Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The 1:1 adduct of N,N'-bis­(2-chloro­benzyl­idene)ethylene­diamine (cb2en) with copper(I) chloride proves to be an ionic compound with CuI-centred cations and anions, [Cu(C16H14Cl2N2)2][CuCl2]·CH3CN. In the cation, the CuI atom has a flattened tetra­hedral coordination geometry, with a small bite angle for the chelating ligands, which form a double-helical arrangement around the metal centre. The anion is almost linear, as expected. The packing of the cations involves inter­molecular [pi]-[pi] inter­actions, which lead to columns of translationally related cations along the shortest unit-cell axis, with anions and solvent mol­ecules in channels between them.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107054960/sk3174sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054960/sk3174Isup2.hkl
Contains datablock I

CCDC reference: 600887

Comment top

The coordination chemistry of copper(I) complexes has received increased attention over the last few decades. This is mainly due to the potential application of these complexes in catalytic processes (Fife et al., 1985; Bowker et al., 1988; Bowmarker et al. 2000), photosensitization reactions (Horváth, 1994; Kutal, 1990), light-harvesting studies (Rosi et al., 1999; Dietrich-Buchecker & Sauvage, 1987) and the design of supramolecular arrays (Meghdadi et al., 2002; Foster et al. 2000). Reaction of copper(I) halides, CuX, with nitrogen-based ligands (L) yields CuXLn adducts. The steric, electronic and conformational effects imparted by the coordinated ligands play an important role in influencing the properties of the resulting metal complexes. A thorough understanding of these effects can serve as the basis for the rational design of complexes with specific and predictable properties. The number of ligands bound to the monovalent CuI ion is greatly influenced by both the chemical nature and the geometry of the ligand L, and the particular choice of halogen X (Lange et al., 2000). Although structural reports on [CuIL4]+ complex cations (where L is an N-donor ligand) are numerous (Alcon et al., 2000; Miller & Karpishin, 1999; Panja et al., 2002), there are a limited number of studies of copper(I) complexes with isolated linear dihalidocuprate(I) anions (Amirnasr et al., 2005; Mirkhani et al., 2004). The structures of halidocuprate(I) compounds are exceptionally varied, and the nature of the cation plays an important role in determining the coordination number of CuI in halidocuprates and the tendency of the anions to form extended structures (Andersson & Jagner, 1989; Hasselgren et al., 1999). Thus, bulky cations with well screened charges tend to favour the formation of discrete anions in which CuI has a low coordination number. It has been recognized that cation properties, such as size, shape and the distribution of positive charge, are of importance for the anion configurations adopted by halidocuprates(I).

In this context, we decided to examine the nature of the complex formed with an unconjugated diimine ligand. The title complex, (I), was prepared by reacting the bidentate ligand N,N'-bis(2-chlorobenzylidene)ethylenediamine (cb2en) with CuCl. The structure determination of (I) is consistent with the stoichiometry of a 1:1 copper(I) chloride–ligand adduct, [CuCl(L)]. The structural connectivity, however, is that of an ionic complex, the asymmetric unit of the structure comprising a bis(ligand)copper(I) cation and a dichloridocuprate(I) anion, together with a molecule of acetonitrile solvent, [L2Cu]+[CuCl2]-·MeCN (Fig. 1).

The anion of (I) has no crystallographic symmetry, and one Cl atom is disordered over two sites. Neither of these gives a completely linear coordination (Table 1). The geometry is in good agreement with that of several other previous examples (Kaiser et al., 1974; Engelhardt et al., 1984).

The cation of (I) has a markedly flattened tetrahedral geometry and also lies in a general position with no crystallographic symmetry. The angles at the CuI atom in the cation are similar to the corresponding angles for ethylenediamine complexes (Engelhardt et al., 1984), with a small bite angle for the chelating ligand. The two ligands form a double-helical arrangement around the CuI atom. Within the cation, the two benzene rings of each ligand are almost parallel to those of the other, with dihedral angles of 2.73 (16)° for rings C1–C6 and C27–C32, and 0.38 (17)° for rings C11–C16 and C17–C22, with interplanar spacings of about 3.6 Å in each case. This does not give rise to intramolecular ππ stacking, since the pairs of rings are substantially displaced laterally, the centroid-to-centroid distances being 4.877 (4) and 4.846 (4) Å, respectively. However, the same pairs of rings are similarly close to parallel in adjacent molecules along the short a axis (dihedral angles are the same by symmetry), and here there is intermolecular ππ stacking (Fig. 2), the centroid-to-centroid distances being 3.645 (3) and 3.536 (3) Å, respectively, and the interplanar spacings being 3.532 and 3.523 Å, respectively. This stacking produces columns of cations along the a axis, with anions and solvent molecules occupying the channels between them (Fig. 3).

Related literature top

For related literature, see: Alcon et al. (2000); Amirnasr et al. (2005); Andersson & Jagner (1989); Bowker et al. (1988); Bowmarker et al. (2000); Bruker (2005); Dietrich-Buchecker & Sauvage (1987); Engelhardt et al. (1984); Fife et al. (1985); Foster et al. (2000); Hasselgren et al. (1999); Horváth (1994); Kaiser et al. (1974); Kutal (1990); Lange et al. (2000); Meghdadi et al. (2002); Miller & Karpishin (1999); Mirkhani et al. (2004); Panja et al. (2002); Rosi et al. (1999).

Experimental top

The title compound was prepared by the reaction of CuCl and cb2en (molar ratio 1:1) in an acetonitrile solution at room temperature. The solution was then concentrated under vacuum. Red crystals of (I) were formed by vapour diffusion of diethyl ether into the concentrated solution.

Refinement top

The small size and weak diffraction of the crystals necessitated the use of synchrotron radiation. The crystal was found to be a non-merohedral rotation twin about (100), with symmetry-inequivalent reflections overlapping in the diffraction pattern, making it impossible to merge equivalent reflections before the refinement with SHELXL HKLF5 style data (SHELXTL; Bruker, 2005). The twin law is (1 0 0/ 0 - 1 0/ -0.8867 0 - 1). A number of reflections were rejected in the data processing because of problems with spot shape or masking by the beamstop. The deposited structure factors are in the format generated by the undocumented LIST 7 instruction of SHELXTL (and SHELXL97), in which the contributions of the twin components are identified following refinement of the twin fraction; this was 0.5415:0.4585 (5).

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.99 Å, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. One Cl atom of the anion was modelled as disordered over two positions, with occupancy factors 0.55:0.45 (2). Twofold disorder was also found for the CH2CH2 bridge of one of the ligands in the cation, with occupancy factors 0.515:0.485 (15); restraints were applied to the displacement parameters of these disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXTL (Bruker, 2005); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity, and only one component is shown for each disordered group.
[Figure 2] Fig. 2. The stacking of cations of (I) via ππ interactions.
[Figure 3] Fig. 3. The crystal packing in (I), viewed along the a axis, showing the columns of cations, with anions and solvent molecules in channels.
Bis[N,N'-(2-chlorobenzylidene)ethylenediamine-κ2N,N']copper(I) dichloridocuprate(I) acetonitrile solvate top
Crystal data top
[Cu(C16H14Cl2N2)2][CuCl2]·C2H3NF(000) = 1720
Mr = 849.42Dx = 1.590 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.8462 Å
Hall symbol: -P 2ynCell parameters from 1720 reflections
a = 7.845 (5) Åθ = 3.7–33.3°
b = 16.965 (10) ŵ = 1.68 mm1
c = 26.915 (15) ÅT = 120 K
β = 97.896 (9)°Block, orange
V = 3548 (4) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
30485 independent reflections
Radiation source: Daresbury SRS station 16.2SMX15283 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.000
thin–slice ω scansθmax = 31.9°, θmin = 4.2°
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
h = 99
Tmin = 0.730, Tmax = 0.850k = 2121
30485 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
30485 reflections(Δ/σ)max = 0.005
456 parametersΔρmax = 0.71 e Å3
24 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(C16H14Cl2N2)2][CuCl2]·C2H3NV = 3548 (4) Å3
Mr = 849.42Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.8462 Å
a = 7.845 (5) ŵ = 1.68 mm1
b = 16.965 (10) ÅT = 120 K
c = 26.915 (15) Å0.10 × 0.10 × 0.10 mm
β = 97.896 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
30485 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
15283 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.850Rint = 0.000
30485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05624 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.79Δρmax = 0.71 e Å3
30485 reflectionsΔρmin = 0.84 e Å3
456 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.27850 (5)0.24353 (3)0.624256 (15)0.01994 (11)
Cu20.24837 (6)0.25659 (3)0.320108 (17)0.03667 (14)
Cl10.54531 (12)0.06468 (6)0.68760 (4)0.0346 (3)
Cl20.17607 (15)0.55829 (6)0.68610 (5)0.0560 (4)
Cl30.42641 (13)0.54910 (6)0.55917 (4)0.0389 (3)
Cl40.15693 (12)0.06374 (6)0.56177 (3)0.0285 (2)
Cl50.15291 (12)0.24529 (6)0.38838 (3)0.0353 (2)
Cl60.3896 (19)0.2678 (2)0.2565 (2)0.0429 (19)0.55 (2)
Cl6A0.3021 (17)0.2747 (3)0.24772 (18)0.0314 (16)0.45 (2)
N10.4113 (4)0.17874 (18)0.67975 (11)0.0312 (8)
N20.2138 (4)0.31162 (17)0.68051 (11)0.0237 (7)
N30.3661 (3)0.30304 (17)0.56702 (11)0.0200 (7)
N40.1356 (3)0.18205 (17)0.56960 (10)0.0195 (7)
N50.7040 (4)0.2583 (2)0.48590 (14)0.0431 (9)
C10.5758 (4)0.0059 (2)0.63605 (14)0.0208 (9)
C20.6331 (4)0.0427 (2)0.59556 (14)0.0226 (9)
H2A0.65500.09780.59650.027*
C30.6584 (4)0.0003 (2)0.55406 (14)0.0266 (10)
H3A0.69580.02470.52590.032*
C40.6282 (4)0.0818 (2)0.55377 (14)0.0256 (9)
H4A0.64480.11240.52530.031*
C50.5743 (4)0.1175 (2)0.59511 (13)0.0205 (9)
H5A0.55640.17290.59460.025*
C60.5454 (4)0.0751 (2)0.63731 (13)0.0171 (8)
C70.4939 (5)0.1137 (2)0.68146 (14)0.0302 (10)
H7A0.52350.08910.71320.036*
C80.4227 (15)0.2261 (6)0.7287 (3)0.017 (3)0.485 (14)
H8A0.51320.26690.72980.021*0.485 (14)
H8B0.45100.19080.75800.021*0.485 (14)
C8A0.3345 (15)0.1978 (6)0.7264 (3)0.020 (3)0.515 (14)
H8AA0.41010.17920.75670.024*0.515 (14)
H8AB0.22000.17290.72550.024*0.515 (14)
C90.2456 (15)0.2646 (6)0.7296 (3)0.021 (3)0.485 (14)
H9A0.15540.22410.73080.025*0.485 (14)
H9B0.24720.29990.75900.025*0.485 (14)
C9A0.3195 (14)0.2863 (5)0.7264 (3)0.020 (2)0.515 (14)
H9AA0.26650.30370.75590.024*0.515 (14)
H9AB0.43530.31030.72860.024*0.515 (14)
C100.1506 (4)0.3805 (2)0.68212 (14)0.0279 (10)
H10A0.15460.40520.71390.033*
C110.0711 (4)0.4240 (2)0.63727 (15)0.0238 (9)
C120.0142 (4)0.3837 (2)0.59701 (15)0.0262 (10)
H12A0.01780.32770.59760.031*
C130.0948 (5)0.4237 (3)0.55571 (16)0.0357 (11)
H13A0.15380.39560.52800.043*
C140.0889 (5)0.5055 (3)0.55494 (18)0.0458 (13)
H14A0.14250.53310.52630.055*
C150.0085 (5)0.5463 (3)0.5942 (2)0.0458 (13)
H15A0.00700.60230.59370.055*
C160.0720 (5)0.5052 (2)0.63543 (16)0.0329 (11)
C170.5256 (4)0.4950 (2)0.60984 (15)0.0250 (9)
C180.6097 (5)0.5350 (2)0.65003 (17)0.0325 (11)
H18A0.61230.59090.65000.039*
C190.6905 (5)0.4936 (2)0.69041 (16)0.0342 (11)
H19A0.75060.52080.71830.041*
C200.6839 (4)0.4117 (2)0.69030 (14)0.0256 (9)
H20A0.73810.38300.71840.031*
C210.5994 (4)0.3725 (2)0.64982 (13)0.0207 (9)
H21A0.59820.31650.64980.025*
C220.5159 (4)0.4126 (2)0.60896 (14)0.0193 (9)
C230.4375 (4)0.3703 (2)0.56447 (14)0.0248 (9)
H23A0.43960.39360.53250.030*
C240.3069 (4)0.2628 (2)0.51925 (12)0.0235 (9)
H24A0.39200.22240.51270.028*
H24B0.29660.30150.49140.028*
C250.1333 (4)0.2241 (2)0.52152 (12)0.0266 (10)
H25A0.04180.26470.51820.032*
H25B0.10770.18640.49340.032*
C260.0824 (4)0.1117 (2)0.56783 (13)0.0203 (9)
H26A0.05030.08820.53590.024*
C270.0679 (4)0.0644 (2)0.61281 (13)0.0179 (8)
C280.0179 (4)0.0987 (2)0.65588 (13)0.0184 (9)
H28A0.00190.15400.65650.022*
C290.0034 (4)0.0539 (2)0.69757 (13)0.0224 (9)
H29A0.03860.07840.72620.027*
C300.0263 (4)0.0265 (2)0.69768 (13)0.0213 (9)
H30A0.01390.05700.72660.026*
C310.0731 (4)0.0616 (2)0.65649 (13)0.0206 (9)
H31A0.09270.11690.65650.025*
C320.0928 (4)0.0171 (2)0.61401 (13)0.0168 (8)
C330.6915 (4)0.2562 (2)0.44344 (19)0.0338 (10)
C340.6791 (4)0.2547 (2)0.38894 (14)0.0401 (10)
H34A0.61620.30140.37490.060*
H34B0.61780.20710.37600.060*
H34C0.79500.25480.37920.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0275 (2)0.0170 (3)0.0153 (2)0.0016 (2)0.00302 (18)0.0026 (2)
Cu20.0576 (3)0.0208 (3)0.0306 (3)0.0078 (3)0.0024 (2)0.0008 (3)
Cl10.0369 (6)0.0301 (6)0.0369 (6)0.0058 (5)0.0058 (5)0.0179 (5)
Cl20.0636 (8)0.0274 (7)0.0813 (10)0.0044 (6)0.0249 (7)0.0206 (7)
Cl30.0535 (7)0.0248 (6)0.0416 (7)0.0138 (5)0.0178 (6)0.0146 (5)
Cl40.0406 (6)0.0252 (6)0.0200 (5)0.0038 (5)0.0058 (4)0.0064 (4)
Cl50.0502 (6)0.0235 (6)0.0324 (6)0.0059 (5)0.0065 (4)0.0036 (5)
Cl60.047 (5)0.0357 (15)0.0489 (18)0.0119 (19)0.015 (2)0.0140 (13)
Cl6A0.024 (4)0.0340 (17)0.0347 (17)0.0061 (18)0.0009 (19)0.0068 (12)
N10.043 (2)0.033 (2)0.0170 (19)0.0180 (17)0.0032 (16)0.0064 (15)
N20.032 (2)0.0207 (19)0.0170 (18)0.0054 (15)0.0024 (15)0.0025 (14)
N30.0168 (17)0.0213 (19)0.0230 (19)0.0038 (14)0.0063 (14)0.0057 (14)
N40.0256 (18)0.0197 (19)0.0135 (17)0.0025 (15)0.0037 (13)0.0014 (13)
N50.038 (2)0.026 (2)0.066 (3)0.0021 (18)0.010 (2)0.007 (2)
C10.016 (2)0.024 (2)0.021 (2)0.0007 (17)0.0006 (17)0.0096 (18)
C20.019 (2)0.014 (2)0.034 (2)0.0006 (17)0.0008 (18)0.0044 (18)
C30.026 (2)0.032 (3)0.022 (2)0.0100 (19)0.0026 (18)0.0023 (19)
C40.025 (2)0.024 (2)0.027 (2)0.0031 (18)0.0018 (18)0.0095 (19)
C50.019 (2)0.018 (2)0.024 (2)0.0073 (17)0.0014 (17)0.0041 (17)
C60.011 (2)0.018 (2)0.020 (2)0.0034 (16)0.0032 (16)0.0025 (17)
C70.041 (3)0.031 (3)0.016 (2)0.010 (2)0.0018 (19)0.0081 (18)
C80.023 (4)0.021 (4)0.010 (3)0.006 (3)0.007 (3)0.001 (3)
C8A0.023 (4)0.022 (4)0.014 (3)0.002 (3)0.003 (3)0.002 (3)
C90.026 (4)0.031 (4)0.005 (3)0.011 (3)0.001 (3)0.005 (3)
C9A0.023 (4)0.020 (4)0.018 (4)0.008 (3)0.007 (3)0.004 (3)
C100.027 (2)0.028 (3)0.028 (2)0.0022 (19)0.0027 (19)0.0145 (19)
C110.018 (2)0.027 (2)0.029 (2)0.0058 (19)0.0119 (18)0.0048 (19)
C120.020 (2)0.023 (2)0.037 (3)0.0069 (18)0.0086 (19)0.002 (2)
C130.027 (2)0.047 (3)0.035 (3)0.011 (2)0.011 (2)0.004 (2)
C140.038 (3)0.060 (4)0.042 (3)0.031 (3)0.018 (2)0.021 (3)
C150.046 (3)0.020 (3)0.081 (4)0.015 (2)0.041 (3)0.012 (3)
C160.033 (3)0.020 (2)0.051 (3)0.006 (2)0.023 (2)0.002 (2)
C170.017 (2)0.032 (3)0.029 (3)0.0038 (19)0.0140 (18)0.011 (2)
C180.032 (3)0.019 (2)0.051 (3)0.001 (2)0.022 (2)0.001 (2)
C190.023 (2)0.042 (3)0.040 (3)0.010 (2)0.012 (2)0.009 (2)
C200.021 (2)0.028 (2)0.029 (2)0.0051 (18)0.0076 (18)0.0014 (19)
C210.017 (2)0.020 (2)0.026 (2)0.0020 (17)0.0062 (17)0.0038 (17)
C220.017 (2)0.019 (2)0.025 (2)0.0032 (17)0.0125 (17)0.0078 (18)
C230.021 (2)0.030 (3)0.023 (2)0.0068 (19)0.0043 (18)0.0100 (18)
C240.027 (2)0.031 (2)0.0126 (18)0.0032 (19)0.0035 (16)0.0064 (18)
C250.038 (3)0.021 (2)0.018 (2)0.0033 (18)0.0037 (18)0.0051 (17)
C260.021 (2)0.024 (2)0.016 (2)0.0046 (18)0.0014 (17)0.0018 (16)
C270.017 (2)0.022 (2)0.014 (2)0.0009 (17)0.0030 (16)0.0018 (17)
C280.018 (2)0.016 (2)0.022 (2)0.0040 (16)0.0035 (17)0.0015 (16)
C290.024 (2)0.030 (2)0.014 (2)0.0045 (18)0.0055 (16)0.0016 (18)
C300.023 (2)0.019 (2)0.023 (2)0.0054 (17)0.0064 (17)0.0068 (17)
C310.016 (2)0.013 (2)0.032 (2)0.0020 (17)0.0011 (17)0.0000 (17)
C320.013 (2)0.018 (2)0.020 (2)0.0013 (16)0.0037 (16)0.0052 (16)
C330.017 (2)0.013 (2)0.073 (3)0.0064 (19)0.014 (2)0.006 (3)
C340.039 (2)0.024 (2)0.058 (3)0.008 (2)0.008 (2)0.013 (2)
Geometric parameters (Å, º) top
Cu1—N12.024 (3)C10—C111.478 (5)
Cu1—N22.024 (3)C11—C121.375 (5)
Cu1—N32.039 (3)C11—C161.378 (5)
Cu1—N42.014 (3)C12—H12A0.950
Cu2—Cl52.0862 (14)C12—C131.380 (5)
Cu2—Cl62.171 (5)C13—H13A0.950
Cu2—Cl6A2.072 (4)C13—C141.388 (5)
Cl1—C11.752 (4)C14—H14A0.950
Cl2—C161.741 (4)C14—C151.346 (6)
Cl3—C171.737 (4)C15—H15A0.950
Cl4—C321.747 (3)C15—C161.387 (6)
N1—C71.277 (4)C17—C181.367 (5)
N1—C81.535 (8)C17—C221.399 (5)
N1—C8A1.502 (8)C18—H18A0.950
N2—C91.534 (8)C18—C191.373 (5)
N2—C9A1.456 (9)C19—H19A0.950
N2—C101.272 (4)C19—C201.390 (5)
N3—C231.278 (4)C20—H20A0.950
N3—C241.473 (4)C20—C211.368 (5)
N4—C251.475 (4)C21—H21A0.950
N4—C261.264 (4)C21—C221.380 (5)
N5—C331.134 (5)C22—C231.457 (5)
C1—C21.384 (5)C23—H23A0.950
C1—C61.397 (5)C24—H24A0.990
C2—H2A0.950C24—H24B0.990
C2—C31.371 (5)C24—C251.521 (4)
C3—H3A0.950C25—H25A0.990
C3—C41.402 (5)C25—H25B0.990
C4—H4A0.950C26—H26A0.950
C4—C51.384 (5)C26—C271.470 (4)
C5—H5A0.950C27—C281.401 (4)
C5—C61.389 (4)C27—C321.395 (5)
C6—C71.461 (5)C28—H28A0.950
C7—H7A0.950C28—C291.385 (4)
C8—H8A0.990C29—H29A0.950
C8—H8B0.990C29—C301.384 (5)
C8—C91.539 (16)C30—H30A0.950
C8A—H8AA0.990C30—C311.353 (4)
C8A—H8AB0.990C31—H31A0.950
C8A—C9A1.505 (14)C31—C321.397 (5)
C9—H9A0.990C33—C341.457 (5)
C9—H9B0.990C34—H34A0.980
C9A—H9AA0.990C34—H34B0.980
C9A—H9AB0.990C34—H34C0.980
C10—H10A0.950
N1—Cu1—N285.09 (12)C11—C12—C13120.6 (4)
N1—Cu1—N3129.33 (12)H12A—C12—C13119.7
N1—Cu1—N4115.87 (13)C12—C13—H13A120.3
N2—Cu1—N3115.33 (12)C12—C13—C14119.4 (4)
N2—Cu1—N4132.11 (11)H13A—C13—C14120.3
N3—Cu1—N485.18 (12)C13—C14—H14A119.5
Cl5—Cu2—Cl6170.5 (4)C13—C14—C15121.0 (4)
Cl5—Cu2—Cl6A170.3 (4)H14A—C14—C15119.5
Cu1—N1—C7134.7 (3)C14—C15—H15A120.6
Cu1—N1—C8108.2 (3)C14—C15—C16118.9 (4)
Cu1—N1—C8A106.0 (3)H15A—C15—C16120.6
C7—N1—C8116.8 (4)Cl2—C16—C11119.5 (3)
C7—N1—C8A114.6 (4)Cl2—C16—C15118.6 (4)
Cu1—N2—C9108.7 (4)C11—C16—C15121.8 (4)
Cu1—N2—C9A107.1 (4)Cl3—C17—C18118.3 (3)
Cu1—N2—C10133.5 (3)Cl3—C17—C22119.8 (3)
C9—N2—C10117.8 (4)C18—C17—C22121.9 (4)
C9A—N2—C10114.9 (4)C17—C18—H18A120.2
Cu1—N3—C23132.8 (3)C17—C18—C19119.5 (4)
Cu1—N3—C24109.4 (2)H18A—C18—C19120.2
C23—N3—C24117.1 (3)C18—C19—H19A120.1
Cu1—N4—C25109.2 (2)C18—C19—C20119.7 (4)
Cu1—N4—C26131.7 (2)H19A—C19—C20120.1
C25—N4—C26117.3 (3)C19—C20—H20A119.9
Cl1—C1—C2117.5 (3)C19—C20—C21120.2 (4)
Cl1—C1—C6119.9 (3)H20A—C20—C21119.9
C2—C1—C6122.6 (3)C20—C21—H21A119.4
C1—C2—H2A120.0C20—C21—C22121.3 (4)
C1—C2—C3120.0 (3)H21A—C21—C22119.4
H2A—C2—C3120.0C17—C22—C21117.4 (4)
C2—C3—H3A120.5C17—C22—C23121.4 (4)
C2—C3—C4119.1 (4)C21—C22—C23120.8 (3)
H3A—C3—C4120.5N3—C23—C22122.3 (3)
C3—C4—H4A120.1N3—C23—H23A118.9
C3—C4—C5119.8 (4)C22—C23—H23A118.9
H4A—C4—C5120.1N3—C24—H24A109.7
C4—C5—H5A118.9N3—C24—H24B109.7
C4—C5—C6122.2 (3)N3—C24—C25110.0 (3)
H5A—C5—C6118.9H24A—C24—H24B108.2
C1—C6—C5116.2 (3)H24A—C24—C25109.7
C1—C6—C7121.9 (3)H24B—C24—C25109.7
C5—C6—C7121.8 (3)N4—C25—C24109.9 (3)
N1—C7—C6123.6 (3)N4—C25—H25A109.7
N1—C7—H7A118.2N4—C25—H25B109.7
C6—C7—H7A118.2C24—C25—H25A109.7
N1—C8—H8A110.4C24—C25—H25B109.7
N1—C8—H8B110.4H25A—C25—H25B108.2
N1—C8—C9106.8 (8)N4—C26—H26A118.4
H8A—C8—H8B108.6N4—C26—C27123.2 (3)
H8A—C8—C9110.4H26A—C26—C27118.4
H8B—C8—C9110.4C26—C27—C28121.1 (3)
N1—C8A—H8AA110.8C26—C27—C32122.2 (3)
N1—C8A—H8AB110.8C28—C27—C32116.6 (3)
N1—C8A—C9A104.8 (9)C27—C28—H28A119.3
H8AA—C8A—H8AB108.9C27—C28—C29121.4 (3)
H8AA—C8A—C9A110.8H28A—C28—C29119.3
H8AB—C8A—C9A110.8C28—C29—H29A119.9
N2—C9—C8104.3 (7)C28—C29—C30120.3 (3)
N2—C9—H9A110.9H29A—C29—C30119.9
N2—C9—H9B110.9C29—C30—H30A120.1
C8—C9—H9A110.9C29—C30—C31119.8 (3)
C8—C9—H9B110.9H30A—C30—C31120.1
H9A—C9—H9B108.9C30—C31—H31A119.8
N2—C9A—C8A109.3 (8)C30—C31—C32120.3 (3)
N2—C9A—H9AA109.8H31A—C31—C32119.8
N2—C9A—H9AB109.8Cl4—C32—C27119.0 (3)
C8A—C9A—H9AA109.8Cl4—C32—C31119.3 (3)
C8A—C9A—H9AB109.8C27—C32—C31121.6 (3)
H9AA—C9A—H9AB108.3N5—C33—C34178.6 (5)
N2—C10—H10A118.2C33—C34—H34A109.5
N2—C10—C11123.6 (4)C33—C34—H34B109.5
H10A—C10—C11118.2C33—C34—H34C109.5
C10—C11—C12120.0 (4)H34A—C34—H34B109.5
C10—C11—C16121.7 (4)H34A—C34—H34C109.5
C12—C11—C16118.2 (4)H34B—C34—H34C109.5
C11—C12—H12A119.7
N2—Cu1—N1—C7173.7 (4)Cu1—N2—C9A—C8A39.7 (11)
N2—Cu1—N1—C812.8 (5)C10—N2—C9A—C8A160.5 (8)
N2—Cu1—N1—C8A20.7 (5)N1—C8A—C9A—N258.0 (12)
N3—Cu1—N1—C767.3 (4)Cu1—N2—C10—C1113.9 (6)
N3—Cu1—N1—C8106.2 (5)C9—N2—C10—C11163.3 (6)
N3—Cu1—N1—C8A139.7 (5)C9A—N2—C10—C11166.7 (6)
N4—Cu1—N1—C738.8 (4)N2—C10—C11—C1232.2 (5)
N4—Cu1—N1—C8147.7 (5)N2—C10—C11—C16151.3 (4)
N4—Cu1—N1—C8A114.3 (5)C10—C11—C12—C13177.4 (3)
N1—Cu1—N2—C918.2 (5)C16—C11—C12—C130.8 (5)
N1—Cu1—N2—C9A10.1 (5)C11—C12—C13—C140.1 (6)
N1—Cu1—N2—C10164.5 (4)C12—C13—C14—C151.2 (6)
N3—Cu1—N2—C9149.7 (5)C13—C14—C15—C161.3 (6)
N3—Cu1—N2—C9A121.4 (5)C10—C11—C16—Cl22.5 (5)
N3—Cu1—N2—C1032.9 (4)C10—C11—C16—C15177.3 (3)
N4—Cu1—N2—C9102.6 (5)C12—C11—C16—Cl2179.1 (3)
N4—Cu1—N2—C9A131.0 (5)C12—C11—C16—C150.7 (6)
N4—Cu1—N2—C1074.7 (4)C14—C15—C16—Cl2179.9 (3)
N1—Cu1—N3—C2380.8 (4)C14—C15—C16—C110.3 (6)
N1—Cu1—N3—C24110.1 (2)Cl3—C17—C18—C19179.5 (3)
N2—Cu1—N3—C2324.6 (4)C22—C17—C18—C191.4 (6)
N2—Cu1—N3—C24144.5 (2)C17—C18—C19—C200.9 (5)
N4—Cu1—N3—C23159.4 (3)C18—C19—C20—C211.0 (5)
N4—Cu1—N3—C249.7 (2)C19—C20—C21—C221.6 (5)
N1—Cu1—N4—C25146.6 (2)C20—C21—C22—C172.0 (5)
N1—Cu1—N4—C2617.4 (4)C20—C21—C22—C23175.3 (3)
N2—Cu1—N4—C25105.4 (2)Cl3—C17—C22—C21179.0 (3)
N2—Cu1—N4—C2690.7 (3)Cl3—C17—C22—C235.7 (5)
N3—Cu1—N4—C2514.8 (2)C18—C17—C22—C211.9 (5)
N3—Cu1—N4—C26149.2 (3)C18—C17—C22—C23175.2 (3)
Cl1—C1—C2—C3179.6 (3)Cu1—N3—C23—C2217.5 (5)
C6—C1—C2—C31.5 (5)C24—N3—C23—C22174.1 (3)
C1—C2—C3—C41.1 (5)C17—C22—C23—N3151.8 (3)
C2—C3—C4—C50.2 (5)C21—C22—C23—N335.1 (5)
C3—C4—C5—C61.2 (5)Cu1—N3—C24—C2531.7 (3)
C4—C5—C6—C10.8 (5)C23—N3—C24—C25139.3 (3)
C4—C5—C6—C7177.9 (3)Cu1—N4—C25—C2436.0 (3)
Cl1—C1—C6—C5179.4 (3)C26—N4—C25—C24130.6 (3)
Cl1—C1—C6—C72.2 (5)N3—C24—C25—N445.2 (4)
C2—C1—C6—C50.6 (5)Cu1—N4—C26—C2720.8 (5)
C2—C1—C6—C7176.6 (3)C25—N4—C26—C27176.3 (3)
Cu1—N1—C7—C614.4 (6)N4—C26—C27—C2836.1 (5)
C8—N1—C7—C6158.7 (6)N4—C26—C27—C32147.7 (3)
C8A—N1—C7—C6165.8 (6)C26—C27—C28—C29177.1 (3)
C1—C6—C7—N1155.8 (4)C32—C27—C28—C290.8 (5)
C5—C6—C7—N127.2 (6)C27—C28—C29—C300.6 (5)
Cu1—N1—C8—C941.2 (10)C28—C29—C30—C311.3 (5)
C7—N1—C8—C9143.9 (7)C29—C30—C31—C320.5 (5)
Cu1—N1—C8A—C9A46.2 (10)C26—C27—C32—Cl44.2 (4)
C7—N1—C8A—C9A154.6 (7)C26—C27—C32—C31177.9 (3)
Cu1—N2—C9—C844.6 (10)C28—C27—C32—Cl4179.5 (3)
C9A—N2—C9—C846.6 (12)C28—C27—C32—C311.6 (5)
C10—N2—C9—C8137.6 (7)C30—C31—C32—Cl4178.9 (3)
N1—C8—C9—N255.7 (11)C30—C31—C32—C271.0 (5)

Experimental details

Crystal data
Chemical formula[Cu(C16H14Cl2N2)2][CuCl2]·C2H3N
Mr849.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.845 (5), 16.965 (10), 26.915 (15)
β (°) 97.896 (9)
V3)3548 (4)
Z4
Radiation typeSynchrotron, λ = 0.8462 Å
µ (mm1)1.68
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2004)
Tmin, Tmax0.730, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
30485, 30485, 15283
Rint0.000
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.127, 0.79
No. of reflections30485
No. of parameters456
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.84

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Bruker, 2005) and local programs.

Selected geometric parameters (Å, º) top
Cu1—N12.024 (3)Cu2—Cl62.171 (5)
Cu1—N22.024 (3)N1—C71.277 (4)
Cu1—N32.039 (3)N1—C81.535 (8)
Cu1—N42.014 (3)N1—C8A1.502 (8)
Cu2—Cl52.0862 (14)N2—C91.534 (8)
N1—Cu1—N285.09 (12)Cl5—Cu2—Cl6170.5 (4)
N1—Cu1—N4115.87 (13)Cu1—N2—C9108.7 (4)
N2—Cu1—N3115.33 (12)Cu1—N2—C10133.5 (3)
N3—Cu1—N485.18 (12)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds