Download citation
Download citation
link to html
Two polymorphs of the title organic salt (a very effective medicinal preparation with the commercial name thio­triazoline), C4H10NO+·C5H6N3O2S-, were obtained. The cations and anions are connected by hydrogen bonds and extend into two-dimensional networks. The main packing motifs are an R44(12) cluster in the monoclinic form and a chain in the ortho­rhom­bic form.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108042042/sk3272sup1.cif
Contains datablocks monoclinic_I, orthorhombic_I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108042042/sk3272monoclinic_Isup2.hkl
Contains datablock monoclinic_I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108042042/sk3272orthorhombic_Isup3.hkl
Contains datablock orthorhombic_I

CCDC references: 718125; 718126

Comment top

Derivatives of thiotriazole represent a class of organic compounds with a wide range of biological activity (Kim et al., 1994; Gilbert et al., 1995; Davydov & Shvets, 2002; Meinhardt et al., 2002). The title complound, (I), is known (Mazur et al., 2007) as a very effective medicinal preparation with the commercial name thiotriazoline. It shows antioxidant, membrane-stabilizing, anti-ischemic, anti-arrhythmic, immunomodulatory, antiphlogistic, hepatoprotector, cardioprotector, tread and nephroprotector activities. It is well known also that polymorphism is very important for medical products that are produced as pills (Bernstein, 2002). In this paper we report the results of an investigation of the molecular and crystal structure of two polymorphic modifications of the medical product thiotriazoline.

During crystallization of thiotriazoline it was found that crystals of (I) grown from water and organic alcohols differ in shape. The X-ray diffraction study demonstrates that these represent two polymorphic modifications of thiotriazoline, namely an orthorhombic modification (OM) crystallized from aqueous solution and a monoclinic modification (MM) obtained from alcohol solution.

The analysis of the molecular structure of (I) in both modifications demonstrates that this compound represents organic salts (Fig. 1 and 2). Two H atoms on the N atom of the morpholine ring were located from electron density difference maps, and the Csp3—N bond lengths are very close (Tables 1 and 3) to the mean value 1.494 Å (Bürgi & Dunitz, 1994) for (Csp3)2—NH2+ bonds (the corresponding bond length in the nonprotonated morpholine ring is 1.473 Å). Thus it is possible to conclude that the positive charge is located on the protonated N atom of the morpholine ring. The C—O bond lengths of the carboxylate group are almost equal and they are very close to the mean value of the bond length in the carboxylate anion (1.250 Å). This indicates the localization of the negative charge within the carboxylate group. It is noted also that the bond lengths of the cation and anion are very close for both polymorphic modifications.

The morpholine ring adopts a chair conformation in both modifications [the puckering parameters (Zefirov et al., 1990) are S = 1.19, θ = 2.8°, ψ = 2.9° for MM, and S = 1.20, θ = 1.6°, ψ = 23.5° for OM]. The deviations of atoms N12 and O15 from the mean-square plane of the remaining atoms of the ring are 0.644 (3) and -0.667 (2) Å, respectively, in MM, and -0.669 (1) and 0.659 (1) Å, respectively, in OM. The anion is planar, in contrast to the neutral molecule of (5-methyl-1H-1,2,4-triazol-3-ylsulfanyl)acetate (Zubatyuk et al., 2008).

Analysis of the crystal structure of the two polymorphic modifications demonstrates the existence of hydrogen-bonded two-dimensional-networks in both modifications. However, the organization of these networks differs in the two polymorphs. In the crystal structure of MM, two pairs of cations and anions form an R44(12) cluster (Fig. 3) based on the N12—H12A···O9 and N12—H12B···O10(-x + 1, -y + 1, -z) strong hydrogen bonds (Table 2). The clusters are organized in layers (Fig. 4) that are parallel to the (100) plane. The molecules within the layer are connected by weaker N1—H1N···O10(x, -y + 1/2, z + 1/2) and C14—H14A···N4(x + 1, y, z) hydrogen bonds (Table 3). In the crystal structure of OM, the cations and anions form infinite zigzag chains (Fig. 5) along the [010] crystallographic direction owing to the formation of intermolecular N12—H12A···O9 and N12—H12B···O10(-x + 1/2, y + 1/2, z) hydrogen bonds (Table 4). Neighbouring chains are linked by an N1—H1N···N4(x + 1/2, -y + 1/2, -z + 1) hydrogen bond, forming layers parallel to (001) (Fig. 6).

Related literature top

For related literature, see: Bernstein (2002); Davydov & Shvets (2002); Gilbert et al. (1995); Mazur et al. (2007); Meinhardt et al. (2002); Zefirov et al. (1990); Zubatyuk et al. (2008).

Experimental top

Compound (I) was prepared from a mixture of (5-methyl-1H-1,2,4-triazol-3-ylsulfanyl)acetic acid and morpholine in an equimolar ratio. The reaction was carried out in water, ethanol or isopropanol solution. Crystals of the monoclinic polymorph were obtained from the organic alhocols and crystals of the orthorhombic polymorph were obtained from aqueous solution.

Refinement top

All H atoms in both structures were located in electron density difference maps. The C-bound H atoms in the structure of the monoclinic modification were included in the refinement in the riding model approximation, with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl group and 1.2 times Ueq of the carrier atom for the other atoms. The N-bound H atoms were refined in isotropic approximation. In the structure of the orthorhombic modification, all H atoms were refined in isotropic approximation.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with atomic numbering in crystals of the monoclinic polymorph. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the title compound with atomic numbering in crystals of orthorhombic polymorph. Displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. The R44(12) motif in crystals of the monoclinic polymorph. Two cation–anion pairs are connected by intermolecular hydrogen bonds. The prime (') denotes the symmetry operation (-x + 1, -y + 1, -z) .
[Figure 4] Fig. 4. A view of two-dimensional-network layer in the crystal structure of the monoclinic polymorph.
[Figure 5] Fig. 5. The infinite chains along the [010] direction in the crystal structure of the orthorhombic modification. The neighbouring cation–anion pairs are connected by intermolecular hydrogen bonds related by the symmetry relation (denoted ''') (x - 1/2, y, -z + 1/2). The labels ' and '' denote the symmetry operations (-x + 1/2, y + 1/2, z) and (x, y + 1, z).
[Figure 6] Fig. 6. A view of two-dimensional-network layer parallel to (001) in the crystals of the orthorhombic polymorph.
(monoclinic_I) morpholin-4-ium 2-(5-methyl-1H-1,2,4-triazol-3-ylsulfanyl)acetate top
Crystal data top
C4H10NO+·C5H6N3O2SF(000) = 552
Mr = 260.32Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1840 reflections
a = 12.0500 (11) Åθ = 3–35°
b = 7.0380 (8) ŵ = 0.27 mm1
c = 15.6547 (14) ÅT = 293 K
β = 112.559 (11)°Plate, colourless
V = 1226.1 (2) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1289 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
Detector resolution: 16.1827 pixels mm-1h = 1412
ω–scansk = 88
4942 measured reflectionsl = 1815
2086 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.086P)2]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C4H10NO+·C5H6N3O2SV = 1226.1 (2) Å3
Mr = 260.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0500 (11) ŵ = 0.27 mm1
b = 7.0380 (8) ÅT = 293 K
c = 15.6547 (14) Å0.20 × 0.20 × 0.20 mm
β = 112.559 (11)°
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1289 reflections with I > 2σ(I)
4942 measured reflectionsRint = 0.041
2086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.62 e Å3
2086 reflectionsΔρmin = 0.23 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1964 (2)0.2898 (4)0.39636 (19)0.0428 (7)
H1N0.220 (3)0.279 (5)0.448 (3)0.064 (13)*
N20.2684 (2)0.2885 (4)0.34647 (15)0.0403 (7)
C30.1873 (2)0.3056 (4)0.26168 (18)0.0349 (7)
N40.0718 (2)0.3171 (4)0.25484 (16)0.0477 (7)
C50.0815 (2)0.3058 (5)0.3416 (2)0.0409 (8)
S60.22105 (6)0.31335 (14)0.16276 (5)0.0474 (3)
C70.3827 (2)0.3114 (5)0.21725 (19)0.0392 (8)
H7B0.40940.41810.25940.047*
H7A0.40880.19560.25300.047*
C80.4397 (3)0.3233 (4)0.14635 (19)0.0377 (7)
O90.55028 (19)0.3319 (4)0.17809 (15)0.0728 (9)
O100.37335 (18)0.3288 (3)0.06226 (13)0.0465 (6)
C110.0174 (3)0.3091 (6)0.3765 (2)0.0628 (11)
H11C0.06380.19460.35820.094*
H11B0.06820.41690.35110.094*
H11A0.01620.31800.44280.094*
N120.6517 (2)0.3438 (4)0.05237 (19)0.0429 (7)
H12B0.640 (2)0.465 (5)0.020 (2)0.051 (9)*
H12A0.617 (3)0.345 (4)0.090 (2)0.041 (9)*
C130.7814 (2)0.3062 (5)0.10850 (19)0.0426 (8)
H13B0.78950.19120.14450.051*
H13A0.81540.41080.15090.051*
C140.8474 (3)0.2843 (5)0.0448 (2)0.0491 (9)
H14B0.84370.40290.01220.059*
H14A0.93130.25640.08100.059*
O150.79727 (19)0.1363 (3)0.02043 (15)0.0518 (6)
C160.6757 (3)0.1787 (5)0.0769 (2)0.0474 (8)
H16B0.64330.07900.12250.057*
H16A0.67230.29720.10950.057*
C170.6008 (3)0.1955 (5)0.0192 (2)0.0486 (8)
H17B0.51890.22840.05850.058*
H17A0.59950.07460.01020.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0415 (15)0.0611 (19)0.0305 (15)0.0002 (13)0.0191 (12)0.0017 (14)
N20.0348 (13)0.0602 (18)0.0284 (13)0.0009 (12)0.0147 (10)0.0003 (12)
C30.0320 (15)0.0446 (19)0.0301 (15)0.0044 (13)0.0143 (12)0.0005 (13)
N40.0307 (13)0.077 (2)0.0350 (14)0.0036 (13)0.0127 (10)0.0026 (14)
C50.0322 (15)0.055 (2)0.0388 (17)0.0034 (14)0.0170 (13)0.0018 (15)
S60.0338 (4)0.0817 (7)0.0268 (4)0.0008 (4)0.0119 (3)0.0018 (4)
C70.0337 (15)0.059 (2)0.0280 (15)0.0042 (14)0.0152 (12)0.0001 (14)
C80.0410 (17)0.046 (2)0.0287 (15)0.0017 (14)0.0166 (13)0.0002 (14)
O90.0363 (13)0.149 (3)0.0386 (13)0.0040 (13)0.0203 (10)0.0042 (14)
O100.0490 (12)0.0671 (17)0.0240 (10)0.0031 (11)0.0146 (9)0.0039 (10)
C110.0458 (19)0.095 (3)0.057 (2)0.0040 (19)0.0302 (16)0.000 (2)
N120.0374 (14)0.059 (2)0.0377 (15)0.0038 (13)0.0208 (12)0.0070 (14)
C130.0360 (16)0.055 (2)0.0351 (16)0.0074 (14)0.0113 (13)0.0003 (15)
C140.0368 (17)0.064 (2)0.0476 (19)0.0009 (15)0.0174 (14)0.0003 (18)
O150.0496 (13)0.0649 (17)0.0445 (13)0.0094 (11)0.0222 (10)0.0037 (11)
C160.0454 (18)0.056 (2)0.0369 (17)0.0019 (16)0.0116 (13)0.0033 (16)
C170.0380 (16)0.055 (2)0.0501 (19)0.0009 (15)0.0142 (14)0.0039 (17)
Geometric parameters (Å, º) top
N1—C51.325 (4)N12—C171.481 (4)
N1—N21.371 (3)N12—C131.493 (4)
N1—H1N0.74 (4)N12—H12B0.98 (3)
N2—C31.317 (3)N12—H12A0.85 (3)
C3—N41.356 (4)C13—C141.503 (4)
C3—S61.746 (3)C13—H13B0.9700
N4—C51.320 (4)C13—H13A0.9700
C5—C111.490 (4)C14—O151.421 (4)
S6—C71.802 (3)C14—H14B0.9700
C7—C81.515 (4)C14—H14A0.9700
C7—H7B0.9700O15—C161.422 (3)
C7—H7A0.9700C16—C171.507 (5)
C8—O91.232 (3)C16—H16B0.9700
C8—O101.251 (3)C16—H16A0.9700
C11—H11C0.9600C17—H17B0.9700
C11—H11B0.9600C17—H17A0.9700
C11—H11A0.9600
C5—N1—N2111.3 (2)C13—N12—H12B111.7 (16)
C5—N1—H1N125 (3)C17—N12—H12A111 (2)
N2—N1—H1N123 (3)C13—N12—H12A106 (2)
C3—N2—N1100.8 (2)H12B—N12—H12A110 (3)
N2—C3—N4115.3 (2)N12—C13—C14109.2 (2)
N2—C3—S6124.2 (2)N12—C13—H13B109.8
N4—C3—S6120.6 (2)C14—C13—H13B109.8
C5—N4—C3103.4 (2)N12—C13—H13A109.8
N4—C5—N1109.2 (3)C14—C13—H13A109.8
N4—C5—C11127.5 (3)H13B—C13—H13A108.3
N1—C5—C11123.2 (3)O15—C14—C13111.4 (3)
C3—S6—C799.05 (13)O15—C14—H14B109.4
C8—C7—S6111.36 (19)C13—C14—H14B109.4
C8—C7—H7B109.4O15—C14—H14A109.4
S6—C7—H7B109.4C13—C14—H14A109.4
C8—C7—H7A109.4H14B—C14—H14A108.0
S6—C7—H7A109.4C14—O15—C16110.2 (2)
H7B—C7—H7A108.0O15—C16—C17110.8 (2)
O9—C8—O10125.3 (3)O15—C16—H16B109.5
O9—C8—C7115.5 (2)C17—C16—H16B109.5
O10—C8—C7119.1 (2)O15—C16—H16A109.5
C5—C11—H11C109.5C17—C16—H16A109.5
C5—C11—H11B109.5H16B—C16—H16A108.1
H11C—C11—H11B109.5N12—C17—C16109.8 (3)
C5—C11—H11A109.5N12—C17—H17B109.7
H11C—C11—H11A109.5C16—C17—H17B109.7
H11B—C11—H11A109.5N12—C17—H17A109.7
C17—N12—C13110.9 (3)C16—C17—H17A109.7
C17—N12—H12B106.4 (17)H17B—C17—H17A108.2
C5—N1—N2—C30.3 (4)N4—C3—S6—C7175.7 (3)
N1—N2—C3—N40.1 (4)C3—S6—C7—C8178.3 (2)
N1—N2—C3—S6180.0 (2)S6—C7—C8—O9176.7 (3)
N2—C3—N4—C50.2 (4)S6—C7—C8—O101.4 (4)
S6—C3—N4—C5179.8 (2)C17—N12—C13—C1453.9 (4)
C3—N4—C5—N10.4 (4)N12—C13—C14—O1557.5 (4)
C3—N4—C5—C11179.4 (4)C13—C14—O15—C1661.6 (3)
N2—N1—C5—N40.5 (4)C14—O15—C16—C1761.1 (4)
N2—N1—C5—C11179.4 (3)C13—N12—C17—C1654.2 (4)
N2—C3—S6—C74.4 (3)O15—C16—C17—N1257.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.74 (4)2.16 (4)2.782 (3)142 (4)
N12—H12A···O90.85 (3)1.84 (4)2.687 (3)175 (3)
N12—H12B···O10ii0.98 (3)1.90 (4)2.864 (4)168 (3)
C14—H14A···N4iii0.972.633.370 (4)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z.
(orthorhombic_I) morpholin-4-ium 2-(5-methyl-1H-1,2,4-triazol-3-ylsulfanyl)acetate top
Crystal data top
C4H10NO+·C5H6N3O2SF(000) = 1104
Mr = 260.32Dx = 1.410 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5833 reflections
a = 9.6912 (2) Åθ = 3–35°
b = 8.3829 (2) ŵ = 0.27 mm1
c = 30.1907 (8) ÅT = 293 K
V = 2452.70 (10) Å3Parallelepiped, colourless
Z = 80.40 × 0.10 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.041
Graphite monochromatorθmax = 30.0°, θmin = 3.3°
Detector resolution: 16.1827 pixels mm-1h = 138
ω–scansk = 1110
18044 measured reflectionsl = 4239
3481 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.087All H-atom parameters refined
S = 0.92 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max = 0.006
218 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C4H10NO+·C5H6N3O2SV = 2452.70 (10) Å3
Mr = 260.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6912 (2) ŵ = 0.27 mm1
b = 8.3829 (2) ÅT = 293 K
c = 30.1907 (8) Å0.40 × 0.10 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
2183 reflections with I > 2σ(I)
18044 measured reflectionsRint = 0.041
3481 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087All H-atom parameters refined
S = 0.92Δρmax = 0.23 e Å3
3481 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26645 (13)0.24052 (15)0.50982 (4)0.0346 (3)
H1N0.3419 (18)0.2653 (19)0.4999 (5)0.036 (4)*
N20.25287 (13)0.14007 (15)0.54554 (4)0.0349 (3)
C30.11792 (13)0.12647 (15)0.54825 (4)0.0271 (3)
N40.04565 (12)0.21012 (14)0.51724 (4)0.0323 (3)
C50.14480 (14)0.27961 (16)0.49350 (4)0.0305 (3)
S60.03219 (4)0.00659 (4)0.586796 (12)0.03460 (11)
C70.17827 (16)0.0493 (2)0.62038 (5)0.0355 (3)
H7B0.252 (2)0.092 (2)0.6014 (6)0.064 (5)*
H7A0.209 (2)0.039 (2)0.6362 (6)0.055 (5)*
C80.14342 (14)0.18070 (16)0.65299 (4)0.0289 (3)
O90.23464 (11)0.21273 (12)0.68103 (3)0.0405 (3)
O100.03083 (11)0.25095 (13)0.64936 (4)0.0427 (3)
C110.1249 (2)0.3850 (2)0.45446 (6)0.0437 (4)
H11C0.069 (3)0.472 (3)0.4627 (7)0.082 (8)*
H11B0.081 (3)0.329 (3)0.4323 (7)0.080 (7)*
H11A0.210 (2)0.420 (3)0.4436 (6)0.076 (7)*
N120.47658 (14)0.04594 (16)0.68622 (4)0.0344 (3)
H12B0.4645 (17)0.052 (2)0.6744 (5)0.044 (5)*
H12A0.399 (2)0.095 (2)0.6855 (6)0.061 (6)*
C130.57932 (19)0.1300 (2)0.65842 (6)0.0451 (4)
H13A0.586 (2)0.236 (2)0.6694 (6)0.050 (5)*
H13B0.547 (2)0.132 (2)0.6311 (6)0.059 (6)*
C140.71394 (18)0.0426 (2)0.66022 (6)0.0456 (4)
H14A0.7002 (19)0.066 (2)0.6464 (6)0.053 (5)*
H14B0.786 (2)0.100 (2)0.6441 (6)0.061 (5)*
O150.76199 (11)0.02759 (14)0.70427 (4)0.0477 (3)
C160.66446 (17)0.0580 (2)0.73056 (6)0.0445 (4)
H16B0.6500 (16)0.169 (2)0.7184 (5)0.041 (4)*
H16A0.7015 (18)0.060 (2)0.7588 (6)0.052 (5)*
C170.52916 (18)0.0286 (2)0.73221 (5)0.0421 (4)
H17C0.5378 (19)0.136 (2)0.7428 (6)0.061 (5)*
H17A0.462 (2)0.022 (2)0.7487 (6)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0224 (6)0.0414 (7)0.0399 (7)0.0024 (5)0.0039 (5)0.0106 (5)
N20.0237 (6)0.0404 (7)0.0406 (6)0.0012 (5)0.0002 (5)0.0114 (5)
C30.0225 (7)0.0300 (7)0.0287 (6)0.0004 (6)0.0008 (5)0.0019 (5)
N40.0235 (6)0.0376 (6)0.0358 (6)0.0015 (5)0.0011 (5)0.0085 (5)
C50.0268 (7)0.0329 (7)0.0320 (7)0.0017 (6)0.0010 (6)0.0019 (6)
S60.02316 (17)0.0430 (2)0.03765 (18)0.00426 (16)0.00057 (15)0.01264 (15)
C70.0305 (8)0.0376 (8)0.0386 (8)0.0095 (7)0.0086 (6)0.0112 (7)
C80.0286 (7)0.0268 (7)0.0312 (7)0.0003 (6)0.0015 (6)0.0006 (5)
O90.0384 (6)0.0408 (6)0.0424 (5)0.0071 (5)0.0106 (5)0.0129 (5)
O100.0300 (6)0.0440 (6)0.0541 (6)0.0114 (5)0.0036 (5)0.0174 (5)
C110.0416 (10)0.0508 (10)0.0387 (9)0.0067 (9)0.0027 (8)0.0156 (8)
N120.0238 (6)0.0327 (7)0.0468 (7)0.0028 (6)0.0032 (5)0.0082 (5)
C130.0464 (10)0.0429 (10)0.0461 (9)0.0027 (8)0.0041 (8)0.0074 (8)
C140.0355 (9)0.0563 (11)0.0452 (9)0.0059 (8)0.0057 (7)0.0044 (8)
O150.0247 (5)0.0678 (8)0.0506 (6)0.0072 (5)0.0045 (5)0.0011 (5)
C160.0351 (9)0.0595 (11)0.0389 (9)0.0014 (8)0.0059 (7)0.0038 (8)
C170.0351 (9)0.0531 (11)0.0380 (8)0.0006 (8)0.0062 (7)0.0076 (7)
Geometric parameters (Å, º) top
N1—C51.3191 (17)N12—C131.481 (2)
N1—N21.3746 (16)N12—C171.486 (2)
N1—H1N0.816 (17)N12—H12B0.905 (18)
N2—C31.3154 (17)N12—H12A0.86 (2)
C3—N41.3633 (16)C13—C141.497 (2)
C3—S61.7478 (13)C13—H13A0.948 (18)
N4—C51.3328 (17)C13—H13B0.882 (18)
C5—C111.486 (2)C14—O151.415 (2)
S6—C71.8032 (15)C14—H14A1.014 (18)
C7—C81.5155 (19)C14—H14B0.98 (2)
C7—H7B0.98 (2)O15—C161.428 (2)
C7—H7A0.926 (19)C16—C171.500 (2)
C8—O101.2447 (16)C16—H16B1.013 (17)
C8—O91.2531 (16)C16—H16A0.925 (18)
C11—H11C0.94 (3)C17—H17C0.96 (2)
C11—H11B0.92 (2)C17—H17A0.92 (2)
C11—H11A0.94 (2)
C5—N1—N2111.08 (12)C17—N12—H12B108.8 (10)
C5—N1—H1N126.9 (11)C13—N12—H12A110.0 (13)
N2—N1—H1N121.9 (11)C17—N12—H12A111.9 (12)
C3—N2—N1101.36 (11)H12B—N12—H12A108.5 (17)
N2—C3—N4115.06 (11)N12—C13—C14109.41 (14)
N2—C3—S6124.32 (10)N12—C13—H13A107.0 (11)
N4—C3—S6120.58 (10)C14—C13—H13A112.8 (12)
C5—N4—C3102.93 (11)N12—C13—H13B107.6 (12)
N1—C5—N4109.57 (12)C14—C13—H13B110.6 (13)
N1—C5—C11124.05 (13)H13A—C13—H13B109.3 (17)
N4—C5—C11126.39 (13)O15—C14—C13111.38 (14)
C3—S6—C798.66 (7)O15—C14—H14A110.5 (10)
C8—C7—S6112.28 (10)C13—C14—H14A108.2 (11)
C8—C7—H7B106.0 (12)O15—C14—H14B106.0 (10)
S6—C7—H7B109.8 (11)C13—C14—H14B111.4 (11)
C8—C7—H7A108.4 (11)H14A—C14—H14B109.3 (15)
S6—C7—H7A109.4 (12)C14—O15—C16110.45 (12)
H7B—C7—H7A111.0 (17)O15—C16—C17110.74 (15)
O10—C8—O9125.21 (13)O15—C16—H16B110.7 (9)
O10—C8—C7118.82 (12)C17—C16—H16B109.7 (9)
O9—C8—C7115.93 (12)O15—C16—H16A105.3 (11)
C5—C11—H11C109.1 (14)C17—C16—H16A108.4 (11)
C5—C11—H11B109.3 (14)H16B—C16—H16A111.9 (14)
H11C—C11—H11B109 (2)N12—C17—C16108.43 (13)
C5—C11—H11A110.4 (13)N12—C17—H17C104.4 (11)
H11C—C11—H11A111 (2)C16—C17—H17C112.9 (11)
H11B—C11—H11A108.5 (18)N12—C17—H17A108.0 (12)
C13—N12—C17110.22 (13)C16—C17—H17A114.1 (11)
C13—N12—H12B107.3 (10)H17C—C17—H17A108.4 (15)
C5—N1—N2—C30.33 (15)N4—C3—S6—C7174.01 (12)
N1—N2—C3—N40.07 (15)C3—S6—C7—C8169.46 (11)
N1—N2—C3—S6177.82 (10)S6—C7—C8—O1010.35 (19)
N2—C3—N4—C50.43 (16)S6—C7—C8—O9171.77 (11)
S6—C3—N4—C5177.55 (10)C17—N12—C13—C1455.96 (19)
N2—N1—C5—N40.62 (17)N12—C13—C14—O1557.3 (2)
N2—N1—C5—C11179.22 (15)C13—C14—O15—C1659.87 (19)
C3—N4—C5—N10.61 (15)C14—O15—C16—C1761.11 (19)
C3—N4—C5—C11179.23 (16)C13—N12—C17—C1656.95 (19)
N2—C3—S6—C78.21 (14)O15—C16—C17—N1259.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.816 (17)2.052 (18)2.8566 (17)168.4 (16)
N12—H12A···O90.86 (2)1.88 (2)2.7344 (17)176.3 (19)
N12—H12B···O10ii0.905 (18)1.815 (18)2.7127 (17)171.1 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z.

Experimental details

(monoclinic_I)(orthorhombic_I)
Crystal data
Chemical formulaC4H10NO+·C5H6N3O2SC4H10NO+·C5H6N3O2S
Mr260.32260.32
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)293293
a, b, c (Å)12.0500 (11), 7.0380 (8), 15.6547 (14)9.6912 (2), 8.3829 (2), 30.1907 (8)
α, β, γ (°)90, 112.559 (11), 9090, 90, 90
V3)1226.1 (2)2452.70 (10)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.270.27
Crystal size (mm)0.20 × 0.20 × 0.200.40 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur 3
diffractometer
Oxford Diffraction Xcalibur 3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4942, 2086, 1289 18044, 3481, 2183
Rint0.0410.041
(sin θ/λ)max1)0.5940.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 0.96 0.034, 0.087, 0.92
No. of reflections20863481
No. of parameters167218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.62, 0.230.23, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) for (monoclinic_I) top
N1—C51.325 (4)S6—C71.802 (3)
N1—N21.371 (3)C7—C81.515 (4)
N2—C31.317 (3)C8—O91.232 (3)
C3—N41.356 (4)C8—O101.251 (3)
C3—S61.746 (3)N12—C171.481 (4)
N4—C51.320 (4)N12—C131.493 (4)
C5—C111.490 (4)
Hydrogen-bond geometry (Å, º) for (monoclinic_I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.74 (4)2.16 (4)2.782 (3)142 (4)
N12—H12A···O90.85 (3)1.84 (4)2.687 (3)175 (3)
N12—H12B···O10ii0.98 (3)1.90 (4)2.864 (4)168 (3)
C14—H14A···N4iii0.972.633.370 (4)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z.
Selected bond lengths (Å) for (orthorhombic_I) top
N1—C51.3191 (17)S6—C71.8032 (15)
N1—N21.3746 (16)C7—C81.5155 (19)
N2—C31.3154 (17)C8—O101.2447 (16)
C3—N41.3633 (16)C8—O91.2531 (16)
C3—S61.7478 (13)N12—C131.481 (2)
N4—C51.3328 (17)N12—C171.486 (2)
C5—C111.486 (2)
Hydrogen-bond geometry (Å, º) for (orthorhombic_I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.816 (17)2.052 (18)2.8566 (17)168.4 (16)
N12—H12A···O90.86 (2)1.88 (2)2.7344 (17)176.3 (19)
N12—H12B···O10ii0.905 (18)1.815 (18)2.7127 (17)171.1 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds