Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecules of ethyl 2-meth­oxy-6-[(triphenyl­phospho­ranyl­idene)amino]nicotinate, C27H25N2O3P, (I), and ethyl 2-methylsulfanyl-6-[(triphenyl­phospho­ranyl­idene)amino]nicotinate, C27H25N2O2PS, (II), have almost identical bond lengths and mol­ecular conformations, and both show evidence for polarized electronic structures. However, the crystal structures, as illustrated by the weak hydrogen bonds linking the mol­ecules, are significantly different. The significance of this study lies in the observation that two compounds which are almost identical in constitution, configuration and conformation nonetheless adopt different crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108006963/sk3213sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108006963/sk3213Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108006963/sk3213IIsup3.hkl
Contains datablock II

CCDC references: 686448; 686449

Comment top

2-Aminopyridines are an important class of heterocyclic compounds with applications in the agrochemical and pharmaceutical sectors (Vijn et al., 1993), and an effective route to substituted 2-aminopyridines has been developed (Cobo et al., 1994) based on tandem Diels–Alder/retro Diels–Alder reactions of 6-aminopyrimidin-4(3H)-ones with acetylenic esters. The structures of two such products have been reported (Low et al., 1996). The triphenylphosphoranylidene unit is an effective protecting group for the 6-amino substituent (Wamhoff et al., 1986), and this is readily introduced by reaction of the aminopyrimidine precursor with triphenylphosphine in the presence of hexachloroethane (Wamhoff et al., 1986). The structures of the protected precursors, (III) and (IV) (see scheme), were reported several years ago (Low et al., 1998), and here we report the structures of the title compounds, (I) and (II), derived from (III) and (IV), respectively, using their reactions with ethyl propiolate (ethyl acetylenemonocarboxylate) conducted under microwave irradiation. While the molecular structures of compounds (I) and (II) are almost identical, their crystal structures differ considerably.

Compounds (I) and (II) both crystallize in space group P1 and the repeat vectors of the two unit cells are extremely similar, with the maximum difference, in c, being less than 1%. However, the cell angles in (II) are all close to the supplementary values in (I), i.e. each angle θ (θ = α, β or γ) in (II) corresponds rather closely to (180° - θ) in (I), such that no transformation can interconvert the two unit cells.

The molecular structures of (I) and (II) (Figs. 1 and 2) are very similar. The conformations, as defined by the leading torsion angles (Table 1), are almost identical, with the Ph3PN fragments adopting approximate local threefold rotational symmetry, while the chain-extended ester fragment is, in both compounds, directed away from the MeX (X = O, S) substituent at C2. In each compound, there is a reasonably short intramolecular C—H···N hydrogen bond, with almost identical dimensions in the two compounds (Table 2), and these interactions may be of significance in influencing the overall molecular conformations. No such contacts are apparent in the structures of (III) and (IV) (Low et al., 1998).

With the exception of the parameters involving the MeX substituents, the corresponding bond distances in (I) and (II) are also very similar. The distances and angles around the P atoms are similar to the corresponding parameters in the precursor compounds, (III) and (IV) (Low et al., 1998). In particular, all of (I)–(IV) exhibit wide angles at N6 and all exhibit a range of ca 10° in the bond angles at P6. Within each pyridine ring, the N1—C2 bond is significantly shorter than N1—C6, while C4—C5 is significantly shorter than all of the other C—C bonds in this ring. In addition, the C3—C31 bond is somewhat short for its type (mean value 1.487 Å; Allen et al., 1987), while C31—O31 is somewhat long (mean value 1.196 Å). These observations, taken all together, support a degree of quinonoidal bond fixation within the pyridine rings, corresponding to the polarized forms (Ia) and (IIa). The bond distances in the precursor compounds, (III) and (IV), similarly show clear evidence for polarization of the molecular-electronic structures, with the short exocyclic C—N bonds, the long carbonyl C—O bonds and the similarity of the two C—C distances in the polarized fragments all pointing towards the significance of the forms (IIIa) and (IVa) in addition to the classical forms (III) and (IV).

The molecules of (I) are linked, albeit rather weakly, by three C—H···O hydrogen bonds, all involving the polarized carbonyl atom O31 as the acceptor. Atoms C64 and C65 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O31 in the molecule at (-1 + x, y, 1 + z), so forming a C(12)C(13)[R12(5)] (Bernstein et al., 1995) chain of rings running parallel to the [101] direction. Anti-parallel pairs of such chains are linked by the third C—H···O hydrogen bond to form a more complex chain containing three types of ring, with alternating centrosymmetric R22(26) and R24(24) rings and pairs of R12(5) rings flanking the R24(24) rings (Fig. 3).

By contrast, the molecules of (II) are linked by one C—H···O hydrogen bond and one C—H···π(pyridyl) hydrogen bond (Table 2), with the former generating C(12) chains running parallel to the [001] direction and the latter linking anti-parallel pairs of such chains into a chain of edge-fused centrosymmetric rings (Fig. 4). Hence, despite the almost identical intramolecular geometries of (I) and (II), their patterns of supramolecular aggregation are different. Such a contrast between the similarity in molecular structures and the difference in crystal structures could provide an interesting test for methods for crystal-structure prediction from first principles.

The original report on the structures of the precursor compounds, (III) and (IV), did not discuss the intermolecular interactions (Low et al., 1998). Analysis using the original atom coordinates shows that the molecules of (III) are linked by paired C—H···O hydrogen bonds to form a centrosymmetric R22(20) dimer (Fig. 5), while in (IV) a single C—H···O hydrogen bond links molecules related by translation into a C(9) chain (Fig. 6).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Cobo et al. (1994); Low et al. (1996, 1998); Vijn et al. (1993); Wamhoff et al. (1986).

Experimental top

For the synthesis of compounds (I) and (II), mixtures of the precursors, (III) or (IV), respectively (0.5 mmol), and ethyl propiolate (2.5 mmol) in dry acetonitrile (0.9 ml) were subjected to microwave irradiation (100 W for 0.5 h) in sealed tubes under magnetic stirring. The resulting mixtures were evaporated to dryness under reduced pressure, and the products were purified by chromatography on silica using dichloromethane–acetone (98:2, v/v) as eluent. After removal of the solvent, crystallization from ethanol gave samples of (I) and (II) suitable for single-crystal X-ray diffraction. Compound (I), yellow blocks, m. p. 483–484 K, yield 54%. Compound (II), yellow blocks, m. p. 492 K, yield 18%.

Refinement top

Crystals of (I) and (II) are triclinic. For each, the space group P1 was selected, and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H = 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of a chain of rings along [101], built from C—H···O hydrogen bonds only. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (II), showing the formation of a chain of rings along [001], built from C—H···O and C—H···π(pyridyl) hydrogen bonds. For the sake of clarity, H atoms bonded to those C atoms which are not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded R22(20) dimer. The original atom coordinates (Low et al., 1998) have been used and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (IV), showing the formation of a hydrogen-bonded C(9) chain along [010]. The original atom coordinates (Low et al., 1998) have been used and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) ethyl 2-methoxy-6-[(triphenylphosphoranylidene)amino]nicotinate top
Crystal data top
C27H25N2O3PZ = 2
Mr = 456.46F(000) = 480
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5336 (18) ÅCell parameters from 5321 reflections
b = 11.063 (3) Åθ = 2.2–27.5°
c = 13.426 (3) ŵ = 0.15 mm1
α = 73.722 (18)°T = 120 K
β = 72.389 (16)°Block, yellow
γ = 85.93 (2)°0.22 × 0.20 × 0.15 mm
V = 1159.5 (5) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5321 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.972, Tmax = 0.978l = 1717
30925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.1007P]
where P = (Fo2 + 2Fc2)/3
5321 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C27H25N2O3Pγ = 85.93 (2)°
Mr = 456.46V = 1159.5 (5) Å3
Triclinic, P1Z = 2
a = 8.5336 (18) ÅMo Kα radiation
b = 11.063 (3) ŵ = 0.15 mm1
c = 13.426 (3) ÅT = 120 K
α = 73.722 (18)°0.22 × 0.20 × 0.15 mm
β = 72.389 (16)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5321 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3750 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.080
30925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
5321 reflectionsΔρmin = 0.40 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P60.42082 (7)0.76380 (5)0.41097 (5)0.01679 (14)
O210.7713 (2)0.73146 (15)0.04432 (13)0.0259 (4)
O310.8155 (2)0.56356 (16)0.07349 (14)0.0351 (4)
O320.6941 (2)0.37623 (14)0.01935 (12)0.0239 (4)
N10.5680 (2)0.69210 (17)0.20646 (15)0.0189 (4)
N60.3660 (2)0.64965 (17)0.37722 (15)0.0195 (4)
C20.6495 (3)0.6544 (2)0.12023 (17)0.0197 (5)
C30.6204 (3)0.5403 (2)0.10165 (18)0.0200 (5)
C40.4932 (3)0.4646 (2)0.18253 (18)0.0216 (5)
C50.4064 (3)0.5009 (2)0.27276 (18)0.0217 (5)
C60.4478 (3)0.6161 (2)0.28530 (18)0.0194 (5)
C210.8079 (3)0.8419 (2)0.0698 (2)0.0340 (6)
C310.7198 (3)0.4995 (2)0.00711 (18)0.0219 (5)
C320.7958 (3)0.3266 (2)0.06761 (19)0.0277 (5)
C330.7453 (3)0.1914 (2)0.0417 (2)0.0360 (6)
C610.3189 (3)0.7353 (2)0.55353 (17)0.0184 (4)
C620.3765 (3)0.7890 (2)0.61844 (19)0.0236 (5)
C630.2907 (3)0.7701 (2)0.72700 (19)0.0253 (5)
C640.1479 (3)0.6973 (2)0.77224 (19)0.0260 (5)
C650.0922 (3)0.6420 (2)0.70846 (19)0.0253 (5)
C660.1762 (3)0.6613 (2)0.59944 (19)0.0231 (5)
C710.3557 (3)0.9185 (2)0.34794 (18)0.0188 (4)
C720.2649 (3)0.9969 (2)0.4092 (2)0.0260 (5)
C730.2129 (3)1.1131 (2)0.3582 (2)0.0314 (6)
C740.2494 (3)1.1524 (2)0.2464 (2)0.0303 (6)
C750.3381 (3)1.0743 (2)0.1858 (2)0.0335 (6)
C760.3909 (3)0.9588 (2)0.2350 (2)0.0285 (5)
C810.6387 (3)0.7744 (2)0.39215 (17)0.0187 (5)
C820.7251 (3)0.8878 (2)0.34761 (19)0.0233 (5)
C830.8943 (3)0.8902 (2)0.3303 (2)0.0279 (5)
C840.9758 (3)0.7795 (2)0.3571 (2)0.0316 (6)
C850.8895 (3)0.6666 (2)0.4026 (2)0.0330 (6)
C860.7211 (3)0.6633 (2)0.4206 (2)0.0265 (5)
H40.46690.38660.17440.026*
H50.31930.44930.32640.026*
H21A0.83400.81720.13890.051*
H21B0.71230.89700.07570.051*
H21C0.90230.88690.01210.051*
H32A0.91330.33260.07280.033*
H32B0.77950.37490.13780.033*
H33A0.62900.18680.03710.054*
H33B0.76180.14470.02800.054*
H33C0.81210.15460.09900.054*
H620.47470.83860.58800.028*
H630.32990.80730.77090.030*
H640.08860.68540.84670.031*
H650.00430.59050.73970.030*
H660.13650.62400.55590.028*
H720.23850.97070.48620.031*
H730.15161.16600.40050.038*
H740.21401.23200.21170.036*
H750.36301.10070.10890.040*
H760.45170.90640.19200.034*
H820.66880.96410.32880.028*
H830.95340.96800.30020.034*
H841.09150.78080.34430.038*
H850.94600.59050.42160.040*
H860.66220.58540.45230.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P60.0148 (3)0.0156 (3)0.0199 (3)0.0025 (2)0.0041 (2)0.0051 (2)
O210.0269 (9)0.0213 (8)0.0252 (9)0.0071 (7)0.0003 (7)0.0055 (7)
O310.0433 (11)0.0269 (10)0.0257 (9)0.0085 (8)0.0061 (8)0.0077 (8)
O320.0281 (9)0.0210 (8)0.0222 (8)0.0008 (7)0.0045 (7)0.0081 (7)
N10.0171 (9)0.0184 (9)0.0214 (10)0.0015 (7)0.0054 (8)0.0057 (8)
N60.0179 (9)0.0185 (9)0.0231 (10)0.0044 (7)0.0044 (8)0.0081 (8)
C20.0187 (11)0.0187 (11)0.0188 (11)0.0023 (9)0.0050 (9)0.0003 (9)
C30.0200 (11)0.0182 (11)0.0215 (11)0.0022 (9)0.0066 (9)0.0052 (9)
C40.0239 (12)0.0159 (11)0.0259 (12)0.0017 (9)0.0088 (9)0.0054 (9)
C50.0197 (11)0.0202 (11)0.0233 (12)0.0042 (9)0.0022 (9)0.0068 (9)
C60.0166 (11)0.0194 (11)0.0227 (11)0.0004 (8)0.0071 (9)0.0047 (9)
C210.0301 (14)0.0268 (13)0.0386 (15)0.0139 (11)0.0042 (11)0.0108 (12)
C310.0243 (12)0.0197 (11)0.0212 (12)0.0011 (9)0.0065 (10)0.0052 (10)
C320.0335 (14)0.0264 (13)0.0223 (12)0.0038 (10)0.0049 (10)0.0093 (10)
C330.0400 (15)0.0289 (14)0.0416 (16)0.0011 (11)0.0062 (12)0.0196 (12)
C610.0191 (11)0.0161 (11)0.0195 (11)0.0007 (8)0.0057 (9)0.0042 (9)
C620.0254 (12)0.0203 (12)0.0253 (12)0.0037 (9)0.0077 (10)0.0055 (10)
C630.0320 (13)0.0229 (12)0.0241 (12)0.0023 (10)0.0126 (10)0.0070 (10)
C640.0268 (13)0.0288 (13)0.0190 (12)0.0053 (10)0.0036 (10)0.0055 (10)
C650.0205 (12)0.0277 (13)0.0239 (12)0.0030 (9)0.0003 (9)0.0072 (10)
C660.0192 (11)0.0237 (12)0.0272 (12)0.0031 (9)0.0064 (9)0.0079 (10)
C710.0138 (10)0.0155 (10)0.0268 (12)0.0028 (8)0.0060 (9)0.0044 (9)
C720.0270 (13)0.0242 (12)0.0299 (13)0.0015 (10)0.0120 (10)0.0085 (10)
C730.0331 (14)0.0231 (13)0.0433 (16)0.0061 (10)0.0151 (12)0.0144 (12)
C740.0223 (12)0.0227 (13)0.0433 (16)0.0007 (10)0.0136 (11)0.0001 (11)
C750.0297 (14)0.0334 (14)0.0292 (14)0.0016 (11)0.0061 (11)0.0014 (11)
C760.0248 (13)0.0287 (13)0.0262 (13)0.0041 (10)0.0036 (10)0.0037 (10)
C810.0154 (10)0.0228 (11)0.0193 (11)0.0037 (8)0.0052 (8)0.0068 (9)
C820.0227 (12)0.0211 (12)0.0263 (12)0.0047 (9)0.0065 (10)0.0064 (10)
C830.0213 (12)0.0292 (13)0.0332 (14)0.0114 (10)0.0056 (10)0.0081 (11)
C840.0180 (12)0.0384 (15)0.0423 (15)0.0048 (10)0.0095 (11)0.0154 (12)
C850.0238 (13)0.0315 (14)0.0483 (16)0.0035 (10)0.0181 (12)0.0107 (12)
C860.0227 (12)0.0211 (12)0.0357 (14)0.0025 (9)0.0102 (10)0.0055 (10)
Geometric parameters (Å, º) top
P6—N61.5975 (18)C62—H620.95
P6—C611.792 (2)C63—C641.386 (3)
P6—C811.807 (2)C63—H630.95
P6—C711.814 (2)C64—C651.384 (3)
O21—C21.358 (3)C64—H640.95
O21—C211.435 (3)C65—C661.383 (3)
O31—C311.207 (3)C65—H650.95
O32—C311.352 (3)C66—H660.95
O32—C321.448 (3)C71—C721.396 (3)
N1—C21.319 (3)C71—C761.397 (3)
N1—C61.359 (3)C72—C731.388 (3)
N6—C61.359 (3)C72—H720.95
C2—C31.406 (3)C73—C741.381 (4)
C3—C41.401 (3)C73—H730.95
C3—C311.466 (3)C74—C751.382 (4)
C4—C51.365 (3)C74—H740.95
C4—H40.95C75—C761.377 (3)
C5—C61.413 (3)C75—H750.95
C5—H50.95C76—H760.95
C21—H21A0.98C81—C821.385 (3)
C21—H21B0.98C81—C861.389 (3)
C21—H21C0.98C82—C831.392 (3)
C32—C331.500 (3)C82—H820.95
C32—H32A0.99C83—C841.377 (4)
C32—H32B0.99C83—H830.95
C33—H33A0.98C84—C851.381 (4)
C33—H33B0.98C84—H840.95
C33—H33C0.98C85—C861.384 (3)
C61—C661.392 (3)C85—H850.95
C61—C621.394 (3)C86—H860.95
C62—C631.382 (3)
N6—P6—C61105.47 (10)C63—C62—H62120.0
N6—P6—C81114.99 (10)C61—C62—H62120.0
C61—P6—C81107.20 (10)C62—C63—C64120.4 (2)
N6—P6—C71115.46 (10)C62—C63—H63119.8
C61—P6—C71105.61 (10)C64—C63—H63119.8
C81—P6—C71107.39 (10)C63—C64—C65119.7 (2)
C2—O21—C21116.54 (18)C63—C64—H64120.2
C31—O32—C32115.16 (18)C65—C64—H64120.2
C2—N1—C6118.93 (19)C66—C65—C64120.4 (2)
C6—N6—P6124.02 (15)C66—C65—H65119.8
N1—C2—O21117.30 (19)C64—C65—H65119.8
N1—C2—C3124.9 (2)C65—C66—C61120.0 (2)
O21—C2—C3117.8 (2)C65—C66—H66120.0
C4—C3—C2115.3 (2)C61—C66—H66120.0
C4—C3—C31121.7 (2)C72—C71—C76118.6 (2)
C2—C3—C31122.9 (2)C72—C71—P6121.92 (18)
C5—C4—C3121.3 (2)C76—C71—P6119.38 (17)
C5—C4—H4119.4C73—C72—C71120.2 (2)
C3—C4—H4119.4C73—C72—H72119.9
C4—C5—C6119.2 (2)C71—C72—H72119.9
C4—C5—H5120.4C74—C73—C72120.6 (2)
C6—C5—H5120.4C74—C73—H73119.7
N6—C6—N1120.49 (19)C72—C73—H73119.7
N6—C6—C5119.1 (2)C73—C74—C75119.1 (2)
N1—C6—C5120.4 (2)C73—C74—H74120.4
O21—C21—H21A109.5C75—C74—H74120.4
O21—C21—H21B109.5C76—C75—C74121.1 (2)
H21A—C21—H21B109.5C76—C75—H75119.5
O21—C21—H21C109.5C74—C75—H75119.5
H21A—C21—H21C109.5C75—C76—C71120.3 (2)
H21B—C21—H21C109.5C75—C76—H76119.9
O31—C31—O32121.6 (2)C71—C76—H76119.9
O31—C31—C3126.6 (2)C82—C81—C86119.8 (2)
O32—C31—C3111.79 (19)C82—C81—P6122.38 (18)
O32—C32—C33107.3 (2)C86—C81—P6117.81 (17)
O32—C32—H32A110.3C81—C82—C83120.1 (2)
C33—C32—H32A110.3C81—C82—H82119.9
O32—C32—H32B110.3C83—C82—H82119.9
C33—C32—H32B110.3C84—C83—C82119.9 (2)
H32A—C32—H32B108.5C84—C83—H83120.1
C32—C33—H33A109.5C82—C83—H83120.1
C32—C33—H33B109.5C83—C84—C85120.0 (2)
H33A—C33—H33B109.5C83—C84—H84120.0
C32—C33—H33C109.5C85—C84—H84120.0
H33A—C33—H33C109.5C84—C85—C86120.5 (2)
H33B—C33—H33C109.5C84—C85—H85119.7
C66—C61—C62119.4 (2)C86—C85—H85119.7
C66—C61—P6119.08 (17)C85—C86—C81119.7 (2)
C62—C61—P6121.44 (17)C85—C86—H86120.2
C63—C62—C61120.0 (2)C81—C86—H86120.2
C61—P6—N6—C6161.23 (18)C61—C62—C63—C640.4 (3)
C81—P6—N6—C643.4 (2)C62—C63—C64—C650.8 (4)
C71—P6—N6—C682.6 (2)C63—C64—C65—C661.4 (4)
C6—N1—C2—O21178.51 (19)C64—C65—C66—C610.8 (4)
C6—N1—C2—C31.0 (3)C62—C61—C66—C650.4 (3)
C21—O21—C2—N14.8 (3)P6—C61—C66—C65177.57 (18)
C21—O21—C2—C3174.7 (2)N6—P6—C71—C72124.57 (19)
N1—C2—C3—C40.6 (3)C61—P6—C71—C728.5 (2)
O21—C2—C3—C4179.9 (2)C81—P6—C71—C72105.68 (19)
N1—C2—C3—C31176.8 (2)N6—P6—C71—C7652.7 (2)
O21—C2—C3—C312.7 (3)C61—P6—C71—C76168.77 (18)
C2—C3—C4—C50.5 (3)C81—P6—C71—C7677.1 (2)
C31—C3—C4—C5176.9 (2)C76—C71—C72—C730.7 (3)
C3—C4—C5—C61.0 (3)P6—C71—C72—C73178.01 (18)
P6—N6—C6—N111.1 (3)C71—C72—C73—C740.3 (4)
P6—N6—C6—C5168.82 (17)C72—C73—C74—C750.2 (4)
C2—N1—C6—N6177.3 (2)C73—C74—C75—C760.3 (4)
C2—N1—C6—C52.6 (3)C74—C75—C76—C710.1 (4)
C4—C5—C6—N6177.3 (2)C72—C71—C76—C750.6 (4)
C4—C5—C6—N12.6 (3)P6—C71—C76—C75177.96 (19)
C32—O32—C31—O313.4 (3)N6—P6—C81—C82136.53 (19)
C32—O32—C31—C3176.17 (19)C61—P6—C81—C82106.6 (2)
C4—C3—C31—O31169.0 (2)C71—P6—C81—C826.5 (2)
C2—C3—C31—O3113.8 (4)N6—P6—C81—C8641.3 (2)
C4—C3—C31—O3211.5 (3)C61—P6—C81—C8675.6 (2)
C2—C3—C31—O32165.7 (2)C71—P6—C81—C86171.33 (18)
C31—O32—C32—C33177.9 (2)C86—C81—C82—C830.7 (3)
N6—P6—C61—C6623.7 (2)P6—C81—C82—C83177.12 (18)
C81—P6—C61—C66146.68 (18)C81—C82—C83—C840.3 (4)
C71—P6—C61—C6699.03 (19)C82—C83—C84—C851.0 (4)
N6—P6—C61—C62158.42 (18)C83—C84—C85—C860.7 (4)
C81—P6—C61—C6235.4 (2)C84—C85—C86—C810.3 (4)
C71—P6—C61—C6278.9 (2)C82—C81—C86—C851.0 (4)
C66—C61—C62—C631.0 (3)P6—C81—C86—C85176.87 (19)
P6—C61—C62—C63176.91 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C76—H76···N10.952.483.284 (3)142
C64—H64···O31i0.952.553.138 (3)120
C65—H65···O31i0.952.463.096 (3)124
C74—H74···O31ii0.952.543.466 (3)164
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+2, z.
(II) Ethyl 2-methylsulfanyl-6-[(triphenylphosphoranylidene)amino]nicotinate top
Crystal data top
C27H25N2O2PSZ = 2
Mr = 472.52F(000) = 496
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5671 (14) ÅCell parameters from 5400 reflections
b = 11.0617 (6) Åθ = 3.2–27.5°
c = 13.547 (2) ŵ = 0.23 mm1
α = 102.987 (8)°T = 120 K
β = 106.417 (12)°Block, yellow
γ = 94.596 (10)°0.46 × 0.31 × 0.29 mm
V = 1185.7 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5400 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1413
Tmin = 0.901, Tmax = 0.936l = 1717
24840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.7635P]
where P = (Fo2 + 2Fc2)/3
5400 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H25N2O2PSγ = 94.596 (10)°
Mr = 472.52V = 1185.7 (3) Å3
Triclinic, P1Z = 2
a = 8.5671 (14) ÅMo Kα radiation
b = 11.0617 (6) ŵ = 0.23 mm1
c = 13.547 (2) ÅT = 120 K
α = 102.987 (8)°0.46 × 0.31 × 0.29 mm
β = 106.417 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4362 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.936Rint = 0.033
24840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
5400 reflectionsΔρmin = 0.36 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S210.66708 (5)0.74151 (4)0.96911 (3)0.02315 (11)
P60.66502 (5)0.75652 (4)0.58072 (3)0.01650 (10)
O310.77752 (16)0.55697 (12)1.06406 (9)0.0302 (3)
O320.80751 (15)0.36788 (11)0.97403 (9)0.0242 (3)
N10.71708 (16)0.67783 (12)0.78131 (10)0.0178 (3)
N60.74784 (16)0.63978 (12)0.60969 (10)0.0187 (3)
C20.72802 (19)0.64059 (14)0.86988 (12)0.0185 (3)
C30.78322 (19)0.52838 (15)0.88577 (12)0.0193 (3)
C40.8278 (2)0.45357 (15)0.80280 (12)0.0206 (3)
C50.8181 (2)0.49073 (15)0.71169 (12)0.0205 (3)
C60.76002 (19)0.60440 (14)0.70141 (12)0.0177 (3)
C210.5695 (3)0.84629 (17)0.89579 (15)0.0316 (4)
C310.7891 (2)0.48939 (16)0.98338 (12)0.0214 (3)
C320.8040 (2)0.32149 (17)1.06586 (13)0.0263 (4)
C330.8286 (3)0.18668 (18)1.04022 (16)0.0361 (4)
C610.6295 (2)0.73180 (14)0.44001 (12)0.0192 (3)
C620.5093 (2)0.78628 (15)0.37914 (13)0.0234 (3)
C630.4863 (2)0.76680 (17)0.27077 (13)0.0270 (4)
C640.5804 (2)0.69269 (17)0.22276 (13)0.0284 (4)
C650.6988 (2)0.63766 (17)0.28251 (14)0.0289 (4)
C660.7246 (2)0.65804 (16)0.39133 (13)0.0235 (3)
C710.79198 (19)0.90912 (15)0.64353 (13)0.0196 (3)
C720.8179 (2)0.99309 (16)0.58480 (14)0.0264 (4)
C730.9195 (2)1.10820 (17)0.63560 (16)0.0309 (4)
C740.9966 (2)1.13934 (16)0.74425 (15)0.0288 (4)
C750.9735 (2)1.05526 (17)0.80279 (14)0.0289 (4)
C760.8719 (2)0.94080 (16)0.75309 (13)0.0249 (4)
C810.46807 (19)0.76946 (15)0.60262 (12)0.0190 (3)
C820.4237 (2)0.88451 (16)0.64168 (13)0.0233 (3)
C830.2713 (2)0.88936 (17)0.65897 (14)0.0291 (4)
C840.1643 (2)0.77977 (19)0.63712 (15)0.0316 (4)
C850.2075 (2)0.66544 (18)0.59706 (16)0.0322 (4)
C860.3588 (2)0.65907 (16)0.57938 (14)0.0248 (4)
H40.86500.37640.80990.025*
H50.85000.44060.65610.025*
H21A0.65180.89510.87670.047*
H21B0.51920.90340.93990.047*
H21C0.48410.79750.83080.047*
H32A0.69700.32841.07930.032*
H32B0.89280.37081.13010.032*
H33A0.74280.13980.97470.054*
H33B0.82210.15061.09900.054*
H33C0.93710.18151.03030.054*
H620.44350.83650.41170.028*
H630.40530.80460.22940.032*
H640.56380.67950.14850.034*
H650.76250.58590.24920.035*
H660.80740.62150.43260.028*
H720.76610.97180.50990.032*
H730.93581.16550.59530.037*
H741.06511.21810.77880.035*
H751.02771.07620.87740.035*
H760.85660.88380.79380.030*
H820.49740.95990.65660.028*
H830.24110.96800.68580.035*
H840.06080.78290.64960.038*
H850.13280.59040.58150.039*
H860.38770.58020.55170.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S210.0275 (2)0.0245 (2)0.0178 (2)0.00471 (16)0.00973 (16)0.00253 (15)
P60.0181 (2)0.0167 (2)0.01467 (19)0.00265 (14)0.00539 (15)0.00361 (14)
O310.0410 (8)0.0341 (7)0.0201 (6)0.0118 (6)0.0126 (5)0.0100 (5)
O320.0304 (7)0.0246 (6)0.0183 (6)0.0028 (5)0.0057 (5)0.0096 (5)
N10.0187 (7)0.0186 (6)0.0158 (6)0.0016 (5)0.0059 (5)0.0036 (5)
N60.0211 (7)0.0193 (6)0.0178 (6)0.0052 (5)0.0077 (5)0.0062 (5)
C20.0168 (7)0.0191 (7)0.0167 (7)0.0014 (6)0.0043 (6)0.0013 (6)
C30.0188 (8)0.0218 (8)0.0159 (7)0.0001 (6)0.0041 (6)0.0045 (6)
C40.0223 (8)0.0190 (8)0.0193 (8)0.0032 (6)0.0037 (6)0.0059 (6)
C50.0243 (8)0.0202 (8)0.0177 (7)0.0054 (6)0.0079 (6)0.0036 (6)
C60.0172 (7)0.0182 (7)0.0162 (7)0.0000 (6)0.0043 (6)0.0035 (6)
C210.0428 (11)0.0276 (9)0.0331 (10)0.0138 (8)0.0218 (9)0.0093 (8)
C310.0181 (8)0.0262 (8)0.0190 (8)0.0022 (6)0.0035 (6)0.0073 (6)
C320.0280 (9)0.0312 (9)0.0215 (8)0.0010 (7)0.0065 (7)0.0133 (7)
C330.0464 (12)0.0337 (10)0.0332 (10)0.0064 (9)0.0128 (9)0.0179 (8)
C610.0212 (8)0.0183 (7)0.0163 (7)0.0009 (6)0.0047 (6)0.0038 (6)
C620.0250 (8)0.0227 (8)0.0208 (8)0.0025 (6)0.0048 (7)0.0057 (6)
C630.0278 (9)0.0294 (9)0.0206 (8)0.0013 (7)0.0009 (7)0.0104 (7)
C640.0332 (10)0.0317 (9)0.0174 (8)0.0059 (7)0.0071 (7)0.0053 (7)
C650.0355 (10)0.0304 (9)0.0233 (9)0.0035 (8)0.0143 (8)0.0056 (7)
C660.0275 (9)0.0239 (8)0.0217 (8)0.0054 (7)0.0097 (7)0.0080 (6)
C710.0171 (7)0.0187 (7)0.0225 (8)0.0039 (6)0.0068 (6)0.0034 (6)
C720.0260 (9)0.0245 (9)0.0271 (9)0.0022 (7)0.0033 (7)0.0101 (7)
C730.0301 (10)0.0215 (9)0.0401 (10)0.0002 (7)0.0070 (8)0.0123 (8)
C740.0231 (9)0.0205 (8)0.0380 (10)0.0005 (7)0.0095 (8)0.0005 (7)
C750.0277 (9)0.0281 (9)0.0249 (9)0.0028 (7)0.0083 (7)0.0026 (7)
C760.0268 (9)0.0253 (9)0.0204 (8)0.0017 (7)0.0080 (7)0.0026 (7)
C810.0195 (8)0.0218 (8)0.0167 (7)0.0046 (6)0.0056 (6)0.0063 (6)
C820.0263 (9)0.0211 (8)0.0237 (8)0.0056 (6)0.0087 (7)0.0063 (6)
C830.0287 (9)0.0311 (9)0.0321 (9)0.0151 (7)0.0119 (8)0.0104 (7)
C840.0213 (9)0.0433 (11)0.0345 (10)0.0104 (8)0.0113 (8)0.0133 (8)
C850.0224 (9)0.0328 (10)0.0398 (11)0.0007 (7)0.0095 (8)0.0080 (8)
C860.0225 (8)0.0221 (8)0.0285 (9)0.0024 (6)0.0082 (7)0.0038 (7)
Geometric parameters (Å, º) top
S21—C21.7724 (16)C62—H620.95
S21—C211.7980 (19)C63—C641.382 (3)
P6—N61.5944 (13)C63—H630.95
P6—C611.7959 (16)C64—C651.382 (3)
P6—C811.8050 (16)C64—H640.95
P6—C711.8148 (17)C65—C661.390 (2)
O31—C311.212 (2)C65—H650.95
O32—C311.348 (2)C66—H660.95
O32—C321.4551 (19)C71—C721.394 (2)
N1—C21.335 (2)C71—C761.396 (2)
N1—C61.3581 (19)C72—C731.394 (2)
N6—C61.3637 (19)C72—H720.95
C2—C31.403 (2)C73—C741.381 (3)
C3—C41.403 (2)C73—H730.95
C3—C311.470 (2)C74—C751.387 (3)
C4—C51.369 (2)C74—H740.95
C4—H40.95C75—C761.387 (2)
C5—C61.410 (2)C75—H750.95
C5—H50.95C76—H760.95
C21—H21A0.98C81—C821.390 (2)
C21—H21B0.98C81—C861.394 (2)
C21—H21C0.98C82—C831.394 (2)
C32—C331.499 (3)C82—H820.95
C32—H32A0.99C83—C841.380 (3)
C32—H32B0.99C83—H830.95
C33—H33A0.98C84—C851.382 (3)
C33—H33B0.98C84—H840.95
C33—H33C0.98C85—C861.388 (2)
C61—C661.390 (2)C85—H850.95
C61—C621.395 (2)C86—H860.95
C62—C631.389 (2)
C2—S21—C21100.65 (8)C63—C62—H62120.1
N6—P6—C61104.98 (7)C61—C62—H62120.1
N6—P6—C81115.68 (7)C64—C63—C62120.36 (16)
C61—P6—C81106.65 (7)C64—C63—H63119.8
N6—P6—C71115.61 (7)C62—C63—H63119.8
C61—P6—C71106.30 (7)C63—C64—C65120.13 (16)
C81—P6—C71106.87 (7)C63—C64—H64119.9
C31—O32—C32115.20 (13)C65—C64—H64119.9
C2—N1—C6119.34 (13)C64—C65—C66119.99 (17)
C6—N6—P6124.59 (11)C64—C65—H65120.0
N1—C2—C3123.27 (14)C66—C65—H65120.0
N1—C2—S21116.16 (12)C65—C66—C61120.16 (16)
C3—C2—S21120.57 (12)C65—C66—H66119.9
C2—C3—C4116.84 (14)C61—C66—H66119.9
C2—C3—C31121.43 (14)C72—C71—C76119.12 (15)
C4—C3—C31121.70 (14)C72—C71—P6121.89 (13)
C5—C4—C3120.61 (15)C76—C71—P6118.92 (12)
C5—C4—H4119.7C73—C72—C71120.21 (16)
C3—C4—H4119.7C73—C72—H72119.9
C4—C5—C6119.13 (14)C71—C72—H72119.9
C4—C5—H5120.4C74—C73—C72120.25 (17)
C6—C5—H5120.4C74—C73—H73119.9
N1—C6—N6120.36 (14)C72—C73—H73119.9
N1—C6—C5120.80 (14)C73—C74—C75119.79 (16)
N6—C6—C5118.85 (14)C73—C74—H74120.1
S21—C21—H21A109.5C75—C74—H74120.1
S21—C21—H21B109.5C74—C75—C76120.39 (17)
H21A—C21—H21B109.5C74—C75—H75119.8
S21—C21—H21C109.5C76—C75—H75119.8
H21A—C21—H21C109.5C75—C76—C71120.22 (16)
H21B—C21—H21C109.5C75—C76—H76119.9
O31—C31—O32122.60 (15)C71—C76—H76119.9
O31—C31—C3124.81 (15)C82—C81—C86119.88 (15)
O32—C31—C3112.59 (13)C82—C81—P6122.25 (13)
O32—C32—C33106.83 (14)C86—C81—P6117.87 (12)
O32—C32—H32A110.4C81—C82—C83120.06 (16)
C33—C32—H32A110.4C81—C82—H82120.0
O32—C32—H32B110.4C83—C82—H82120.0
C33—C32—H32B110.4C84—C83—C82119.90 (16)
H32A—C32—H32B108.6C84—C83—H83120.1
C32—C33—H33A109.5C82—C83—H83120.1
C32—C33—H33B109.5C83—C84—C85120.07 (17)
H33A—C33—H33B109.5C83—C84—H84120.0
C32—C33—H33C109.5C85—C84—H84120.0
H33A—C33—H33C109.5C84—C85—C86120.70 (17)
H33B—C33—H33C109.5C84—C85—H85119.6
C66—C61—C62119.58 (15)C86—C85—H85119.6
C66—C61—P6119.31 (12)C85—C86—C81119.38 (16)
C62—C61—P6121.11 (12)C85—C86—H86120.3
C63—C62—C61119.76 (16)C81—C86—H86120.3
C61—P6—N6—C6163.70 (13)C61—C62—C63—C640.7 (3)
C81—P6—N6—C646.46 (16)C62—C63—C64—C650.2 (3)
C71—P6—N6—C679.53 (15)C63—C64—C65—C660.8 (3)
C6—N1—C2—C30.4 (2)C64—C65—C66—C611.2 (3)
C6—N1—C2—S21179.28 (11)C62—C61—C66—C650.7 (3)
C21—S21—C2—N111.65 (14)P6—C61—C66—C65179.90 (13)
C21—S21—C2—C3168.05 (14)N6—P6—C71—C72128.28 (14)
N1—C2—C3—C40.2 (2)C61—P6—C71—C7212.25 (16)
S21—C2—C3—C4179.50 (12)C81—P6—C71—C72101.37 (14)
N1—C2—C3—C31178.32 (14)N6—P6—C71—C7648.76 (15)
S21—C2—C3—C311.4 (2)C61—P6—C71—C76164.78 (13)
C2—C3—C4—C50.5 (2)C81—P6—C71—C7681.60 (14)
C31—C3—C4—C5178.65 (15)C76—C71—C72—C731.4 (2)
C3—C4—C5—C61.0 (2)P6—C71—C72—C73178.42 (13)
C2—N1—C6—N6179.16 (14)C71—C72—C73—C740.7 (3)
C2—N1—C6—C51.0 (2)C72—C73—C74—C750.5 (3)
P6—N6—C6—N17.7 (2)C73—C74—C75—C760.9 (3)
P6—N6—C6—C5172.42 (12)C74—C75—C76—C710.1 (3)
C4—C5—C6—N11.3 (2)C72—C71—C76—C751.0 (2)
C4—C5—C6—N6178.83 (15)P6—C71—C76—C75178.11 (13)
C32—O32—C31—O313.1 (2)N6—P6—C81—C82141.77 (13)
C32—O32—C31—C3176.39 (13)C61—P6—C81—C82101.93 (14)
C2—C3—C31—O3114.1 (3)C71—P6—C81—C8211.45 (16)
C4—C3—C31—O31167.84 (16)N6—P6—C81—C8638.00 (15)
C2—C3—C31—O32165.35 (14)C61—P6—C81—C8678.30 (14)
C4—C3—C31—O3212.7 (2)C71—P6—C81—C86168.32 (13)
C31—O32—C32—C33179.24 (15)C86—C81—C82—C830.9 (2)
N6—P6—C61—C6623.95 (15)P6—C81—C82—C83178.88 (13)
C81—P6—C61—C66147.19 (13)C81—C82—C83—C840.1 (3)
C71—P6—C61—C6699.03 (14)C82—C83—C84—C850.7 (3)
N6—P6—C61—C62156.65 (13)C83—C84—C85—C860.7 (3)
C81—P6—C61—C6233.41 (15)C84—C85—C86—C810.1 (3)
C71—P6—C61—C6280.36 (15)C82—C81—C86—C850.9 (2)
C66—C61—C62—C630.3 (2)P6—C81—C86—C85178.88 (14)
P6—C61—C62—C63179.14 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C76—H76···N10.952.433.246 (2)143
C65—H65···O31i0.952.503.170 (2)128
C33—H33B···Cgii0.992.733.560 (2)141
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H25N2O3PC27H25N2O2PS
Mr456.46472.52
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)8.5336 (18), 11.063 (3), 13.426 (3)8.5671 (14), 11.0617 (6), 13.547 (2)
α, β, γ (°)73.722 (18), 72.389 (16), 85.93 (2)102.987 (8), 106.417 (12), 94.596 (10)
V3)1159.5 (5)1185.7 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.150.23
Crystal size (mm)0.22 × 0.20 × 0.150.46 × 0.31 × 0.29
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.972, 0.9780.901, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
30925, 5321, 3750 24840, 5400, 4362
Rint0.0800.033
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.121, 1.08 0.037, 0.098, 1.06
No. of reflections53215400
No. of parameters300300
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.400.29, 0.36

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, °) for compounds (I) and (II) top
Parameter(I)(II)
N1-C21.319 (3)1.335 (2)
C2-C31.406 (3)1.403 (2)
C3-C41.401 (3)1.403 (2)
C4-C51.365 (3)1.369 (2)
C5-C61.413 (3)1.410 (2)
C6-N11.359 (3)1.3581 (19)
C3-C311.466 (3)1.470 (2)
C31-O311.207 (3)1.212 (2)
C6-N61.359 (3)1.3637 (19)
N6-P61.5975 (18)1.5944 (13)
P6-C611.792 (2)1.7959 (16)
P6-C711.814 (2)1.8148 (17)
P6-C811.807 (2)1.8050 (16)
C6-N6-P6124.01 (15)124.59 (11)
N6-P6-C61105.47 (10)104.98 (7)
N6-P6-C71115.46 (10)115.61 (7)
N6-P6-C81114.99 (10)115.68 (7)
C61-P6-C71105.61 (10)106.30 (7)
C71-P6-C81107.39 (10)106.87 (7)
C81-P6-C61107.20 (10)106.65 (7)
N6-P6-C61-C62158.42 (18)156.65 (13)
N6-P6-C71-C72124.5719)128.28 (14)
N6-P6-C81-C82136.53 (19)141.77 (13)
P6-N6-C6-N1-11.1 (3)-7.7 (2)
N1-C2-X21-C21a4.8 (3)11.65 (14)
C2-C3-C31-O32165.7 (2)165.35 (14)
C3-C31-O32-C32-176.17 (19)-176.39 (13)
C31-O32-C32-C33-177.9 (2)-179.24 (15)
Note: (a) the site X21 represents O21 in compound (I) and S21 in compound (II).
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I) and (II) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)C76-H76···N10.952.483.284 (3)142
C64-H64···O31i0.952.553.138 (3)120
C65-H65···O31i0.952.463.096 (3)124
C74-H74···O31ii0.952.543.466 (3)164
(II)C76-H76···N10.952.433.246 (3)143
C65-H65···O31iii0.952.503.170 (2)128
C33-H33B···Cgiv0.992.733.560 (2)141
Symmetry codes: (i) -1 + x, y, 1 + z; (ii) 1 - x, 2 - y, -z; (iii) x, y, -1 + z; (iv) 2 - x, 1 - y, 2 - z. Cg represents the centroid of the ring N1/C2–C6.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds