Download citation
Download citation
link to html
The mol­ecular dimensions of both 2-amino-6-(N-methyl­anilino)pyrimidin-4(3H)-one, C11H12N4O, (I), and 2-amino-6-(N-methyl­anilino)-5-nitro­pyrimidin-4(3H)-one, C11H11N5O3, (II), are consistent with considerable polarization of the mol­ecular-electronic structures. The mol­ecules of (I) are linked into a three-dimensional framework by a combination of one N-H...N hydrogen bond, two independent N-H...O hydrogen bonds and one C-H...[pi](arene) hydrogen bond. The mol­ecules of (II) are linked into ribbons containing three types of edge-fused ring by the combination of two independent three-centre N-H...(O)2 hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049931/sk3172sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049931/sk3172Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049931/sk3172IIsup3.hkl
Contains datablock II

CCDC references: 672539; 672540

Comment top

As part of a wide-ranging investigation of biologically active heterocyclic compounds, we have initiated a study of pyrimido[4,5-b][1,4]benzodiazepine derivatives that are analogous to the well known benzodiazepine derivatives and which show related pharmacological properties, such as anti-anxiety or antidepressive activity (Dlugosz & Machon, 1990), as well as being candidates as effective anti-HIV-1 inhibitors (Di Braccio et al., 2001). We report here the molecular and supramolecular structures of two compounds, 2-amino-6-(N-methylanilino)pyrimidin-4(3H)-one, (I), and 2-amino-6-(N-methylanilino)-5-nitropyrimidin-4(3H)-one, (II), which were prepared, from the commercially available pyrimidines, (III) and (IV), respectively, for use as intermediates for the syntheses of pyrimido[4,5-b][1,4]benzodiazepines, (V).

In compounds (I) and (II) (Figs. 1 and 2), the coordination at N6 is planar and the methyl atom C67 and the ipso atom of the phenyl ring, atom C61, are very close to the plane of the pyrimidine ring, as indicated by the relevant torsion angles (Table 3). On the other hand, the planes of the phenyl group in each compound are well removed from the pyrimidine planes with dihedral angles between these two planes of 70.1 (2)° in (I) and 58.9 (2)° in (II). In (II), the dihedral angle between the CNO2 unit and the pyrimidine ring is 47.4 (2)°.

The molecules in each compound exhibit some unusual bond distances, which are indicative of polarized molecular–electronic structures. In compound (I), the C4—C5 and C5—C6 distances are identical within experimental uncertainty, although in the conventional representation these bonds are, respectively, single and double bonds. In addition, the C—O bond is long for its type (Allen et al., 1987), while the C6—N6 bond is short. These data together indicate that the polarized form (Ia) (Scheme 2) may be a significant contributor to the overall molecular–electronic structure of this compound, in addition to the unpolarized form (I).

Despite the large dihedral angle between the pyrimidine and nitro-group planes in (II), the C5—N5 bond is rather short for its type (mean value 1.486 Å; Allen et al., 1987); the C4—O4 bond is significantly shorter in (II) than in (I); and the N1—C2 and C2—N2 distances are effectively identical in (II). These observations indicate that the polarized forms (IIa) and (IIb) (Scheme 2) both contribute to the overall molecular–electronic structure of this compound, in addition to the unpolarized form (II).

The molecules of compound (I) are linked into sheets by three hydrogen bonds, one of N—H···N type and two of N—H···O type (Table 1). It is convenient to consider a centrosymmetric dimer unit, formed by paired N—H···O hydrogen bonds, as the basic building block forming the sheet. The ring atom N3 in the molecule at (x, y, z) acts as a donor, in an almost linear hydrogen bond, to atom O4 in the molecule at (1 - x, -y, 1 - z), so generating by inversion an R22(8) motif (Bernstein et al., 1995), centred at (1/2, 0, 1/2). This dimer is linked directly, by the other two hydrogen bonds, to the four dimers centred at (1/2, 1/2, 0), (1/2, -1/2, 0), (1/2, 1/2, 1) and (1/2, -1/2, 1), and propagation by the space group of these hydrogen bonds then generates a rather complex sheet parallel to (100) (Fig. 3). Each such sheet is weakly linked to the two adjacent sheets by a single C—H···π(arene) hydrogen bond (Table 2), so forming a continuous hydrogen-bonded framework structure in three dimensions.

The supramolecular aggregation of (II) is only one-dimensional; despite the presence of the two nitro-group O atoms as additional sites that are potential hydrogen-bond acceptors, one of the N—H bonds of the exocyclic amino group in (II) plays no part in the hydrogen bonding, and the supramolecular aggregation depends entirely on two independent three-centre N—H···(O)2 hydrogen-bond systems, both them effectively planar (Table 2).

Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2B, to atoms O4 and O51 in the molecules at (-1/2 + x, 3/2 - y, 1 - z) and (-1 + x, y, z), respectively. In the second three-centre system, the ring atom N3 acts as a hydrogen-bond donor to atoms O4 and O51, both in the molecule at (-1/2 + x, 3/2 - y, 1 - z). Hence two of the N—H bonds act as double donors of hydrogen bonds, while the third N—H bond does not participate in the hydrogen bonding; and two of the O atoms act as double acceptors of hydrogen bonds, while the third O atom does not participate in the hydrogen bonding. The combination of all these hydrogen bonds produces a ribbon of edge-fused rings running parallel to the [100] direction and generated by the 21 screw axis along (x, 3/4, 1/2) (Fig. 4). The ribbon contains an R12(6) ring where the sole acceptor is an O4 atom; an R21(6) ring where both hydrogen bonds involve an H3 atom; and an R22(6) ring containing both O4 and O51 atoms as the acceptors. A second ribbon, running antiparallel to the reference ribbon, is generated by the 21 screw axis along (x, 1/4, 1/2), but there are no direction-specific interactions between adjacent chains.

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Di Braccio, Grossi, Roma, Vargiu, Mura & Marongiu (2001); Dlugosz & Machon (1990).

Experimental top

For the synthesis of (I), a mixture of 2-amino-4-chloro-6-methoxypyrimidine (1.82 mmol) and N-methylaniline (2.80 mmol) was heated to fusion between 563–573 K for 4 min. The reaction mixture was cooled to ambient temperature and the resulting solid mass was broken up; it was washed thrice with ether, and then successively with a saturated aqueous solution of potassium carbonate, with water and finally again with ether. the mixture was then dried in an oven giving (I) as a pale-beige solid (yield 97%, m.p. 552–554 K). For the synthesis of (II), a mixture of 2-amino-6-chloro-5-nitro-4(3H)pyrimidinone (2.78 mmol), N-methylaniline (3.13 mmol) and triethylamine (1 ml) in methanol (20 ml) was stirred magnetically at ambient temperature for 2 h. The resulting yellow solid was collected by filtration, washed with methanol and then dried in an oven to yield (II) (yield 83%, m.p. 585–588 K). Yellow crystals of (I) and (II) suitable for single-crystal X-ray diffraction were obtained from solutions in dimethylsulfoxide.

Refinement top

The space groups P21/c, for (I), and P212121, for (II), were both uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (aromatic or heteroaromatic) or 0.98 Å (methyl), and N—H of 0.88 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and k = 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet parallel to (100). For clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a hydrogen-bonded ribbon of edge-fused rings parallel to [100]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (-1/2 + x, 3/2 - y, 1 - z), (1/2 + x, 3/2 - y, 1 - z), (1 + x, y, z) and (-1 + x, y, z), respectively.
(I) 2-amino-6-(methylanilino)pyrimidin-4(3H)-one top
Crystal data top
C11H12N4OF(000) = 456
Mr = 216.25Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2396 reflections
a = 10.6860 (12) Åθ = 4.1–27.5°
b = 7.1647 (14) ŵ = 0.09 mm1
c = 14.4911 (12) ÅT = 120 K
β = 110.024 (9)°Block, yellow
V = 1042.4 (3) Å30.52 × 0.25 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2396 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.1°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.962, Tmax = 0.985l = 1818
23278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.7582P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H12N4OV = 1042.4 (3) Å3
Mr = 216.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6860 (12) ŵ = 0.09 mm1
b = 7.1647 (14) ÅT = 120 K
c = 14.4911 (12) Å0.52 × 0.25 × 0.16 mm
β = 110.024 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1568 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.985Rint = 0.057
23278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
2396 reflectionsΔρmin = 0.26 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.66081 (15)0.3959 (2)0.36165 (12)0.0190 (4)
C20.59095 (19)0.2415 (3)0.35541 (14)0.0194 (4)
N20.54735 (16)0.1509 (2)0.26918 (12)0.0234 (4)
N30.56134 (15)0.1688 (2)0.43183 (11)0.0192 (4)
C40.60352 (19)0.2548 (3)0.52379 (14)0.0190 (4)
O40.56750 (13)0.1799 (2)0.58994 (10)0.0226 (3)
C50.68257 (18)0.4133 (3)0.53313 (14)0.0196 (4)
C60.70970 (18)0.4795 (3)0.45137 (14)0.0193 (4)
N60.78848 (16)0.6308 (2)0.45421 (12)0.0219 (4)
C670.8052 (2)0.7070 (3)0.36560 (16)0.0322 (5)
C610.8560 (2)0.7336 (3)0.54195 (15)0.0212 (4)
C620.7878 (2)0.8511 (3)0.58287 (16)0.0255 (5)
C630.8565 (2)0.9632 (3)0.66180 (16)0.0284 (5)
C640.9941 (2)0.9555 (3)0.70086 (15)0.0263 (5)
C651.0629 (2)0.8378 (3)0.65976 (16)0.0270 (5)
C660.9943 (2)0.7277 (3)0.57988 (16)0.0256 (5)
H2A0.56550.19460.21840.028*
H2B0.50060.04770.26340.028*
H30.51450.06510.42330.023*
H50.71760.47550.59450.024*
H67A0.77090.61770.31160.048*
H67B0.89990.73000.37780.048*
H67C0.75580.82460.34800.048*
H620.69330.85530.55700.031*
H630.80911.04570.68920.034*
H641.04101.03090.75570.032*
H651.15730.83230.68630.032*
H661.04180.64810.55100.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0202 (8)0.0185 (8)0.0187 (9)0.0018 (7)0.0070 (7)0.0004 (7)
C20.0201 (10)0.0193 (10)0.0188 (10)0.0031 (8)0.0068 (8)0.0026 (8)
N20.0315 (9)0.0217 (9)0.0178 (9)0.0085 (8)0.0093 (7)0.0021 (7)
N30.0211 (8)0.0186 (8)0.0181 (8)0.0057 (7)0.0071 (7)0.0010 (7)
C40.0203 (10)0.0185 (10)0.0181 (10)0.0020 (8)0.0063 (8)0.0016 (8)
O40.0278 (8)0.0226 (8)0.0201 (7)0.0043 (6)0.0117 (6)0.0011 (6)
C50.0201 (10)0.0206 (10)0.0167 (10)0.0020 (8)0.0044 (8)0.0009 (8)
C60.0167 (9)0.0176 (10)0.0224 (10)0.0015 (8)0.0052 (8)0.0011 (8)
N60.0248 (9)0.0204 (9)0.0213 (9)0.0054 (7)0.0090 (7)0.0012 (7)
C670.0394 (13)0.0318 (13)0.0259 (12)0.0131 (11)0.0116 (10)0.0022 (10)
C610.0244 (10)0.0166 (10)0.0227 (10)0.0033 (8)0.0082 (8)0.0009 (8)
C620.0209 (10)0.0263 (11)0.0283 (11)0.0001 (9)0.0072 (9)0.0000 (9)
C630.0310 (12)0.0247 (11)0.0314 (12)0.0012 (9)0.0130 (10)0.0027 (10)
C640.0285 (11)0.0235 (11)0.0251 (11)0.0035 (9)0.0069 (9)0.0031 (9)
C650.0219 (10)0.0259 (11)0.0313 (12)0.0031 (9)0.0067 (9)0.0003 (10)
C660.0248 (11)0.0221 (11)0.0314 (12)0.0000 (9)0.0115 (9)0.0028 (9)
Geometric parameters (Å, º) top
N1—C21.321 (3)C67—H67A0.98
N1—C61.363 (2)C67—H67B0.98
C2—N21.342 (3)C67—H67C0.98
C2—N31.355 (2)C61—C621.374 (3)
N2—H2A0.88C61—C661.390 (3)
N2—H2B0.88C62—C631.385 (3)
N3—C41.396 (2)C62—H620.95
N3—H30.88C63—C641.384 (3)
C4—O41.268 (2)C63—H630.95
C4—C51.394 (3)C64—C651.381 (3)
C5—C61.396 (3)C64—H640.95
C5—H50.95C65—C661.385 (3)
C6—N61.365 (2)C65—H650.95
N6—C611.432 (3)C66—H660.95
N6—C671.461 (3)
C2—N1—C6117.17 (17)N6—C67—H67B109.5
N1—C2—N2118.48 (17)H67A—C67—H67B109.5
N1—C2—N3123.41 (18)N6—C67—H67C109.5
N2—C2—N3118.11 (18)H67A—C67—H67C109.5
C2—N2—H2A120.0H67B—C67—H67C109.5
C2—N2—H2B120.0C62—C61—C66119.84 (19)
H2A—N2—H2B120.0C62—C61—N6121.15 (18)
C2—N3—C4121.40 (17)C66—C61—N6118.69 (18)
C2—N3—H3119.3C61—C62—C63120.14 (19)
C4—N3—H3119.3C61—C62—H62119.9
O4—C4—C5127.03 (18)C63—C62—H62119.9
O4—C4—N3116.90 (17)C64—C63—C62120.2 (2)
C5—C4—N3116.06 (17)C64—C63—H63119.9
C4—C5—C6119.32 (18)C62—C63—H63119.9
C4—C5—H5120.3C65—C64—C63119.7 (2)
C6—C5—H5120.3C65—C64—H64120.1
N1—C6—N6114.14 (17)C63—C64—H64120.1
N1—C6—C5122.50 (18)C64—C65—C66120.08 (19)
N6—C6—C5123.35 (18)C64—C65—H65120.0
C6—N6—C61123.60 (17)C66—C65—H65120.0
C6—N6—C67122.00 (17)C65—C66—C61119.98 (19)
C61—N6—C67114.33 (16)C65—C66—H66120.0
N6—C67—H67A109.5C61—C66—H66120.0
C6—N1—C2—N2176.63 (17)N1—C6—N6—C676.6 (3)
C6—N1—C2—N33.1 (3)C5—C6—N6—C67174.3 (2)
N1—C2—N3—C40.2 (3)C6—N6—C61—C6273.7 (3)
N2—C2—N3—C4179.84 (17)C67—N6—C61—C62103.3 (2)
C2—N3—C4—O4177.83 (17)C6—N6—C61—C66112.8 (2)
C2—N3—C4—C53.0 (3)C67—N6—C61—C6670.1 (2)
O4—C4—C5—C6178.35 (19)C66—C61—C62—C630.1 (3)
N3—C4—C5—C62.6 (3)N6—C61—C62—C63173.43 (19)
C2—N1—C6—N6175.70 (17)C61—C62—C63—C641.0 (3)
C2—N1—C6—C53.4 (3)C62—C63—C64—C651.1 (3)
C4—C5—C6—N10.6 (3)C63—C64—C65—C660.1 (3)
C4—C5—C6—N6178.46 (18)C64—C65—C66—C611.0 (3)
N1—C6—N6—C61176.53 (17)C62—C61—C66—C651.1 (3)
C5—C6—N6—C612.6 (3)N6—C61—C66—C65174.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.882.072.940 (2)168
N2—H2B···N1ii0.882.302.998 (2)136
N3—H3···O4iii0.881.942.818 (2)173
C64—H64···Cgiv0.952.823.695 (2)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+2, y+1/2, z+3/2.
(II) 2-amino-6-(methylanilino)-5-nitropyrimidin-4(3H)-one top
Crystal data top
C11H11N5O3F(000) = 544
Mr = 261.25Dx = 1.493 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1447 reflections
a = 8.955 (3) Åθ = 4.0–27.6°
b = 11.2165 (15) ŵ = 0.11 mm1
c = 11.5670 (15) ÅT = 120 K
V = 1161.8 (4) Å3Plate, yellow
Z = 40.32 × 0.26 × 0.09 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1447 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 4.0°
ϕ & ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1413
Tmin = 0.923, Tmax = 0.991l = 1314
15997 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.079P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1447 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Friedel pairs merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H11N5O3V = 1161.8 (4) Å3
Mr = 261.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.955 (3) ŵ = 0.11 mm1
b = 11.2165 (15) ÅT = 120 K
c = 11.5670 (15) Å0.32 × 0.26 × 0.09 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
879 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.991Rint = 0.102
15997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
1447 reflectionsΔρmin = 0.32 e Å3
173 parametersAbsolute structure: Friedel pairs merged
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3771 (4)0.6396 (3)0.8030 (3)0.0256 (8)
C20.3091 (4)0.6763 (3)0.7084 (3)0.0225 (10)
N20.1616 (4)0.6755 (3)0.7050 (3)0.0311 (9)
N30.3820 (4)0.7154 (3)0.6128 (3)0.0248 (8)
C40.5375 (4)0.7283 (4)0.6109 (3)0.0227 (9)
O40.5987 (3)0.7719 (2)0.5250 (2)0.0299 (7)
C50.6088 (4)0.6946 (3)0.7157 (3)0.0221 (9)
N50.7627 (4)0.7276 (3)0.7223 (3)0.0269 (8)
O510.8462 (3)0.7031 (3)0.6411 (2)0.0348 (8)
O520.8067 (3)0.7805 (3)0.8104 (3)0.0358 (8)
C60.5281 (4)0.6463 (3)0.8086 (3)0.0219 (9)
N60.5892 (4)0.6038 (3)0.9073 (3)0.0252 (8)
C670.4899 (4)0.5663 (4)1.0026 (4)0.0339 (11)
C610.7436 (4)0.5716 (3)0.9177 (3)0.0248 (9)
C620.8086 (5)0.4956 (4)0.8391 (3)0.0280 (11)
C630.9581 (5)0.4656 (4)0.8498 (4)0.0335 (11)
C641.0402 (5)0.5102 (4)0.9414 (4)0.0353 (11)
C650.9747 (4)0.5831 (4)1.0209 (4)0.0341 (11)
C660.8255 (4)0.6142 (4)1.0112 (4)0.0289 (10)
H2A0.11030.65070.76520.037*
H2B0.11460.69970.64240.037*
H30.33030.73320.55050.030*
H67A0.44600.48860.98430.051*
H67B0.41020.62531.01250.051*
H67C0.54780.56031.07430.051*
H620.75110.46380.77740.034*
H631.00390.41460.79460.040*
H641.14280.48990.94900.042*
H651.03200.61291.08360.041*
H660.77990.66391.06750.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.023 (2)0.0324 (19)0.0218 (19)0.0003 (15)0.0027 (15)0.0009 (17)
C20.019 (2)0.027 (2)0.021 (2)0.0012 (17)0.0026 (18)0.003 (2)
N20.024 (2)0.046 (2)0.0233 (19)0.0042 (16)0.0017 (17)0.0079 (19)
N30.0269 (19)0.0302 (19)0.0174 (18)0.0008 (16)0.0030 (15)0.0002 (15)
C40.025 (2)0.022 (2)0.021 (2)0.0012 (19)0.001 (2)0.0020 (18)
O40.0261 (16)0.0398 (17)0.0239 (15)0.0022 (13)0.0026 (13)0.0056 (14)
C50.017 (2)0.026 (2)0.023 (2)0.0013 (17)0.0000 (17)0.0023 (19)
N50.028 (2)0.0332 (19)0.0197 (18)0.0021 (17)0.0003 (18)0.0089 (17)
O510.0226 (16)0.055 (2)0.0273 (16)0.0002 (14)0.0056 (15)0.0058 (15)
O520.0423 (19)0.0390 (18)0.0261 (16)0.0127 (14)0.0073 (14)0.0001 (15)
C60.025 (2)0.022 (2)0.018 (2)0.0005 (18)0.0012 (19)0.0032 (19)
N60.025 (2)0.0307 (19)0.0195 (18)0.0002 (15)0.0017 (16)0.0029 (16)
C670.035 (3)0.041 (3)0.026 (2)0.001 (2)0.006 (2)0.007 (2)
C610.021 (2)0.030 (2)0.024 (2)0.0023 (19)0.002 (2)0.001 (2)
C620.032 (3)0.027 (2)0.024 (2)0.005 (2)0.002 (2)0.001 (2)
C630.036 (3)0.030 (2)0.034 (3)0.005 (2)0.009 (2)0.008 (2)
C640.027 (2)0.038 (3)0.041 (3)0.002 (2)0.007 (2)0.012 (2)
C650.026 (3)0.043 (3)0.033 (2)0.005 (2)0.009 (2)0.009 (2)
C660.032 (2)0.032 (2)0.024 (2)0.0023 (18)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C21.318 (5)N6—C671.478 (5)
N1—C61.356 (5)C67—H67A0.98
C2—N21.322 (5)C67—H67B0.98
C2—N31.357 (5)C67—H67C0.98
N2—H2A0.88C61—C621.376 (5)
N2—H2B0.88C61—C661.392 (5)
N3—C41.400 (5)C62—C631.386 (5)
N3—H30.88C62—H620.95
C4—O41.235 (5)C63—C641.384 (6)
C4—C51.421 (5)C63—H630.95
C5—C61.403 (5)C64—C651.363 (6)
C5—N51.430 (5)C64—H640.95
N5—O511.231 (4)C65—C661.385 (6)
N5—O521.243 (4)C65—H650.95
C6—N61.352 (5)C66—H660.95
N6—C611.434 (5)
C2—N1—C6118.9 (3)N6—C67—H67A109.5
N1—C2—N2119.0 (4)N6—C67—H67B109.5
N1—C2—N3123.7 (3)H67A—C67—H67B109.5
N2—C2—N3117.3 (4)N6—C67—H67C109.5
C2—N2—H2A120.0H67A—C67—H67C109.5
C2—N2—H2B120.0H67B—C67—H67C109.5
H2A—N2—H2B120.0C62—C61—C66120.2 (4)
C2—N3—C4121.7 (3)C62—C61—N6120.6 (4)
C2—N3—H3119.2C66—C61—N6119.1 (4)
C4—N3—H3119.2C61—C62—C63120.0 (4)
O4—C4—N3119.6 (3)C61—C62—H62120.0
O4—C4—C5126.3 (3)C63—C62—H62120.0
N3—C4—C5113.9 (3)C64—C63—C62119.6 (4)
C6—C5—C4121.7 (3)C64—C63—H63120.2
C6—C5—N5123.7 (3)C62—C63—H63120.2
C4—C5—N5114.2 (3)C65—C64—C63120.3 (4)
O51—N5—O52122.6 (3)C65—C64—H64119.9
O51—N5—C5119.1 (3)C63—C64—H64119.9
O52—N5—C5118.3 (3)C64—C65—C66120.8 (4)
N6—C6—N1115.1 (3)C64—C65—H65119.6
N6—C6—C5125.0 (3)C66—C65—H65119.6
N1—C6—C5119.9 (4)C65—C66—C61119.0 (4)
C6—N6—C61123.4 (3)C65—C66—H66120.5
C6—N6—C67119.1 (3)C61—C66—H66120.5
C61—N6—C67116.4 (3)
C6—N1—C2—N2176.6 (4)C4—C5—C6—N15.2 (6)
C6—N1—C2—N33.4 (6)N5—C5—C6—N1166.8 (4)
N1—C2—N3—C45.0 (6)N1—C6—N6—C61161.7 (4)
N2—C2—N3—C4175.1 (4)C5—C6—N6—C6118.1 (6)
C2—N3—C4—O4175.0 (4)N1—C6—N6—C676.1 (5)
C2—N3—C4—C51.2 (5)C5—C6—N6—C67174.1 (4)
O4—C4—C5—C6179.6 (4)C6—N6—C61—C6251.5 (5)
N3—C4—C5—C63.6 (6)C67—N6—C61—C62116.6 (4)
O4—C4—C5—N56.9 (6)C6—N6—C61—C66131.1 (4)
N3—C4—C5—N5169.1 (3)C67—N6—C61—C6660.7 (5)
C6—C5—N5—O51138.0 (4)C66—C61—C62—C632.9 (6)
C4—C5—N5—O5149.4 (5)N6—C61—C62—C63179.7 (4)
C6—C5—N5—O5242.2 (5)C61—C62—C63—C641.5 (6)
C4—C5—N5—O52130.4 (4)C62—C63—C64—C650.2 (6)
C2—N1—C6—N6178.3 (3)C63—C64—C65—C660.3 (6)
C2—N1—C6—C51.6 (6)C64—C65—C66—C611.1 (6)
C4—C5—C6—N6174.6 (3)C62—C61—C66—C652.7 (6)
N5—C5—C6—N613.3 (6)N6—C61—C66—C65179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.881.972.783 (4)153
N2—H2B···O51ii0.882.402.936 (5)119
N3—H3···O4i0.882.253.000 (5)143
N3—H3···O51i0.882.333.093 (4)145
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC11H12N4OC11H11N5O3
Mr216.25261.25
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)120120
a, b, c (Å)10.6860 (12), 7.1647 (14), 14.4911 (12)8.955 (3), 11.2165 (15), 11.5670 (15)
α, β, γ (°)90, 110.024 (9), 9090, 90, 90
V3)1042.4 (3)1161.8 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.11
Crystal size (mm)0.52 × 0.25 × 0.160.32 × 0.26 × 0.09
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.962, 0.9850.923, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
23278, 2396, 1568 15997, 1447, 879
Rint0.0570.102
(sin θ/λ)max1)0.6500.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.07 0.054, 0.138, 1.05
No. of reflections23961447
No. of parameters146173
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.260.28, 0.32
Absolute structure?Friedel pairs merged

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.882.072.940 (2)168
N2—H2B···N1ii0.882.302.998 (2)136
N3—H3···O4iii0.881.942.818 (2)173
C64—H64···Cgiv0.952.823.695 (2)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.881.972.783 (4)153
N2—H2B···O51ii0.882.402.936 (5)119
N3—H3···O4i0.882.253.000 (5)143
N3—H3···O51i0.882.333.093 (4)145
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z.
Selected geometric parameters (Å, °) top
Parameter(I)(II)
N1-C21.321 (3)1.318 (5)
C2-N31.355 (2)1.357 (5)
N3-C41.396 (2)1.400 (5)
C4-C51.394 (3)1.421 (5)
C5-C61.396 (3)1.403 (5)
C6-N11.363 (2)1.356 (5)
C2-N21.342 (3)1.322 (5)
C4-O41.268 (2)1.235 (5)
C5-N51.430 (5)
N5-O511.231 (4)
N5-O521.243 (4)
C6-N61.365 (2)1.352 (5)
C4-C5-N5-O51-49.4 (5)
N1-C6-N6-C61-176.53 (17)161.7 (4)
N1-C6-N6-C676.6 (3)-6.1 (5)
C6-N6-C61-C62-73.7 (3)-51.5 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds