Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In both 2,5-dimethyl-6,7-dihydro­benzo[h]pyrazolo[1,5-a]­quinazoline, C16H15N3, (I), and 2-tert-butyl-5-methyl-6,7-dihydro­benzo[h]pyrazolo[1,5-a]quinazoline, C19H21N3, (II), which crystallizes with Z' = 2 in the space group P\overline{1}, the non-aromatic carbocyclic rings adopt screw-boat conformations. The mol­ecules of (I) are linked into chains of rings by a combination of C-H...N and C-H...[pi](arene) hydrogen bonds, while in (II) there are no hydrogen bonds of any kind.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107029010/sk3137sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029010/sk3137Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029010/sk3137IIsup3.hkl
Contains datablock II

CCDC references: 659127; 659128

Comment top

We report here the structures of two closely related 6,7-dihydrobenzo[h]pyrazolo[1,5-a]quinazolines, (I) and (II) (Figs. 1 and 2), both prepared using solvent-free cyclocondensation reactions between 2-acetyltetralone and the appropriate 3-alkyl-5-amino-1H-pyrazole. We compare the molecular and supramolecular structures of compounds (I) and (II) with those of the related aryl compounds (III) and (IV) (Portilla et al., 2005) and with that of compound (V) (Low et al., 2004).

In (I) and in each of the independent molecules of (II), the non-aromatic carbocyclic rings adopt a screw-boat conformation. The ring-puckering amplitudes (Cremer & Pople 1975) are 0.506 (2) Å in (I), and 0.481 (2) and 0.482 (3) Å, respectively, for the molecules of types 1 and 2 (containing atoms N11 and N21, see Fig. 2) in (II). In (I), the corresponding ring-puckering angles are θ = 69.0 (2)° and ϕ = 82.6 (3)° for the atom sequence C5A—C6—C7—C7A—C11A—C11B; in (II), for the atom sequences Cx1A—Cx1B—Cx5A—Cx6—Cx7—Cx7A (where x = 1 for molecule 1 and 2 for molecule 2), θ = 67.5 (2)° and ϕ = 210.6 (3)° when x = 1, and θ = 67.0 (2)° and ϕ = 213.4 (3)° when x = 2. For an idealized screw-boat conformation, the values are θ = 67.5° and ϕ = (60n + 30)°, where n represents zero or an integer (Evans & Boeyens, 1989). Similar conformation have been found for the corresponding rings in compounds (III)–(V) (Low et al., 2004; Portilla et al., 2005). Because of the puckering of the non-aromatic carbocyclic rings, the molecules exhibit no internal symmetry and hence they are chiral; however, the centrosymmetric space group in each case accommodates equal numbers of the two enantiomeric forms.

Within the heterobicyclic portions of the molecules, the patterns of the bond distances (Tables 1 and 3) are very similar for all three molecules. Hence we discuss in detail only the distances in (I), as similar remarks apply to (II). In (I), N1—C2 and C3A—N4 the bonds, which are formally double and single bonds respectively, are effectively of the same length; on the other hand, the C5—C5A bond, which is formally a single bond, is significantly longer than the C2—C3 and C5A—C11B bonds, which are formally double bonds. These observations are consistent with bond-fixation of the type characteristic of naphthalene rather than complete peripheral delocalization of the ten π electrons. By contrast, the distances in the carbocylic ring (C7A/C8–C11/C11A) are indicative of typical aromatic delocalization.

The geometries and conformations of the two independent molecules in (II) are very similar. Although the ADDSYM routine in PLATON (Spek, 2003) indicated that no additional crystallographic symmetry is present in (II), examination of the atom coordinates showed that the two independent molecules are approximately related by a pseudo-c-glide plane at x = 0.25. Consistent with this approximate relationship, the reflections of type (0kl) are, in general, very much weaker when l is odd than when l is even, although some exhibit significant intensity.

Two hydrogen bonds (Table 2) link the molecules of (I) into chains of rings. Atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the ring atom N4 in the molecule at (1 - x, -y, 2 - z), so generating by inversion a cyclic centrosymmetric R22(8) (Bernstein et al., 1995) dimer centred at (1/2, 0, 1). At the same time, atom C7 in the molecule at (x, y, z), acts as a hydrogen-bond donor, via the axial atom H7B, to the C7A/C8–C11/C11A ring in the molecule at (1 - x, 1 - y, 1 - z), thus generating by inversion a second cyclic motif centred at (1/2, 1/2, 1/2). The propagation by inversion of these two hydrogen bonds therefore leads to the formation of a chain of centrosymmetric hydrogen-bonded rings running parallel to the [011] direction, with the rings formed by pairs of C—H···N hydrogen bonds centred at (1/2, n, 1 - n) (where n represents zero or an integer) alternating with the rings formed by pairs of C—H···π(arene) hydrogen bonds centred at (1/2, 1/2 + n, 1/2 - n) (where n represents zero or an integer) (Fig. 3). There is a very weak ππ stacking interaction between pairs of pyrimidine rings. These rings in the molecules at (x, y, z) and (1 - x, 1 - y, 2 - z) are strictly parallel with an interplanar spacing of 3.354 (2) Å; the ring-centroid separation is 3.840 (2) Å, corresponding to a ring-centroid offset of 1.870 (2) Å. If this interaction is regarded as significant, its action is to link the hydrogen-bonded chains into a sheet parallel to (100).

The supramolecular aggregation in (II), by contrast, is extremely simple. There are no hydrogen bonds of any kind in the structure, but the molecules of type 1 are linked in pairs by a single weak ππ stacking interaction between the phenyl rings of the molecules at (x, y, z) and (-x, -y, -z). The interplanar spacing is 3.395 (2) Å, with a ring-centroid separation of 3.974 (2) Å, which corresponds to a ring-centroid offset of 1.867 (2) Å. There are no direction-specific interactions of any kind involving the molecules of type 2.

The stacking interaction in (II) closely resembles that in the 4-methylphenyl analogue (IV) (Portilla et al.,2005), where pairs of molecules are again linked into isolated dimers. In the unsubstituted phenyl compound (III), the molecules are linked into chains by a combination of a C—H···π(arene) hydrogen bond and a ππ stacking interaction. The 4-chlorophenyl derivative (V) crystallizes with Z' = 2 (Low et al., 2004), and the molecules are linked by two independent ππ stacking interactions into chains in which the two types of molecules alternate.

Related literature top

For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Evans & Boeyens (1989); Low et al. (2004); Portilla et al. (2005); Spek (2003).

Experimental top

Equimolar quantities (2.6 mmol of each component) of 2-acetyltetralone and either 5-amino-3-methyl-1H-pyrazole for (I), or 5-amino-3-tert-butyl-1H-pyrazole for (II), were thoroughly mixed at room temperature. The solvent-free mixtures were then heated in an oil bath at 393 K for 1.5–2 min. The resulting melts were stirred briefly, and then allowed to cool to ambient temperature to solidify. The resulting solids were extracted with ethanol and, after removal of the solvent under reduced pressure, the products (I) and (II) were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. (I), pale orange [colourless according to CIF] crystals, yield 86%, m.p. 385–387 K; MS (70 eV) m/z (%): 249 (100, M+), 234 (8), 221 (9), 127 (16), 39 (22). (II), pale yellow [colourless according to CIF] crystals, yield 84% m.p. 439–441 K; MS (70 eV) m/z (%): 291 (96, M+), 276 (92), 246 (100), 128 (25), 57 (25), 41 (57), 39 (56).

Refinement top

Crystals of both (I) and (II) are triclinic, and for each the space group P1 was selected, and confirmed by the structure analysis. All H atoms were located in difference maps, and then treated as riding atoms in geometrically idealized position with C—H distances 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms. A search for possible additional symmetry in (II) revealed none.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules of compound (II) showing the atom-labelling scheme: (a) a molecule of type 1 containing atom N11 and (b) a molecule of type 2 containing atom N21. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain of rings along [011]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2,5-Dimethyl-6,7-dihydrobenzo[h]pyrazolo[1,5-a]quinazoline top
Crystal data top
C16H15N3Z = 2
Mr = 249.31F(000) = 264
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9430 (19) ÅCell parameters from 2867 reflections
b = 7.9660 (11) Åθ = 3.1–27.5°
c = 9.943 (3) ŵ = 0.08 mm1
α = 87.637 (13)°T = 120 K
β = 82.632 (18)°Plate, pale orange
γ = 89.941 (17)°0.49 × 0.44 × 0.07 mm
V = 623.4 (3) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2867 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.971, Tmax = 0.994k = 1010
15496 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.132P)2]
where P = (Fo2 + 2Fc2)/3
2867 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H15N3γ = 89.941 (17)°
Mr = 249.31V = 623.4 (3) Å3
Triclinic, P1Z = 2
a = 7.9430 (19) ÅMo Kα radiation
b = 7.9660 (11) ŵ = 0.08 mm1
c = 9.943 (3) ÅT = 120 K
α = 87.637 (13)°0.49 × 0.44 × 0.07 mm
β = 82.632 (18)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2867 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1600 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.074
15496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
2867 reflectionsΔρmin = 0.29 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2113 (2)0.2787 (2)0.7554 (2)0.0334 (5)
C20.1988 (3)0.1266 (3)0.8210 (2)0.0346 (6)
C210.0519 (3)0.0156 (3)0.8068 (3)0.0441 (7)
C30.3322 (3)0.0946 (3)0.8954 (3)0.0371 (6)
C3A0.4344 (3)0.2341 (3)0.8756 (2)0.0318 (6)
N40.5821 (2)0.2726 (2)0.92127 (19)0.0334 (5)
C50.6519 (3)0.4197 (3)0.8817 (2)0.0316 (6)
C510.8150 (3)0.4574 (3)0.9349 (2)0.0374 (6)
C5A0.5806 (3)0.5352 (3)0.7918 (2)0.0295 (6)
C60.6642 (3)0.6992 (3)0.7433 (2)0.0343 (6)
C70.6505 (3)0.7289 (3)0.5925 (2)0.0323 (6)
C7A0.4709 (3)0.7192 (3)0.5656 (2)0.0301 (6)
C80.4136 (3)0.8146 (3)0.4611 (2)0.0333 (6)
C90.2461 (3)0.8055 (3)0.4363 (3)0.0373 (6)
C100.1328 (3)0.7036 (3)0.5176 (2)0.0369 (6)
C110.1873 (3)0.6047 (3)0.6217 (2)0.0347 (6)
C11A0.3564 (3)0.6090 (3)0.6450 (2)0.0290 (6)
C11B0.4299 (3)0.4968 (3)0.7447 (2)0.0285 (6)
N11C0.3571 (2)0.3450 (2)0.78920 (19)0.0295 (5)
H21A0.05010.00660.71080.066*
H21B0.05380.07110.84220.066*
H21C0.06260.09070.85810.066*
H30.34920.00380.94910.044*
H51A0.91040.43990.86410.056*
H51B0.82660.38261.01390.056*
H51C0.81490.57450.96170.056*
H6A0.78510.69670.75800.041*
H6B0.60810.79180.79520.041*
H7A0.69770.84100.56190.039*
H7B0.71840.64360.54020.039*
H80.49030.88760.40560.040*
H90.20970.86990.36290.045*
H100.01710.70080.50270.044*
H110.10880.53370.67750.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0313 (12)0.0351 (12)0.0344 (11)0.0050 (9)0.0074 (9)0.0003 (9)
C20.0367 (15)0.0342 (14)0.0327 (13)0.0012 (11)0.0048 (11)0.0016 (11)
C210.0426 (16)0.0424 (16)0.0477 (16)0.0064 (12)0.0096 (13)0.0057 (12)
C30.0372 (15)0.0367 (14)0.0370 (14)0.0010 (11)0.0056 (12)0.0041 (11)
C3A0.0313 (14)0.0379 (14)0.0259 (12)0.0046 (11)0.0040 (10)0.0016 (10)
N40.0330 (12)0.0399 (12)0.0278 (11)0.0029 (9)0.0057 (9)0.0007 (9)
C50.0306 (13)0.0380 (14)0.0267 (12)0.0024 (10)0.0054 (10)0.0013 (10)
C510.0306 (14)0.0501 (16)0.0325 (14)0.0015 (11)0.0075 (11)0.0027 (12)
C5A0.0283 (13)0.0340 (13)0.0261 (12)0.0016 (10)0.0028 (10)0.0037 (10)
C60.0350 (14)0.0332 (13)0.0352 (14)0.0001 (11)0.0057 (11)0.0034 (11)
C70.0313 (14)0.0307 (13)0.0347 (14)0.0004 (10)0.0043 (11)0.0003 (11)
C7A0.0328 (14)0.0280 (13)0.0296 (12)0.0039 (10)0.0043 (10)0.0030 (10)
C80.0347 (14)0.0308 (13)0.0343 (13)0.0009 (10)0.0054 (11)0.0002 (11)
C90.0428 (16)0.0342 (14)0.0368 (14)0.0022 (11)0.0122 (12)0.0012 (11)
C100.0294 (14)0.0378 (14)0.0449 (15)0.0046 (11)0.0090 (12)0.0025 (12)
C110.0281 (14)0.0351 (14)0.0405 (14)0.0002 (10)0.0039 (11)0.0008 (11)
C11A0.0304 (13)0.0296 (13)0.0277 (12)0.0026 (10)0.0049 (10)0.0040 (10)
C11B0.0281 (13)0.0303 (13)0.0268 (12)0.0002 (10)0.0023 (10)0.0021 (10)
N11C0.0265 (11)0.0341 (11)0.0281 (11)0.0007 (8)0.0052 (8)0.0010 (9)
Geometric parameters (Å, º) top
N1—C21.350 (3)C5A—C61.499 (3)
C2—C31.385 (4)C6—C71.526 (3)
C3—C3A1.370 (3)C6—H6A0.99
C3A—N41.351 (3)C6—H6B0.99
N4—C51.320 (3)C7—C7A1.488 (3)
C5—C5A1.423 (3)C7—H7A0.99
C5A—C11B1.379 (3)C7—H7B0.99
C11B—N11C1.372 (3)C7A—C81.385 (3)
N11C—N11.360 (3)C7A—C11A1.408 (3)
C3A—N11C1.402 (3)C8—C91.386 (3)
C2—C211.489 (3)C8—H80.95
C21—H21A0.98C9—C101.372 (3)
C21—H21B0.98C9—H90.95
C21—H21C0.98C10—C111.388 (3)
C3—H30.95C10—H100.95
C5—C511.497 (3)C11—C11A1.393 (3)
C51—H51A0.98C11—H110.95
C51—H51B0.98C11A—C11B1.482 (3)
C51—H51C0.98
C2—N1—N11C104.10 (18)C7—C6—H6B109.8
N1—C2—C3112.6 (2)H6A—C6—H6B108.3
N1—C2—C21119.3 (2)C7A—C7—C6111.13 (19)
C3—C2—C21128.1 (2)C7A—C7—H7A109.4
C2—C21—H21A109.5C6—C7—H7A109.4
C2—C21—H21B109.5C7A—C7—H7B109.4
H21A—C21—H21B109.5C6—C7—H7B109.4
C2—C21—H21C109.5H7A—C7—H7B108.0
H21A—C21—H21C109.5C8—C7A—C11A118.7 (2)
H21B—C21—H21C109.5C8—C7A—C7121.3 (2)
C3A—C3—C2105.9 (2)C11A—C7A—C7120.1 (2)
C3A—C3—H3127.1C7A—C8—C9121.1 (2)
C2—C3—H3127.1C7A—C8—H8119.4
N4—C3A—C3132.1 (2)C9—C8—H8119.4
N4—C3A—N11C121.8 (2)C10—C9—C8120.1 (2)
C3—C3A—N11C106.1 (2)C10—C9—H9119.9
C5—N4—C3A117.4 (2)C8—C9—H9119.9
N4—C5—C5A123.0 (2)C9—C10—C11120.0 (2)
N4—C5—C51115.7 (2)C9—C10—H10120.0
C5A—C5—C51121.3 (2)C11—C10—H10120.0
C5—C51—H51A109.5C10—C11—C11A120.4 (2)
C5—C51—H51B109.5C10—C11—H11119.8
H51A—C51—H51B109.5C11A—C11—H11119.8
C5—C51—H51C109.5C11—C11A—C7A119.6 (2)
H51A—C51—H51C109.5C11—C11A—C11B124.3 (2)
H51B—C51—H51C109.5C7A—C11A—C11B116.0 (2)
C11B—C5A—C5119.9 (2)N11C—C11B—C5A116.4 (2)
C11B—C5A—C6117.5 (2)N11C—C11B—C11A121.9 (2)
C5—C5A—C6122.6 (2)C5A—C11B—C11A121.6 (2)
C5A—C6—C7109.26 (19)N1—N11C—C11B127.18 (19)
C5A—C6—H6A109.8N1—N11C—C3A111.30 (19)
C7—C6—H6A109.8C11B—N11C—C3A121.5 (2)
C5A—C6—H6B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N4i0.952.553.495 (3)175
C7—H7B···Cgii0.992.973.789 (3)141
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1.
(II) 2-tert-Butyl-5-methyl-6,7-dihydrobenzo[h]pyrazolo[1,5-a]quinazoline top
Crystal data top
C19H21N3Z = 4
Mr = 291.39F(000) = 624
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2632 (5) ÅCell parameters from 6991 reflections
b = 11.4574 (7) Åθ = 3.3–27.5°
c = 12.1317 (6) ŵ = 0.08 mm1
α = 93.449 (5)°T = 120 K
β = 90.313 (4)°Plate, pale yellow
γ = 102.791 (6)°0.52 × 0.35 × 0.15 mm
V = 1523.66 (14) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6991 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.972, Tmax = 0.989k = 1414
37817 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.112P)2 + 0.7885P]
where P = (Fo2 + 2Fc2)/3
6991 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C19H21N3γ = 102.791 (6)°
Mr = 291.39V = 1523.66 (14) Å3
Triclinic, P1Z = 4
a = 11.2632 (5) ÅMo Kα radiation
b = 11.4574 (7) ŵ = 0.08 mm1
c = 12.1317 (6) ÅT = 120 K
α = 93.449 (5)°0.52 × 0.35 × 0.15 mm
β = 90.313 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6991 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4144 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.989Rint = 0.061
37817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
6991 reflectionsΔρmin = 0.39 e Å3
405 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.08028 (18)0.23561 (18)0.22469 (16)0.0251 (5)
C120.1426 (2)0.2742 (2)0.3086 (2)0.0256 (5)
C1210.2776 (2)0.2234 (2)0.3140 (2)0.0262 (5)
C1220.2987 (2)0.1016 (2)0.3654 (3)0.0394 (7)
C1230.3360 (2)0.3096 (3)0.3846 (2)0.0361 (6)
C1240.3344 (2)0.2068 (3)0.1978 (2)0.0367 (7)
C130.0666 (2)0.3564 (2)0.3832 (2)0.0263 (5)
C13A0.0496 (2)0.3677 (2)0.34248 (19)0.0244 (5)
N140.15925 (18)0.42942 (18)0.38278 (16)0.0262 (5)
C150.2563 (2)0.4153 (2)0.3269 (2)0.0247 (5)
C1510.3777 (2)0.4774 (2)0.3765 (2)0.0309 (6)
C15A0.2485 (2)0.3441 (2)0.22562 (19)0.0235 (5)
C160.3596 (2)0.3320 (2)0.1612 (2)0.0281 (6)
C170.3425 (2)0.2065 (2)0.1057 (2)0.0270 (5)
C17A0.2270 (2)0.1742 (2)0.0378 (2)0.0247 (5)
C180.2199 (2)0.1075 (2)0.0621 (2)0.0277 (6)
C190.1128 (2)0.0790 (2)0.1247 (2)0.0290 (6)
C1100.0127 (2)0.1194 (2)0.0881 (2)0.0281 (6)
C1110.0166 (2)0.1848 (2)0.0122 (2)0.0258 (5)
C11A0.1235 (2)0.2122 (2)0.07662 (19)0.0226 (5)
C11B0.1367 (2)0.2840 (2)0.18268 (19)0.0221 (5)
N11C0.03751 (17)0.29473 (17)0.24558 (16)0.0225 (4)
N210.54131 (18)0.76318 (18)0.27332 (16)0.0251 (5)
C220.4613 (2)0.7232 (2)0.1894 (2)0.0243 (5)
C2210.3478 (2)0.7725 (2)0.1843 (2)0.0271 (5)
C2220.3788 (3)0.8926 (2)0.1309 (3)0.0388 (7)
C2230.2499 (2)0.6853 (2)0.1147 (2)0.0345 (6)
C2240.2998 (2)0.7903 (3)0.3005 (2)0.0391 (7)
C230.5003 (2)0.6421 (2)0.1150 (2)0.0245 (5)
C23A0.6119 (2)0.6321 (2)0.15577 (19)0.0222 (5)
N240.69424 (18)0.57077 (18)0.11621 (16)0.0255 (5)
C250.7983 (2)0.5853 (2)0.17177 (19)0.0240 (5)
C2520.8909 (2)0.5232 (2)0.1234 (2)0.0297 (6)
C25A0.8231 (2)0.6578 (2)0.27291 (19)0.0238 (5)
C260.9404 (2)0.6700 (2)0.3370 (2)0.0284 (6)
C270.9783 (2)0.7949 (2)0.3942 (2)0.0259 (5)
C27A0.8775 (2)0.8241 (2)0.4631 (2)0.0239 (5)
C280.8997 (2)0.8861 (2)0.5658 (2)0.0258 (5)
C290.8056 (2)0.9120 (2)0.6284 (2)0.0285 (6)
C2100.6872 (2)0.8770 (2)0.5880 (2)0.0271 (5)
C2110.6624 (2)0.8151 (2)0.4860 (2)0.0250 (5)
C21A0.7567 (2)0.7878 (2)0.42219 (19)0.0231 (5)
C21B0.7382 (2)0.7173 (2)0.31500 (19)0.0218 (5)
N21C0.63371 (17)0.70587 (17)0.25265 (16)0.0225 (4)
H12A0.26250.04640.31870.059*
H12B0.38640.06880.37080.059*
H12C0.26070.11190.43910.059*
H12D0.30180.31840.45980.054*
H12E0.42420.27750.38650.054*
H12F0.31980.38790.35260.054*
H12G0.32420.28490.16600.055*
H12H0.42140.16970.20160.055*
H12I0.29420.15470.15120.055*
H130.09000.39580.44800.032*
H51A0.36580.52460.44400.046*
H51B0.42310.53080.32350.046*
H51C0.42380.41760.39440.046*
H16A0.43170.34810.21160.034*
H16B0.37450.39180.10440.034*
H17A0.41260.20270.05770.032*
H17B0.34010.14780.16280.032*
H180.28940.08070.08810.033*
H190.10860.03180.19230.035*
H1100.05990.10190.13200.034*
H1110.05350.21110.03710.031*
H22A0.41220.88140.05740.058*
H22B0.43920.95000.17680.058*
H22C0.30490.92370.12340.058*
H22D0.23220.60710.14720.052*
H22E0.27890.67600.03930.052*
H22F0.17560.71640.11280.052*
H22G0.36360.84330.34660.059*
H22H0.27600.71240.33310.059*
H22I0.22880.82630.29620.059*
H230.45880.60230.05010.029*
H52A0.85730.47600.05580.045*
H52B0.91230.47000.17670.045*
H52C0.96390.58300.10570.045*
H26A1.00510.65590.28630.034*
H26B0.92980.60910.39280.034*
H27A1.05110.79920.44180.031*
H27B1.00040.85480.33800.031*
H280.98110.91110.59340.031*
H290.82210.95340.69910.034*
H2100.62240.89550.63060.033*
H2110.58070.79100.45920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0255 (11)0.0243 (10)0.0247 (11)0.0042 (8)0.0011 (8)0.0006 (8)
C120.0298 (13)0.0226 (12)0.0255 (13)0.0075 (10)0.0019 (10)0.0042 (10)
C1210.0243 (12)0.0286 (13)0.0255 (13)0.0054 (10)0.0022 (10)0.0021 (10)
C1220.0330 (15)0.0356 (15)0.0490 (18)0.0043 (12)0.0038 (13)0.0101 (13)
C1230.0309 (14)0.0390 (16)0.0376 (15)0.0070 (12)0.0065 (12)0.0024 (12)
C1240.0283 (14)0.0483 (17)0.0310 (15)0.0038 (12)0.0027 (11)0.0003 (13)
C130.0330 (14)0.0259 (13)0.0217 (12)0.0105 (10)0.0023 (10)0.0008 (10)
C13A0.0312 (13)0.0217 (12)0.0203 (12)0.0058 (10)0.0005 (10)0.0009 (10)
N140.0292 (11)0.0228 (10)0.0255 (11)0.0041 (9)0.0009 (9)0.0005 (8)
C150.0298 (13)0.0212 (12)0.0234 (12)0.0053 (10)0.0004 (10)0.0048 (10)
C1510.0291 (13)0.0301 (14)0.0310 (14)0.0027 (11)0.0010 (11)0.0038 (11)
C15A0.0280 (13)0.0213 (12)0.0210 (12)0.0048 (10)0.0010 (10)0.0025 (9)
C160.0255 (13)0.0290 (13)0.0290 (13)0.0045 (10)0.0035 (10)0.0011 (11)
C170.0264 (13)0.0303 (13)0.0256 (13)0.0084 (10)0.0034 (10)0.0039 (10)
C17A0.0278 (13)0.0216 (12)0.0250 (13)0.0055 (10)0.0038 (10)0.0034 (10)
C180.0324 (14)0.0250 (13)0.0269 (13)0.0085 (10)0.0052 (11)0.0037 (10)
C190.0382 (14)0.0258 (13)0.0217 (12)0.0047 (11)0.0021 (11)0.0001 (10)
C1100.0318 (14)0.0276 (13)0.0240 (13)0.0041 (11)0.0008 (10)0.0020 (10)
C1110.0283 (13)0.0256 (13)0.0233 (12)0.0053 (10)0.0021 (10)0.0022 (10)
C11A0.0278 (13)0.0190 (11)0.0210 (12)0.0043 (9)0.0013 (10)0.0038 (9)
C11B0.0246 (12)0.0215 (12)0.0210 (12)0.0059 (9)0.0019 (9)0.0045 (9)
N11C0.0229 (10)0.0238 (10)0.0201 (10)0.0034 (8)0.0002 (8)0.0010 (8)
N210.0253 (11)0.0239 (10)0.0267 (11)0.0070 (8)0.0001 (8)0.0001 (9)
C220.0245 (12)0.0228 (12)0.0242 (12)0.0016 (9)0.0013 (10)0.0037 (10)
C2210.0272 (13)0.0279 (13)0.0267 (13)0.0074 (10)0.0024 (10)0.0014 (10)
C2220.0369 (15)0.0302 (14)0.0507 (18)0.0083 (12)0.0003 (13)0.0102 (13)
C2230.0305 (14)0.0341 (14)0.0381 (15)0.0073 (11)0.0068 (11)0.0034 (12)
C2240.0345 (15)0.0534 (18)0.0326 (15)0.0175 (13)0.0018 (12)0.0021 (13)
C230.02457 (12)0.0259 (12)0.0217 (12)0.0021 (10)0.0012 (10)0.0025 (10)
C23A0.0246 (12)0.0209 (12)0.0203 (12)0.0036 (9)0.0013 (9)0.0007 (9)
N240.0271 (11)0.0243 (11)0.0252 (11)0.0063 (8)0.0008 (8)0.0009 (8)
C250.0264 (12)0.0220 (12)0.0221 (12)0.0022 (10)0.0010 (10)0.0026 (10)
C2520.0299 (14)0.0285 (13)0.0308 (14)0.0080 (11)0.0008 (11)0.0026 (11)
C25A0.0252 (12)0.0220 (12)0.0238 (12)0.0040 (10)0.0012 (10)0.0028 (10)
C260.0284 (13)0.0302 (13)0.0271 (13)0.0073 (10)0.0008 (10)0.0009 (11)
C270.0258 (12)0.0278 (13)0.0226 (12)0.0030 (10)0.0016 (10)0.0016 (10)
C27A0.0275 (13)0.0196 (12)0.0240 (12)0.0032 (10)0.0004 (10)0.0035 (10)
C280.0268 (13)0.0240 (12)0.0242 (12)0.0002 (10)0.0032 (10)0.0031 (10)
C290.0368 (14)0.0247 (13)0.0223 (12)0.0035 (11)0.0002 (10)0.0007 (10)
C2100.0305 (13)0.0281 (13)0.0229 (12)0.0067 (10)0.0025 (10)0.0018 (10)
C2110.0256 (12)0.0246 (12)0.0233 (12)0.0020 (10)0.0008 (10)0.0033 (10)
C21A0.0296 (13)0.0192 (11)0.0194 (12)0.0024 (9)0.0018 (10)0.0040 (9)
C21B0.0216 (12)0.0212 (12)0.0213 (12)0.0014 (9)0.0000 (9)0.0041 (9)
N21C0.0223 (10)0.0238 (10)0.0212 (10)0.0052 (8)0.0007 (8)0.0001 (8)
Geometric parameters (Å, º) top
N11—C121.347 (3)N21—C221.345 (3)
C12—C131.404 (3)C22—C231.399 (3)
C13—C13A1.383 (3)C23—C23A1.379 (3)
C13A—N141.353 (3)C23A—N241.355 (3)
N14—C151.324 (3)N24—C251.323 (3)
C15—C15A1.424 (3)C25—C25A1.430 (3)
C15A—C11B1.377 (3)C25A—C21B1.375 (3)
C11B—N11C1.381 (3)C21B—N21C1.373 (3)
N11C—N111.364 (3)N21C—N211.365 (3)
C13A—N11C1.389 (3)C23A—N21C1.393 (3)
C12—C1211.506 (3)C22—C2211.511 (3)
C121—C1231.527 (4)C221—C2231.527 (4)
C121—C1241.530 (3)C221—C2221.530 (4)
C121—C1221.533 (4)C221—C2241.531 (4)
C122—H12A0.98C222—H22A0.98
C122—H12B0.98C222—H22B0.98
C122—H12C0.98C222—H22C0.98
C123—H12D0.98C223—H22D0.98
C123—H12E0.98C223—H22E0.98
C123—H12F0.98C223—H22F0.98
C124—H12G0.98C224—H22G0.98
C124—H12H0.98C224—H22H0.98
C124—H12I0.98C224—H22I0.98
C13—H130.95C23—H230.95
C15—C1511.500 (3)C25—C2521.491 (3)
C151—H51A0.98C252—H52A0.98
C151—H51B0.98C252—H52B0.98
C151—H51C0.98C252—H52C0.98
C15A—C161.508 (3)C25A—C261.504 (3)
C16—C171.523 (3)C26—C271.522 (3)
C16—H16A0.99C26—H26A0.99
C16—H16B0.99C26—H26B0.99
C17—C17A1.499 (3)C27—C27A1.498 (3)
C17—H17A0.99C27—H27A0.99
C17—H17B0.99C27—H27B0.99
C17A—C181.387 (3)C27A—C281.389 (3)
C17A—C11A1.405 (3)C27A—C21A1.410 (3)
C18—C191.386 (3)C28—C291.384 (3)
C18—H180.95C28—H280.95
C19—C1101.377 (4)C29—C2101.383 (3)
C19—H190.95C29—H290.95
C110—C1111.385 (3)C210—C2111.384 (3)
C110—H1100.95C210—H2100.95
C111—C11A1.398 (3)C211—C21A1.397 (3)
C111—H1110.95C211—H2110.95
C11A—C11B1.474 (3)C21A—C21B1.478 (3)
C12—N11—N11C104.26 (19)C22—N21—N21C104.16 (18)
N11—C12—C13112.3 (2)N21—C22—C23112.7 (2)
N11—C12—C121118.8 (2)N21—C22—C221118.3 (2)
C13—C12—C121128.9 (2)C23—C22—C221128.9 (2)
C12—C121—C123109.4 (2)C22—C221—C223109.5 (2)
C12—C121—C124110.0 (2)C22—C221—C222108.7 (2)
C123—C121—C124109.3 (2)C223—C221—C222109.3 (2)
C12—C121—C122108.9 (2)C22—C221—C224110.5 (2)
C123—C121—C122110.0 (2)C223—C221—C224109.1 (2)
C124—C121—C122109.3 (2)C222—C221—C224109.8 (2)
C121—C122—H12A109.5C221—C222—H22A109.5
C121—C122—H12B109.5C221—C222—H22B109.5
H12A—C122—H12B109.5H22A—C222—H22B109.5
C121—C122—H12C109.5C221—C222—H22C109.5
H12A—C122—H12C109.5H22A—C222—H22C109.5
H12B—C122—H12C109.5H22B—C222—H22C109.5
C121—C123—H12D109.5C221—C223—H22D109.5
C121—C123—H12E109.5C221—C223—H22E109.5
H12D—C123—H12E109.5H22D—C223—H22E109.5
C121—C123—H12F109.5C221—C223—H22F109.5
H12D—C123—H12F109.5H22D—C223—H22F109.5
H12E—C123—H12F109.5H22E—C223—H22F109.5
C121—C124—H12G109.5C221—C224—H22G109.5
C121—C124—H12H109.5C221—C224—H22H109.5
H12G—C124—H12H109.5H22G—C224—H22H109.5
C121—C124—H12I109.5C221—C224—H22I109.5
H12G—C124—H12I109.5H22G—C224—H22I109.5
H12H—C124—H12I109.5H22H—C224—H22I109.5
C13A—C13—C12105.3 (2)C23A—C23—C22105.2 (2)
C13A—C13—H13127.3C23A—C23—H23127.4
C12—C13—H13127.3C22—C23—H23127.4
N14—C13A—C13131.6 (2)N24—C23A—C23131.7 (2)
N14—C13A—N11C122.2 (2)N24—C23A—N21C121.9 (2)
C13—C13A—N11C106.1 (2)C23—C23A—N21C106.3 (2)
C15—N14—C13A117.0 (2)C25—N24—C23A117.5 (2)
N14—C15—C15A122.9 (2)N24—C25—C25A122.4 (2)
N14—C15—C151116.4 (2)N24—C25—C252116.8 (2)
C15A—C15—C151120.6 (2)C25A—C25—C252120.8 (2)
C15—C151—H51A109.5C25—C252—H52A109.5
C15—C151—H51B109.5C25—C252—H52B109.5
H51A—C151—H51B109.5H52A—C252—H52B109.5
C15—C151—H51C109.5C25—C252—H52C109.5
H51A—C151—H51C109.5H52A—C252—H52C109.5
H51B—C151—H51C109.5H52B—C252—H52C109.5
C11B—C15A—C15120.2 (2)C21B—C25A—C25120.2 (2)
C11B—C15A—C16117.5 (2)C21B—C25A—C26118.2 (2)
C15—C15A—C16122.3 (2)C25—C25A—C26121.7 (2)
C15A—C16—C17110.6 (2)C25A—C26—C27110.3 (2)
C15A—C16—H16A109.5C25A—C26—H26A109.6
C17—C16—H16A109.5C27—C26—H26A109.6
C15A—C16—H16B109.5C25A—C26—H26B109.6
C17—C16—H16B109.5C27—C26—H26B109.6
H16A—C16—H16B108.1H26A—C26—H26B108.1
C17A—C17—C16110.9 (2)C27A—C27—C26111.0 (2)
C17A—C17—H17A109.4C27A—C27—H27A109.4
C16—C17—H17A109.4C26—C27—H27A109.4
C17A—C17—H17B109.4C27A—C27—H27B109.4
C16—C17—H17B109.4C26—C27—H27B109.4
H17A—C17—H17B108.0H27A—C27—H27B108.0
C18—C17A—C11A119.3 (2)C28—C27A—C21A119.2 (2)
C18—C17A—C17121.5 (2)C28—C27A—C27121.9 (2)
C11A—C17A—C17119.2 (2)C21A—C27A—C27118.9 (2)
C19—C18—C17A121.0 (2)C29—C28—C27A121.2 (2)
C19—C18—H18119.5C29—C28—H28119.4
C17A—C18—H18119.5C27A—C28—H28119.4
C110—C19—C18119.6 (2)C210—C29—C28119.6 (2)
C110—C19—H19120.2C210—C29—H29120.2
C18—C19—H19120.2C28—C29—H29120.2
C19—C110—C111120.7 (2)C29—C210—C211120.4 (2)
C19—C110—H110119.6C29—C210—H210119.8
C111—C110—H110119.6C211—C210—H210119.8
C110—C111—C11A120.0 (2)C210—C211—C21A120.5 (2)
C110—C111—H111120.0C210—C211—H211119.7
C11A—C111—H111120.0C21A—C211—H211119.7
C111—C11A—C17A119.4 (2)C211—C21A—C27A119.1 (2)
C111—C11A—C11B123.6 (2)C211—C21A—C21B124.2 (2)
C17A—C11A—C11B116.9 (2)C27A—C21A—C21B116.7 (2)
C15A—C11B—N11C115.7 (2)N21C—C21B—C25A116.3 (2)
C15A—C11B—C11A122.3 (2)N21C—C21B—C21A121.5 (2)
N11C—C11B—C11A121.9 (2)C25A—C21B—C21A122.2 (2)
N11—N11C—C11B126.17 (19)N21—N21C—C21B126.72 (19)
N11—N11C—C13A111.99 (18)N21—N21C—C23A111.59 (18)
C11B—N11C—C13A121.81 (19)C21B—N21C—C23A121.68 (19)
N11C—N11—C12—C130.4 (3)N21C—N21—C22—C230.3 (3)
N11C—N11—C12—C121178.1 (2)N21C—N21—C22—C221178.0 (2)
N11—C12—C121—C123158.5 (2)N21—C22—C221—C223158.1 (2)
C13—C12—C121—C12324.3 (3)C23—C22—C221—C22324.7 (3)
N11—C12—C121—C12438.5 (3)N21—C22—C221—C22282.6 (3)
C13—C12—C121—C124144.3 (3)C23—C22—C221—C22294.6 (3)
N11—C12—C121—C12281.3 (3)N21—C22—C221—C22437.9 (3)
C13—C12—C121—C12295.9 (3)C23—C22—C221—C224144.9 (3)
N11—C12—C13—C13A0.5 (3)N21—C22—C23—C23A0.2 (3)
C121—C12—C13—C13A176.9 (2)C221—C22—C23—C23A177.0 (2)
C12—C13—C13A—N14176.2 (2)C22—C23—C23A—N24176.8 (2)
C12—C13—C13A—N11C1.2 (3)C22—C23—C23A—N21C0.7 (2)
C13—C13A—N14—C15175.4 (2)C23—C23A—N24—C25175.8 (2)
N11C—C13A—N14—C151.6 (3)N21C—C23A—N24—C251.5 (3)
C13A—N14—C15—C15A3.3 (3)C23A—N24—C25—C25A3.1 (3)
C13A—N14—C15—C151175.9 (2)C23A—N24—C25—C252176.3 (2)
N14—C15—C15A—C11B1.5 (4)N24—C25—C25A—C21B1.2 (4)
C151—C15—C15A—C11B177.7 (2)C252—C25—C25A—C21B178.1 (2)
N14—C15—C15A—C16178.1 (2)N24—C25—C25A—C26177.9 (2)
C151—C15—C15A—C162.8 (3)C252—C25—C25A—C262.7 (3)
C11B—C15A—C16—C1735.5 (3)C21B—C25A—C26—C2734.2 (3)
C15—C15A—C16—C17145.0 (2)C25—C25A—C26—C27146.6 (2)
C15A—C16—C17—C17A53.3 (3)C25A—C26—C27—C27A53.6 (3)
C16—C17—C17A—C18143.0 (2)C26—C27—C27A—C28140.8 (2)
C16—C17—C17A—C11A37.2 (3)C26—C27—C27A—C21A39.3 (3)
C11A—C17A—C18—C190.8 (4)C21A—C27A—C28—C290.4 (4)
C17—C17A—C18—C19179.4 (2)C27—C27A—C28—C29179.7 (2)
C17A—C18—C19—C1101.2 (4)C27A—C28—C29—C2100.8 (4)
C18—C19—C110—C1112.0 (4)C28—C29—C210—C2110.8 (4)
C19—C110—C111—C11A1.0 (4)C29—C210—C211—C21A0.4 (4)
C110—C111—C11A—C17A1.0 (4)C210—C211—C21A—C27A0.0 (3)
C110—C111—C11A—C11B178.3 (2)C210—C211—C21A—C21B176.9 (2)
C18—C17A—C11A—C1111.8 (3)C28—C27A—C21A—C2110.0 (3)
C17—C17A—C11A—C111178.4 (2)C27—C27A—C21A—C211179.9 (2)
C18—C17A—C11A—C11B179.4 (2)C28—C27A—C21A—C21B177.2 (2)
C17—C17A—C11A—C11B0.8 (3)C27—C27A—C21A—C21B3.0 (3)
C15—C15A—C11B—N11C2.1 (3)C25—C25A—C21B—N21C2.3 (3)
C16—C15A—C11B—N11C178.3 (2)C26—C25A—C21B—N21C178.5 (2)
C15—C15A—C11B—C11A178.1 (2)C25—C25A—C21B—C21A176.6 (2)
C16—C15A—C11B—C11A1.4 (3)C26—C25A—C21B—C21A2.5 (3)
C111—C11A—C11B—C15A157.1 (2)C211—C21A—C21B—N21C21.6 (3)
C17A—C11A—C11B—C15A20.3 (3)C27A—C21A—C21B—N21C161.4 (2)
C111—C11A—C11B—N11C23.1 (3)C211—C21A—C21B—C25A157.3 (2)
C17A—C11A—C11B—N11C159.4 (2)C27A—C21A—C21B—C25A19.7 (3)
C12—N11—N11C—C11B179.3 (2)C22—N21—N21C—C21B179.7 (2)
C12—N11—N11C—C13A1.2 (2)C22—N21—N21C—C23A0.8 (2)
C15A—C11B—N11C—N11174.1 (2)C25A—C21B—N21C—N21174.9 (2)
C11A—C11B—N11C—N115.7 (3)C21A—C21B—N21C—N216.1 (3)
C15A—C11B—N11C—C13A3.8 (3)C25A—C21B—N21C—C23A3.9 (3)
C11A—C11B—N11C—C13A176.4 (2)C21A—C21B—N21C—C23A175.0 (2)
N14—C13A—N11C—N11176.1 (2)N24—C23A—N21C—N21176.9 (2)
C13—C13A—N11C—N111.6 (3)C23—C23A—N21C—N211.0 (3)
N14—C13A—N11C—C11B2.1 (3)N24—C23A—N21C—C21B2.1 (3)
C13—C13A—N11C—C11B179.7 (2)C23—C23A—N21C—C21B180.0 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H15N3C19H21N3
Mr249.31291.39
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)7.9430 (19), 7.9660 (11), 9.943 (3)11.2632 (5), 11.4574 (7), 12.1317 (6)
α, β, γ (°)87.637 (13), 82.632 (18), 89.941 (17)93.449 (5), 90.313 (4), 102.791 (6)
V3)623.4 (3)1523.66 (14)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.49 × 0.44 × 0.070.52 × 0.35 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.971, 0.9940.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15496, 2867, 1600 37817, 6991, 4144
Rint0.0740.061
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.220, 1.04 0.065, 0.213, 1.06
No. of reflections28676991
No. of parameters174405
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.290.42, 0.39

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
N1—C21.350 (3)C5—C5A1.423 (3)
C2—C31.385 (4)C5A—C11B1.379 (3)
C3—C3A1.370 (3)C11B—N11C1.372 (3)
C3A—N41.351 (3)N11C—N11.360 (3)
N4—C51.320 (3)C3A—N11C1.402 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N4i0.952.553.495 (3)175
C7—H7B···Cgii0.992.973.789 (3)141
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
N11—C121.347 (3)N21—C221.345 (3)
C12—C131.404 (3)C22—C231.399 (3)
C13—C13A1.383 (3)C23—C23A1.379 (3)
C13A—N141.353 (3)C23A—N241.355 (3)
N14—C151.324 (3)N24—C251.323 (3)
C15—C15A1.424 (3)C25—C25A1.430 (3)
C15A—C11B1.377 (3)C25A—C21B1.375 (3)
C11B—N11C1.381 (3)C21B—N21C1.373 (3)
N11C—N111.364 (3)N21C—N211.365 (3)
C13A—N11C1.389 (3)C23A—N21C1.393 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds