C531.0794 (5)0.478 (3)0.2917 (13)0.18 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.0277 (3)0.0171 (3)0.0260 (3)0.00029 (14)0.0088 (2)0.00045 (14)
N110.034 (5)0.039 (6)0.069 (8)0.008 (4)0.025 (5)0.011 (5)
N210.034 (5)0.039 (6)0.042 (5)0.013 (4)0.005 (4)0.018 (4)
C110.047 (8)0.081 (11)0.081 (11)0.002 (8)0.040 (8)0.010 (9)
C210.074 (11)0.081 (12)0.102 (15)0.009 (10)0.054 (12)0.005 (12)
C310.065 (11)0.061 (10)0.114 (17)0.026 (8)0.055 (12)0.031 (10)
C410.038 (8)0.061 (10)0.14 (2)0.005 (7)0.023 (10)0.024 (12)
C510.042 (7)0.027 (6)0.108 (13)0.008 (5)0.032 (8)0.019 (7)
C610.039 (6)0.028 (6)0.052 (7)0.004 (5)0.000 (5)0.001 (5)
C710.039 (7)0.072 (12)0.083 (12)0.014 (7)0.004 (8)0.000 (9)
C810.063 (10)0.089 (13)0.061 (10)0.004 (9)0.004 (8)0.008 (9)
C910.075 (10)0.081 (12)0.046 (8)0.026 (9)0.010 (8)0.024 (8)
C1010.044 (7)0.072 (10)0.053 (8)0.016 (7)0.008 (6)0.013 (7)
O1W0.11 (2)0.17 (4)0.062 (16)0.06 (2)0.030 (16)0.01 (2)
O2W0.17 (3)0.069 (14)0.067 (15)0.063 (18)0.085 (19)0.031 (13)
O120.054 (5)0.024 (4)0.042 (5)0.004 (4)0.018 (4)0.002 (3)
O220.063 (5)0.023 (4)0.085 (7)0.007 (4)0.048 (5)0.004 (4)
C120.033 (6)0.022 (6)0.051 (7)0.001 (4)0.015 (5)0.005 (4)
C220.032 (5)0.020 (5)0.049 (6)0.004 (4)0.010 (5)0.010 (5)
C320.046 (6)0.011 (4)0.039 (6)0.009 (4)0.009 (5)0.006 (4)
C420.030 (5)0.029 (5)0.029 (5)0.002 (4)0.006 (4)0.004 (4)
C520.093 (12)0.038 (8)0.073 (11)0.007 (7)0.050 (10)0.006 (6)
O320.032 (4)0.028 (4)0.028 (3)0.009 (3)0.005 (3)0.010 (3)
O420.039 (4)0.020 (4)0.052 (5)0.003 (3)0.005 (4)0.000 (3)
O130.037 (4)0.036 (4)0.032 (4)0.004 (3)0.011 (3)0.008 (3)
O230.036 (4)0.049 (5)0.030 (4)0.007 (4)0.015 (3)0.009 (3)
C130.042 (6)0.044 (7)0.029 (5)0.002 (5)0.014 (5)0.001 (5)
C230.052 (8)0.18 (2)0.028 (6)0.014 (11)0.015 (6)0.000 (10)
C530.071 (17)0.42 (7)0.06 (2)0.05 (4)0.034 (18)0.01 (4)
Geometric parameters (Å, º) top
Ho1—O23i2.298 (7)C71—C811.32 (3)
Ho1—O132.303 (8)C71—H710.9300
Ho1—O32ii2.310 (7)C81—C911.39 (3)
Ho1—O42iii2.421 (8)C81—H810.9300
Ho1—O222.425 (9)C91—C1011.392 (19)
Ho1—O122.427 (8)C91—H910.9300
Ho1—N212.579 (9)C101—H1010.9300
Ho1—N112.590 (10)O12—C121.251 (11)
Ho1—O32iii2.624 (8)O22—C121.244 (11)
Ho1—Ho1i3.967 (2)C12—C221.494 (12)
N11—C111.34 (2)C22—C521.325 (15)
N11—C511.33 (2)C22—C321.468 (14)
N21—C1011.298 (19)C32—C421.501 (15)
N21—C611.327 (16)C32—H32A0.9700
C11—C211.38 (2)C32—H32B0.9700
C11—H110.9300C42—O421.274 (13)
C21—C311.42 (3)C42—O321.289 (12)
C21—H210.9300C52—H52A0.9300
C31—C411.31 (3)C52—H52B0.9300
C31—H310.9300O13—C131.253 (10)
C41—C511.41 (2)O23—C131.261 (10)
C41—H410.9300C13—C231.491 (12)
C51—C611.49 (2)C23—C531.320 (9)
C61—C711.44 (2)C23—C23iv1.458 (15)
O23i—Ho1—O13134.9 (3)C51—C41—H41118.0
O23i—Ho1—O32ii74.2 (3)N11—C51—C41120.3 (19)
O13—Ho1—O32ii76.2 (3)N11—C51—C61115.8 (12)
O23i—Ho1—O42iii88.0 (3)C41—C51—C61123.8 (18)
O13—Ho1—O42iii81.9 (3)N21—C61—C71118.2 (14)
O32ii—Ho1—O42iii124.8 (3)N21—C61—C51117.8 (11)
O23i—Ho1—O12128.6 (3)C71—C61—C51123.8 (14)
O13—Ho1—O1277.4 (3)C81—C71—C61121.0 (16)
O32ii—Ho1—O1280.2 (3)C81—C71—H71119.5
O42iii—Ho1—O12142.2 (3)C61—C71—H71119.5
O23i—Ho1—O2279.3 (3)C71—C81—C91119.7 (17)
O13—Ho1—O22128.8 (3)C71—C81—H81120.1
O32ii—Ho1—O2282.3 (3)C91—C81—H81120.1
O42iii—Ho1—O22145.8 (3)C81—C91—C101116.5 (16)
O12—Ho1—O2253.3 (3)C81—C91—H91121.7
O23i—Ho1—N21139.4 (3)C101—C91—H91121.7
O13—Ho1—N2179.7 (3)N21—C101—C91124.2 (14)
O32ii—Ho1—N21145.2 (3)N21—C101—H101117.9
O42iii—Ho1—N2175.2 (3)C91—C101—H101117.9
O12—Ho1—N2170.2 (3)C12—O12—Ho192.5 (6)
O22—Ho1—N2194.0 (4)C12—O22—Ho192.8 (6)
O23i—Ho1—N1177.2 (4)O22—C12—O12121.4 (9)
O13—Ho1—N11138.4 (4)O22—C12—C22120.6 (9)
O32ii—Ho1—N11145.4 (3)O12—C12—C22118.0 (9)
O42iii—Ho1—N1172.5 (3)O22—C12—Ho160.7 (5)
O12—Ho1—N11103.6 (3)C52—C22—C32122.4 (10)
O22—Ho1—N1173.7 (3)C52—C22—C12120.8 (10)
N21—Ho1—N1162.6 (4)C32—C22—C12116.7 (9)
O23i—Ho1—O32iii70.5 (3)C22—C32—C42113.8 (9)
O13—Ho1—O32iii68.9 (3)C22—C32—H32A108.8
O32ii—Ho1—O32iii73.2 (3)C42—C32—H32A108.8
O42iii—Ho1—O32iii51.7 (3)C22—C32—H32B108.8
O12—Ho1—O32iii141.0 (3)C42—C32—H32B108.8
O22—Ho1—O32iii145.1 (3)H32A—C32—H32B107.7
N21—Ho1—O32iii120.3 (3)O42—C42—O32118.7 (10)
N11—Ho1—O32iii114.5 (3)O42—C42—C32121.5 (9)
C11—N11—C51116.4 (13)O32—C42—C32119.7 (9)
C11—N11—Ho1121.4 (10)C22—C52—H52A120.0
C51—N11—Ho1121.9 (10)C22—C52—H52B120.0
C101—N21—C61120.2 (11)H52A—C52—H52B120.0
C101—N21—Ho1118.3 (8)C42—O32—Ho1ii163.3 (7)
C61—N21—Ho1121.2 (9)C42—O32—Ho1v89.8 (6)
N11—C11—C21125.3 (17)Ho1ii—O32—Ho1v106.8 (3)
N11—C11—H11117.4C42—O42—Ho1v99.7 (7)
C21—C11—H11117.4C13—O13—Ho1138.3 (7)
C11—C21—C31117.6 (18)C13—O23—Ho1i137.0 (6)
C11—C21—H21121.2O13—C13—O23126.1 (9)
C31—C21—H21121.2O13—C13—C23120.4 (9)
C41—C31—C21116.3 (17)O23—C13—C23113.4 (8)
C41—C31—H31121.9C53—C23—C23iv121.8 (13)
C21—C31—H31121.9C53—C23—C13120.6 (12)
C31—C41—C51124 (2)C23iv—C23—C13117.6 (12)
C31—C41—H41118.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+2, y, z+1/2; (v) x, y1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Gd2(C5H4O4)3(C10H8N2)2]·4H2O[Gd2(C5H4O4)3(C10H8N2)(H2O)2][Ho2(C5H4O4)3(C10H8N2)2]·2H2O
Mr1083.18890.961062.51
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, C2/c
Temperature (K)293293293
a, b, c (Å)9.5507 (19), 12.598 (3), 17.582 (4)16.427 (5), 18.645 (5), 9.300 (3)25.023 (5), 9.3994 (19), 18.229 (4)
α, β, γ (°)71.60 (3), 82.32 (3), 68.39 (3)90, 94.949 (6), 9090, 114.13 (3), 90
V3)1865.9 (9)2837.7 (14)3912.8 (17)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.604.714.09
Crystal size (mm)0.20 × 0.15 × 0.080.30 × 0.25 × 0.100.30 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Tmin, Tmax0.50, 0.750.25, 0.620.28, 0.54
No. of measured, independent and
observed [I > 2σ(I)] reflections
9794, 6922, 5639 9298, 3098, 2689 15034, 4299, 3770
Rint0.0760.1050.057
(sin θ/λ)max1)0.6550.6560.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.204, 0.99 0.066, 0.145, 1.06 0.079, 0.223, 1.00
No. of reflections692230984299
No. of parameters512200263
No. of restraints54115034
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1319P)2 + 23.4752P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0517P)2 + 103.4472P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.159P)2 + 95.0201P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)7.16, 3.021.83, 4.1710.21, 3.30

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
Gd1—O35i2.346 (7)Gd2—O341.983 (7)
Gd1—O242.346 (8)Gd2—O44iii2.304 (8)
Gd1—O14i2.358 (8)Gd2—O33iv2.347 (7)
Gd1—O25ii2.426 (8)Gd2—O232.456 (8)
Gd1—O15ii2.489 (9)Gd2—O132.487 (9)
Gd1—O452.514 (8)Gd2—O43ii2.496 (7)
Gd1—N112.580 (11)Gd2—N222.542 (11)
Gd1—N212.600 (11)Gd2—N122.621 (10)
Gd1—O352.713 (8)Gd2—O33ii2.679 (8)
Gd1—Gd1i3.9748 (13)Gd2—Gd2iii3.9573 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z1; (iv) x, y+1, z1.
Selected bond lengths (Å) for (II) top
Gd1—O232.443 (9)Gd1—Gd24.1139 (15)
Gd1—O132.456 (9)Gd2—O222.324 (7)
Gd1—O322.464 (7)Gd2—O12i2.348 (8)
Gd1—N112.551 (11)Gd2—O322.394 (8)
Gd1—O422.585 (10)Gd2—O1W2.407 (8)
Symmetry code: (i) x+1, y+1, z.
Selected bond lengths (Å) for (III) top
Ho1—O23i2.298 (7)Ho1—O122.427 (8)
Ho1—O132.303 (8)Ho1—N212.579 (9)
Ho1—O32ii2.310 (7)Ho1—N112.590 (10)
Ho1—O42iii2.421 (8)Ho1—O32iii2.624 (8)
Ho1—O222.425 (9)Ho1—Ho1i3.967 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z.
ππ contacts (Å, °) for (I), (II) and (III) top
CompoundCg1/Cg2Dihedral angleCg1···Cg2<Cg-Perp>
(I)Cg11/Cg12i4.9 (9)3.548 (9)3.22 (2)
Cg11/Cg22ii3.633.703 (9)3.21 (3)
Cg12/Cg22iii2.3 (9)3.522 (9)3.17 (3)
(II)Cg11/Cg11iv0.004.660 (10)3.51 (1)
(III)Cg11/Cg11iv0.003.801 (10)3.44 (1)
Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, -1 + y, 1 + z; (iii) -x, 2 - y, -1 - z; (iv) 1 - x, -y, 1 - z; (v) 3/2 - x, 1/2 - y, 1 - z. For (I), Cg11 is the centroid of the ring N11/C11–C51, Cg12 is the centroid of the ring N12/C12–C52 and Cg22 is the centroid of the ring N22/C62–C102. For (II), Cg11 is the centroid of the ring N11/C11–C51. For (III), Cg11 is the centroid of the ring N11/C11–C51.

ccd is the centre-to-centre distance (distance between ring centroids). ipd is the mean interplanar distance (distance from one plane to the neighbouring centroid). sa is the mean slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000).
Short O···O contacts attributable to hydrogen bonding (Å) for (I), (II) and (III) top
CompoundOXOYOX···OY
(I)O1WO15i2.845 (8)
O1WO3W2.749 (8)
O2WO232.869 (9)
O2WO3W2.897 (10)
O2WO4W2.973 (11)
O3WO13ii2.901 (9)
O4WO45iii3.016 (9)
(II)O1WO22iv2.730 (12)
O1WO23v2.673 (12)
(III)O1WO2Wvi2.656 (12)
O1WO222.956 (13)
O2WO123.042 (13)
Symmetry codes: (i) -x, -y, -z; (ii) -x, 1-y, -1-z; (iii) -x, 1 - y, -z; (iv) x, 1 - y, 1/2 + z; (v) 1 - x, y, 1/2 - z; (vi) x, -y, 1/2 + z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds